

Lecture Notes in Computer Science 4703
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Luís Caires Vasco T. Vasconcelos (Eds.)

CONCUR 2007 –
Concurrency Theory

18th International Conference, CONCUR 2007
Lisbon, Portugal, September 3-8, 2007
Proceedings

13

Volume Editors

Luís Caires
Universidade Nova de Lisboa
Portugal
E-mail: Luis.Caires@di.fct.unl.pt

Vasco T. Vasconcelos
Universidade de Lisboa
Portugal
E-mail: vv@di.fc.ul.pt

Library of Congress Control Number: 2007933184

CR Subject Classification (1998): F.3, F.1, D.3, D.1, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-74406-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74406-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12112159 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 18th International Conference on
Concurrency Theory, held at the Gulbenkian Foundation, Lisbon, Portugal,
September 3–8, 2007. Since its first edition back in 1990, Concur has been a
leading conference in concurrency theory, attracting researchers, graduate stu-
dents, and practitioners, to exchange ideas, progresses, and challenges.

The Concur conference has traditionally covered a large spectrum of the field,
including invited lecturers and tutorials by prominent researchers, contributed
technical papers, and several associated workshops. Main topics include basic
models and logics of concurrent and distributed computation (such as process
algebras, Petri nets, domain theoretic or game theoretic models, modal and
temporal logics), specialized models or classes of systems (such as synchronous
systems, real time and hybrid systems, stochastic systems, databases, mobile
and migrating systems, protocols, biologically inspired systems), related verifi-
cation techniques and tools (including state-space exploration, model-checking,
synthesis, abstraction, automated deduction, testing), and concurrent program-
ming (such as distributed, constraint or object-oriented, graph rewriting, as well
as associated type systems, static analyses, and abstract machines).

This year, the Program Committee, after a careful and thorough reviewing
process, selected for inclusion in the programme 30 papers out of 112 submis-
sions. Each submission was evaluated by at least three referees, and the accepted
papers were selected during a one-and-a-half-week electronic discussion.

The volume opens with the invited contributions by Luca Aceto (Reykjav́ık),
Vincent Danos (Paris 7), and Fred B. Schneider (Cornell). The program also
included an addditional invited lecture by Peter O’Hearn (QMU London) and
an additional tutorial by José Luiz Fiadeiro (Leicester), all of which, we believe,
complimented the technical papers rather well.

Co-located with Concur 2007, eight workshops took place: Expressiveness
in Concurrency (EXPRESS), Graph Transformation for Verification and Con-
currency (GT-VC), Security Issues in Concurrency (SECCO), Verification and
Analysis of Multi-threaded Java-like Programs (VAMP), Applying Concurrency
Research in Industry (IFIP WG 1.8), Foundations of Coordination Languages
and Software Architectures (FOCLASA), From Biology to Concurrency and
Back (FBTC), and International Workshop on Verification of Infinite-State Sys-
tems (INFINITY).

Concur 2007 was made possible by the contribution and dedication of many
people. First of all, we would like to thank all the authors who submitted pa-
pers for consideration. Secondly we would like to thank our invited and tutorial
speakers. We would also like to thank the members of the Program Committee
for their hard work, careful reviews, and the thorough and balanced discussions
during the selection process. Finally, we acknowledge the Gulbenkian Foundation

VI Preface

for hosting Concur 2007, and Easychair and Andrei Voronkov for providing soft-
ware support for the Program Committee meeting.

June 2007 Lúıs Caires
Vasco T. Vasconcelos

Organization

Program Committee

Roberto Amadio, Université Paris 7, France
Jos Baeten, Eindhoven University of Technology, The Netherlands
Bruno Blanchet, Ecole Normale Supérieure de Paris, France
Franck van Breugel, York University, Canada
Lúıs Caires, Universidade Nova de Lisboa, Portugal (Co-chair)
Luca Cardelli, Microsoft Research Cambridge, UK
Luca de Alfaro, University of California at Santa Cruz, USA
Wan Fokkink, Free University of Amsterdam, The Netherlands
Daniel Hirschkoff, Ecole Normale Supérieure de Lyon, France
Radha Jagadeesan, DePaul University, USA
Alan Jeffrey, Bell Labs, Alcatel-Lucent, USA
Antonin Kucera, Masaryk University in Brno, Czech Republic
Faron Moller, University of Wales Swansea, UK
Ugo Montanari, University of Pisa, Italy
Uwe Nestmann, Technical University of Berlin, Germany
Mogens Nielsen, University of Aarhus, Denmark
Catuscia Palamidessi, INRIA Futurs Saclay and LIX, France
Davide Sangiorgi, Università di Bologna, Italy
Vladimiro Sassone, University of Southampton, UK
Peter Van Roy, Catholic University of Louvain, Belgium
Vasco T. Vasconcelos, Universidade de Lisboa, Portugal (Co-chair)
Hagen Völzer, IBM Research Zurich, Germany
Nobuko Yoshida, Imperial College London, UK

Additional Referees

Parosh Abdulla
Luca Aceto
Rajeev Alur
Roberto Amadio
Torben Amtoft
Henrik Reif Andersen
Jesus Aranda
Roland Axelsson
Eric Badouel
Martin Berger
Karthikeyan Bhargavan
Benedikt Bollig

Michele Boreale
Johannes Borgstrom
Tomáš Brázdil
Julian Bradfield
Sébastien Briais
Václav Brožek
Roberto Bruni
Marzia Buscemi
Nadia Busi
Marco Carbone
Antonio Cau
Pietro Cenciarelli

Bernadette Bost
Marsha Chechik
Taolue Chen
Tom Chothia
Raphael Collet
Ricardo Corin
Andrea Corradini
Flavio Corradini
Vincent Danos
Alexandre David
Pierpaolo Degano
Zoltan Esik

VIII Organization

Marco Faella
Harald Fecher
Jérôme Feret
Rodrigo Ferreira
Wan Fokkink
Vojtěch Forejt
Cédric Fournet
Adrian Francalanza
Lars-Ake Fredlund
Xiang Fu
Rachele Fuzzati
Fabio Gadducci
Paul Gastin
Blaise Genest
Hugo Gimbert
Rob van Glabbeek
Ursula Goltz
Andy Gordon
Daniele Gorla
Stefan Haar
Peter Habermehl
Keijo Heljanko
Holger Hermanns
Claudio Hermida
André Hirschowitz
Yoram Hirshfeld
Jan Holeček
Kohei Honda
Hai Feng Huang
Alexei Iliasov
Petr Jančar
Yves Jaradin
Ranjit Jhala
Marcin Jurdzinski
Temesghen Kahsai
Ekkart Kindler
Bartek Klin
Alexander Knapp
Pavel Krcal
Jean Krivine
Jochen M. Kuester
Alexander Kurz
Dietrich Kuske
Celine Kuttler

Marta Kwiatkowska
Alberto Lluch Lafuente
Cosimo Laneve
Martin Lange
Ranko Lazic
Serguei Lenglet
Alexey Loginov
Markus Lohrey
Robert Lorenz
Gavin Lowe
Étienne Lozes
Gerald Luettgen
Yoad Lustig
Bas Luttik
Sergio Maffeis
Patrick Maier
Rupak Majumdar
Nicolas Markey
Jasen Markovski
Richard Mayr
Boris Mejias
Hernan Melgratti
Paul-André Mellies
Massimo Merro
Dale Miller
Robin Milner
Antoine Mine
Anca Muscholl
Francesco Zappa Nardelli
Dejan Nickovic
Rocco De Nicola
Carlos Olarte
James Ortiz
Simona Orzan
Prakash Panangaden
Radek Pelanek
Wojciech Penczek Anna
Philippou
Pierluigi San Pietro
Alberto Policriti
Roberto De Prisco
Rosario Pugliese
Frank Puhlmann
Luis Quesada

Julian Rathke
Arend Rensink
Willem-Paul de Roever
Brigitte Rozoy
Michal Rutkowski
Jan Rutten
Marko Samer
Alan Schmitt
Pierre-Yves Schobbens
Viktor Schuppan
Laura Semini
Natalia Sidorova
Pawel Sobocinski
Jǐŕı Srba
Christian Stahl
Ian Stark
Martin Steffen
Marielle Stoelinga
Angelo Troina
Tachio Terauchi
Bent Thomsen
Alwen Tiu
Tayssir Touili
Nikola Trcka
Richard Trefler
Emilio Tuosto
Frank D. Valencia
Antti Valmari
Daniele Varacca
Björn Victor
Erik de Vink
Walter Vogler
Marc Voorhoeve
Jerome Vouillon
Peng Wu
Weirong Wang
Josef Widder
Karsten Wolf
Verena Wolf
James Worrell
Nobuko Yoshida
Gianluigi Zavattaro
Vojtěch Řehák
David Šafránek

Organization IX

Organization

Chairs
Lúıs Caires, Universidade Nova de Lisboa, Portugal
Vasco T. Vasconcelos, Universidade de Lisboa, Portugal

Workshops

Francisco Martins, Universidade de Lisboa, Portugal
António Ravara, Universidade Técnica de Lisboa, Portugal

Concur Steering Committee

Roberto Amadio, Université Paris 7, France
Jos Baeten, Eindhoven University of Technology, The Netherlands
Eike Best, University of Oldenburg, Germany
Kim Larsen, Aalborg University, Denmark
Ugo Montanari, University of Pisa, Italy
Scott Smolka, SUNY Stony Brook, USA

Sponsors

Fundação para a Ciência e Tecnologia, Ministério da Ciência e Ensino Superior
Centro de Informática e Tecnologias da Informação/FCT/UNL
Security and Quantum Information Group/Instituto de Telecomunicações
Câmara Municipal de Lisboa

Table of Contents

Invited Lectures

Mapping the Security Landscape: A Role for Language Techniques 1
Fred B. Schneider

The Saga of the Axiomatization of Parallel Composition 2
Luca Aceto and Anna Ingolfsdottir

Rule-Based Modelling of Cellular Signalling . 17
Vincent Danos, Jérôme Feret, Walter Fontana,
Russell Harmer, and Jean Krivine

Contributed Papers

Making Random Choices Invisible to the Scheduler 42
Konstantinos Chatzikokolakis and Catuscia Palamidessi

Strategy Logic . 59
Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman

Solving Games Via Three-Valued Abstraction Refinement 74
Luca de Alfaro and Pritam Roy

Linear Time Logics Around PSL: Complexity, Expressiveness, and a
Little Bit of Succinctness . 90

Martin Lange

On Modal Refinement and Consistency . 105
Kim G. Larsen, Ulrik Nyman, and Andrzej W ↪asowski

Equivalence Checking for Infinite Systems Using Parameterized
Boolean Equation Systems . 120

Taolue Chen, Bas Ploeger, Jaco van de Pol, and Tim A.C. Willemse

Decidability Results for Well-Structured Transition Systems with
Auxiliary Storage . 136

R. Chadha and M. Viswanathan

A Nice Labelling for Tree-Like Event Structures of Degree 3 151
Luigi Santocanale

Causal Message Sequence Charts . 166
Thomas Gazagnaire, Blaise Genest, Löıc Hélouët,
P.S. Thiagarajan, and Shaofa Yang

XII Table of Contents

Checking Coverage for Infinite Collections of Timed Scenarios 181
S. Akshay, Madhavan Mukund, and K. Narayan Kumar

Is Observational Congruence Axiomatisable in Equational Horn
Logic? . 197

Michael Mendler and Gerald Lüttgen

The Must Preorder Revisited: An Algebraic Theory for Web Services
Contracts . 212

Cosimo Laneve and Luca Padovani

Topology-Dependent Abstractions of Broadcast Networks 226
Sebastian Nanz, Flemming Nielson, and Hanne Riis Nielson

On the Expressive Power of Global and Local Priority in Process
Calculi . 241

Cristian Versari, Nadia Busi, and Roberto Gorrieri

A Marriage of Rely/Guarantee and Separation Logic 256
Viktor Vafeiadis and Matthew Parkinson

Fair Cooperative Multithreading . 272
Gérard Boudol

Precise Fixpoint-Based Analysis of Programs with Thread-Creation
and Procedures . 287

Peter Lammich and Markus Müller-Olm

Automatic Derivation of Compositional Rules in Automated
Compositional Reasoning . 303

Bow-Yaw Wang

Compositional Event Structure Semantics for the Internal π-Calculus . . . 317
Silvia Crafa, Daniele Varacca, and Nobuko Yoshida

Interpreting a Finitary Pi-calculus in Differential Interaction Nets 333
Thomas Ehrhard and Olivier Laurent

Mobility Control Via Passports (Extended Abstract) 349
Samuel Hym

Coalgebraic Models for Reactive Systems . 364
Filippo Bonchi and Ugo Montanari

Reactive Systems over Directed Bigraphs . 380
Davide Grohmann and Marino Miculan

Asynchronous Games: Innocence Without Alternation 395
Paul-André Melliès and Samuel Mimram

Table of Contents XIII

Bisimulation and Logical Preservation for Continuous-Time Markov
Decision Processes . 412

Martin R. Neuhäußer and Joost-Pieter Katoen

Strategy Synthesis for Markov Decision Processes and Branching-Time
Logics . 428

Tomáš Brázdil and Vojtěch Forejt

Timed Concurrent Game Structures . 445
Thomas Brihaye, François Laroussinie, Nicolas Markey, and
Ghassan Oreiby

Pushdown Module Checking with Imperfect Information 460
Benjamin Aminof, Aniello Murano, and Moshe Y. Vardi

Alternating Automata and a Temporal Fixpoint Calculus for Visibly
Pushdown Languages . 476

Laura Bozzelli

Temporal Antecedent Failure: Refining Vacuity . 492
Shoham Ben-David, Dana Fisman, and Sitvanit Ruah

Author Index . 507

Mapping the Security Landscape:
A Role for Language Techniques

Abstract of Invited Lecture

Fred B. Schneider�

Department of Computer Science
Cornell University

Ithaca, New York 14558
U.S.A

fbs@cs.cornell.edu

Over the last decade, programming language techniques have been applied in
non-obvious ways to building secure systems. This talk will not only survey that
work in language based security but show that the theoretical underpinnings of
programming languages are a good place to start for developing a much needed
foundation for software system security.

Research developments in language design, compilers, program analysis, type
checking, and program rewriting have brought increased assurance in what a
software system does and does not do. This was needed, welcome, but not sur-
prising. What is surprising are the new approaches to engineering secure systems
that have emerged from language-based security research. Inline reference mon-
itors, for example, enable enforcement of a broad class of authorization policies
specified separately from the components they concern; and proof carrying code
provides a way to relocate trust from one system component to another, provid-
ing designers with flexibility in setting the trusted computing base.

Our sophistication in the engineering of secure systems has improved without
the benefit of a rigorous mathematical foundation. This is probably a matter
of luck and certainly a matter for concern. Too much of security engineering is
based on anecdotes, driven by past attacks, and directed by a few familiar kinds
of security policies. We have still to identify abstract classes of enforcement mech-
anisms, attacks, or policies, much less understand connections between them. In
short, we have made little progress in mapping the security landscape.

Yet some features of the security landscape do start to become apparent if the
abstractions and metaphors of programming language semantics are applied to
software system security. And there is reason to believe the approach will yield
more fruit, too. We will discuss what is known, what we might strive to know,
and the role that programming language semantics can play.

Acknowledgment. I am grateful to my collaborators Michael Clarkson, Kevin
Hamlen, Andrew Myers, Greg Morrisett, and Riccardo Pucella.

� Supported in part by AFOSR grant F9550-06-0019, National Science Foundation
Grants 0430161 and CCF-0424422 (TRUST), and a gift from Microsoft Corporation.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Saga of the Axiomatization of Parallel
Composition�

Luca Aceto and Anna Ingolfsdottir

Department of Computer Science, Reykjav́ık University
Kringlan 1, 103 Reykjav́ık, Iceland

luca@ru.is, annai@ru.is

Abstract. This paper surveys some classic and recent results on the
finite axiomatizability of bisimilarity over CCS-like languages. It focuses,
in particular, on non-finite axiomatizability results stemming from the
semantic interplay between parallel composition and nondeterministic
choice. The paper also highlights the role that auxiliary operators, such
as Bergstra and Klop’s left and communication merge and Hennessy’s
merge operator, play in the search for a finite, equational axiomatization
of parallel composition both for classic process algebras and for their
real-time extensions.

1 The Problem and Its History

Process algebras are prototype description languages for reactive systems that
arose from the pioneering work of figures like Bergstra, Hoare, Klop and Milner.
Well-known examples of such languages are ACP [18], CCS [44], CSP [40] and
Meije [13]. These algebraic description languages for processes differ in the basic
collection of operators that they offer for building new process descriptions from
existing ones. However, since they are designed to allow for the description and
analysis of systems of interacting processes, all these languages contain some
form of parallel composition (also known as merge) operator allowing one to put
two process terms in parallel with one another. These operators usually interleave
the behaviours of their arguments, and support some form of synchronization
between them.

For example, Milner’s CCS offers the binary operator ||, whose intended se-
mantics is described by the following classic rules in the style of Plotkin [49].

x
μ→ x′

x || y μ→ x′ || y
y

μ→ y′

x || y μ→ x || y′
x

α→ x′, y
ᾱ→ y′

x || y τ→ x′ || y′
(1)

(In the above rules, the symbol μ stands for an action that a process may perform,
α and ᾱ are two observable actions that may synchronize, and τ is a symbol
denoting the result of their synchronization.)
� This paper is based on joint work with Wan Fokkink, Bas Luttik and Moham-

madReza Mousavi. The authors were partly supported by the project “The Equa-
tional Logic of Parallel Processes” (nr. 060013021) of The Icelandic Research Fund.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 2–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Saga of the Axiomatization of Parallel Composition 3

Although the above rules describe the behaviour of the parallel composition
operator in very intuitive fashion, the equational characterization of this operator
is not straightforward. In their seminal paper [39], Hennessy and Milner offered,
amongst a wealth of other classic results, a complete equational axiomatization of
bisimulation equivalence [48] over the recursion-free fragment of CCS. (See the pa-
per [14] for a more detailed historical account highlighting, e.g., Hans Bekić’s early
contributions to this field of research.) The axiomatization proposed by Hennessy
and Milner in [39] dealt with parallel composition using the so-called expansion
law—a law that, intuitively, allows one to obtain a term describing explicitly the
initial transitions of the parallel composition of two terms whose initial transitions
are known. This law can be expressed as the following equation schema(∑

i∈I

μixi

)
||
(∑

j∈J

γjyj

)
=

∑
i∈I

μi(xi || y)+
∑
j∈J

γj(x || yj)+
∑

i∈I,j∈J
μi=γj

τ(xi || yj) (2)

(where I and J are two finite index sets, and the μi and γj are actions), and
is nothing but an equational formulation of the aforementioned rules describing
the operational semantics of parallel composition.

Despite its natural and simple formulation, the expansion law, however, is an
equation schema with a countably infinite number of instances. This raised the
question of whether the parallel composition operator could be axiomatized in
bisimulation semantics by means of a finite collection of equations. This question
was answered positively by Bergstra and Klop, who gave in [20] a finite equa-
tional axiomatization of the merge operator in terms of the auxiliary left merge
and communication merge operators. Moller showed in [46,47] that bisimulation
equivalence is not finitely based over CCS and PA without the left merge op-
erator. (The process algebra PA [20] contains a parallel composition operator
based on pure interleaving without communication—viz. an operator described
by the first two rules in (1)—and the left merge operator.) These results, which
we survey in Section 2, indicate that auxiliary operators are necessary to obtain
a finite axiomatization of parallel composition.

Moller’s results clarified the role played by the expansion law in the equa-
tional axiomatization of parallel composition over CCS and, to the best of our
knowledge, were the first negative results on the existence of finite equational
axiomatizations for algebras of processes that were presented in the literature.
To our mind, the negative results achieved by Moller in his doctoral dissertation
removed a psychological barrier by showing that non-finite axiomatizability re-
sults could indeed be achieved also in the study of process algebras, and paved
the way to the further developments we describe henceforth in this paper.

The contributions our collaborators and we have offered so far to the saga of
the axiomatization of parallel composition have been mostly motivated by an
attempt to answer the following questions.

1. Are there other “natural” auxiliary operators that can be used, in lieu of
Bergstra and Klop’s left and communication merge, to achieve a finite equa-
tional axiomatization of parallel composition?

4 L. Aceto and A. Ingolfsdottir

2. Do the aforementioned results hold true also for extensions of classic process
algebras like CCS with features such as real-time?

As far as the former motivating question is concerned, the literature on process
algebra offers at least one alternative proposal to the use of the left and com-
munication merge operators. In the paper [38], which we believe is not so well
known as it deserves to be, Hennessy proposed an axiomatization of observation
congruence [39] and split-2 congruence over a CCS-like recursion-free process
language. (It is worth noting for the sake of historical accuracy that the results
reported in [38] were actually obtained in 1981; see the preprint [36].) Those
axiomatizations used an auxiliary operator, denoted |/ by Hennessy, that is es-
sentially a combination of the left and communication merge operators as its
behaviour is described by the first and the last rule in (1). Apart from having
soundness problems (see the reference [2] for a general discussion of this prob-
lem, and corrected proofs of Hennessy’s results), the proposed axiomatization
of observation congruence offered in [38] is infinite, as it uses a variant of the
expansion law from [39]. This led Bergstra and Klop to write in [20, page 118]
that:

“It seems that γ does not have a finite equational axiomatization.”

(In [20] Bergstra and Klop used γ to denote Hennessy’s merge.) In Section 3,
we will present an answer to this conjecture of Bergstra and Klop’s by showing
that, in the presence of two distinct complementary actions, it is impossible to
provide a finite axiomatization of the recursion-free fragment of CCS modulo
bisimulation equivalence using Hennessy’s merge operator |/. We believe that
this result, which was originally proved in [6], further reinforces the status of
the left merge and the communication merge operators as auxiliary operators
in the finite equational characterization of parallel composition in bisimulation
semantics. Interestingly, as shown in [8], in sharp contrast to the situation in
standard bisimulation semantics, CCS with Hennessy’s merge can be finitely ax-
iomatized modulo split-2 bisimulation equivalence [33,38]. (Split-2 bisimilarity
is defined like standard bisimilarity, but is based on the assumption that ac-
tion occurrences have a beginning and an ending, and that these events may be
observed.) This shows that, in sharp contrast to the results offered in [45,46],
“reasonable congruences” finer than standard bisimulation equivalence can be
finitely axiomatized over CCS using Hennessy’s merge as the single auxiliary
operation—compare with the non-finite axiomatizability results for these con-
gruences offered in [45,46].

It is also natural to ask oneself whether the aforementioned non-finite axiom-
atizability results hold true also for extensions of the basic CCS calculus with
features such as real-time. In Section 4, we review some negative results, origi-
nally shown in [12], on the finite axiomatizability of timed bisimilarity over Yi’s
timed CCS [52,53]. In particular, we prove that timed bisimilarity is not finitely
based both for single-sorted and two-sorted presentations of timed CCS. We fur-
ther strengthen this result by showing that, unlike in the setting of CCS, adding
the untimed or the timed left merge operator to the syntax and semantics of

The Saga of the Axiomatization of Parallel Composition 5

timed CCS does not solve the axiomatizability problem. To our mind, these re-
sults indicate that the expressive power that is gained by adding to CCS linguis-
tic features suitable for the description of timing-based behaviours substantially
complicates the equational theory of the resulting algebras of processes.

We feel that there are still many chapters to be written in the saga of the
study of the equational logic of parallel composition, and we list a few open
problems and directions of ongoing research throughout this paper.

Related Work in Concurrency and Formal Language Theory. The equational
characterization of different versions of the parallel composition operator is a
classic topic in the theory of computation. In particular, the process algebraic
literature abounds with results on equational axiomatizations of various notions
of behavioural equivalence or preorder over languages incorporating some notion
of parallel composition—see, e.g., the textbooks [18,30,37,44] and the classic
papers [20,39,43] for general references. Early ω-complete axiomatizations are
offered in [35,45]. More recently, Fokkink and Luttik have shown in [31] that the
process algebra PA [20] affords an ω-complete axiomatization that is finite if so
is the underlying set of actions. As shown in [9], the same holds true for the
fragment of CCS without recursion, relabelling and restriction extended with
the left and communication merge operators. The readers will find a survey of
recent results on the equational logic of processes in [7], and further non-finite
axiomatizability results for rather basic process algebras in, e.g., [4,10].

An analysis of the reasons why operators like the left merge and the communi-
cation merge are equationally well behaved in bisimulation semantics has led to
general algorithms for the generation of (finite) equational axiomatizations for
behavioural equivalences from various types of transition system specifications—
see, e.g., [1,3,15] and the references in [11] for further details.

Parallel composition appears as the shuffle operator in the time-honoured
theory of formal languages. Not surprisingly, the equational theory of shuffle
has received considerable attention in the literature. Here we limit ourselves to
mentioning some results that have a close relationship with process theory.

In [51], Tschantz offered a finite equational axiomatization of the theory of
languages over concatenation and shuffle, solving an open problem raised by
Pratt. In proving this result he essentially rediscovered the concept of pomset
[34,50]—a model of concurrency based on partial orders whose algebraic aspects
have been investigated by Gischer in [32]—, and proved that the equational the-
ory of series-parallel pomsets coincides with that of languages over concatenation
and shuffle. The argument adopted by Tschantz in his proof was based on the
observation that series-parallel pomsets may be coded by a suitable homomor-
phism into languages, where the series and parallel composition operators on
pomsets are modelled by the concatenation and shuffle operators on languages,
respectively. Tschantz’s technique of coding pomsets with languages homomor-
phically was further extended in the papers [22,24,25] to deal with several other
operators, infinite pomsets and infinitary languages, as well as sets of pomsets.
The axiomatizations by Gischer and Tschantz have later been extended in [25,29]
to a two-sorted language with ω-powers of the concatenation and parallel

6 L. Aceto and A. Ingolfsdottir

composition operators. The axiomatization of the algebra of pomsets result-
ing from the addition of these iteration operators is, however, necessarily infinite
because, as shown in [29], no finite collection of equations can capture all the
sound equalities involving them.

The results of Moller’s on the non-finite axiomatizability of bisimulation equiv-
alence over the recursion-free fragment of CCS and PA without the left merge
operator given in [46,47] are paralleled in the world of formal language theory
by those offered in [21,23,28]. In the first of those references, Bloom and Ésik
proved that the valid inequations in the algebra of languages equipped with con-
catenation and shuffle have no finite basis. Ésik and Bertol showed in [28] that
the equational theory of union, concatenation and shuffle over languages has no
finite first-order axiomatization relative to the collection of all valid inequations
that hold for concatenation and shuffle. Hence the combination of some form of
parallel composition, sequencing and choice is hard to characterize equationally
both in the theory of languages and in that of processes. Moreover, Bloom and
Ésik have shown in [23] that the variety of all languages over a finite alphabet
ordered by inclusion with the operators of concatenation and shuffle, and a con-
stant denoting the singleton language containing only the empty word, is not
finitely axiomatizable by first-order sentences that are valid in the equational
theory of languages over concatenation, union and shuffle.

2 Background

The core process algebra that we shall consider henceforth in this paper is a
fragment of Milner’s CCS. This language, which will be referred to simply as
CCS, is given by the following grammar:

t ::= x | 0 | at | āt | τt | t+ t | t || t ,

where x is a variable drawn from a countably infinite set V , a is an action, and
ā is its complement. We assume that the actions a and ā are distinct. Following
Milner [44], the action symbol τ will result from the synchronized occurrence of
the complementary actions a and ā. We let μ ∈ {a, ā, τ} and α ∈ {a, ā}. (We
remark, in passing, that this small collection of actions suffices to prove all the
negative results we survey in this study. All the positive results we shall present
in what follows hold for arbitrary finite sets of actions.) As usual, we postulate
that ¯̄a = a. We shall use the meta-variables t, u to range over process terms. The
size of a term is the number of operator symbols in it. A process term is closed if
it does not contain any variables. Closed terms will be typically denoted by p, q.

In the remainder of this paper, we let a0 denote 0, and am+1 denote a(am).
We sometimes simply write a in lieu of a1.

The SOS rules for the above language are standard, and may be found in
Table 1. These transition rules give rise to transitions between closed terms. The
operational semantics for our language, and for all its extensions that we shall
introduce in the remainder of this paper, is thus given by a labelled transition
system [42] whose states are closed terms, and whose labelled transitions are

The Saga of the Axiomatization of Parallel Composition 7

Table 1. SOS Rules for the CCS Operators (μ ∈ {a, ā, τ} and α ∈ {a, ā})

μx
μ→ x

x
μ→ x′

x + y
μ→ x′

y
μ→ y′

x + y
μ→ y′

x
μ→ x′

x || y μ→ x′ || y
y

μ→ y′

x || y μ→ x || y′
x

α→ x′, y
ᾱ→ y′

x || y τ→ x′ || y′

those that are provable using the rules that are relevant for the language under
consideration.

In this paper, we shall consider our core language and all its extensions modulo
bisimulation equivalence [44,48].

Definition 1. Bisimulation equivalence (also sometimes referred to as bisimi-
larity), denoted by ↔, is the largest symmetric relation over closed terms such
that whenever p ↔ q and p

μ→ p′, then there is a transition q
μ→ q′ with p′ ↔ q′.

If p ↔ q, then we say that p and q are bisimilar.

It is well known that, as its name suggests, bisimulation equivalence is indeed
an equivalence relation (see, e.g., the references [44,48]). Since the SOS rules in
Table 1 (and all of the other rules we shall introduce in the remainder of this
paper) are in de Simone’s format [27], bisimulation equivalence is a congruence.

Bisimulation equivalence is extended to arbitrary terms in the standard way.

2.1 Classic Results on Equational Axiomatizations

An axiom system is a collection of equations t ≈ u, where t and u are terms. An
equation t ≈ u is derivable from an axiom system E if it can be proved from
the axioms in E using the rules of equational logic (viz. reflexivity, symmetry,
transitivity, substitution and closure under contexts). An equation t ≈ u is sound
with respect to ↔ iff t ↔ u. An axiom system is sound with respect to ↔ iff
so is each of its equations. For example, the axiom system in Table 2 is sound.
In what follows, we use a summation

∑
i∈{1,...,k} ti to denote t1 + · · ·+ tk, where

the empty sum represents 0.
An axiom system E is a complete axiomatization of ↔ over (some extension

of) CCS if E is sound with respect to ↔, and proves all of the equations over
the language that are sound with respect to ↔. If E is sound with respect to
↔, and proves all of the closed equations over the language that are sound with
respect to ↔, then we say that E is ground complete.

The study of equational axiomatizations of bisimilarity over process algebras
was initiated by Hennessy and Milner, who proved the following classic result.

Theorem 1 (Hennessy and Milner [39]). The axiom system consisting of
equations A1–A4 and all of the instances of (2) is ground complete for bisimi-
larity over CCS.

Since the equation schema (2) has infinitely many instances, the above theorem
raised the question of whether the parallel composition operator could be ax-
iomatized in bisimulation semantics by means of a finite collection of equations.

8 L. Aceto and A. Ingolfsdottir

Table 2. Some Axioms for Bisimilarity

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 x + 0 ≈ x

This question was answered positively by Bergstra and Klop, who gave in [20]
a finite ground-complete axiomatization of the merge operator in terms of the
auxiliary left merge and communication merge operators. The operational rules
for these operators are

x
μ→ x′

x‖ y μ→ x′ || y
x

α→ x′, y
ᾱ→ y′

x | y τ→ x′ || y′

where‖ and | stand for the left and communication merge operators, respectively.
But, are auxiliary operators necessary to obtain a finite equational axioma-

tization of bisimilarity over the language CCS? This question remained unan-
swered for about a decade until Moller proved the following seminal result in his
doctoral dissertation.

Theorem 2 (Moller [45,47]). Bisimilarity has no finite, (ground-)complete
equational axiomatization over CCS.

Thus auxiliary operators are indeed necessary to obtain a finite axiomatization
of parallel composition, and the expansion law cannot be replaced by a finite
collection of sound equations.

Moller’s proof of the theorem above is based on the observation that, since
|| does not distribute over +, no finite, sound axiom system over CCS can be
powerful enough to “expand” the initial behaviour of a term of the form a || p
when p has a sufficiently large number of initial transitions leading to non-
bisimilar terms. It follows that no finite collection of sound axioms is as powerful
as the expansion law (2). Technically, Moller showed that, when n is greater than
the size of the largest term in a finite, sound axiom system E over the language
CCS, E cannot prove the sound equation

a ||
n∑

i=1

ai ≈ a(
n∑

i=1

ai) +
n+1∑
i=2

ai .

Note that, up to bisimilarity, the right-hand side of the above equation expresses
“syntactically” the collection of initial transitions of the term on the left-hand
side.

Remark 1. Theorem 2 holds true for each “reasonable congruence” over CCS. A
congruence is “reasonable” in the sense of Moller if it is included in bisimilarity
and satisfies the family of equations Redn presented in [45, page 111].

The Saga of the Axiomatization of Parallel Composition 9

3 The Role of Hennessy’s Merge

Theorem 2 shows that one cannot hope to achieve a finite (ground-)complete
axiomatization for bisimilarity over CCS without recourse to auxiliary operators.
Moreover, the work by Bergstra and Klop presented in [20] tells us that a finite
ground-complete axiomatization can be obtained at the price of adding the left
and communication merge operators to the language. (In fact, as shown in [9],
for any finite set of actions the resulting language also affords a finite complete
axiomatization modulo bisimilarity.) A natural question to ask at this point is
whether one can obtain a finite equational axiomatization of bisimilarity over
CCS extended with some auxiliary binary operator other than those proposed by
Bergstra and Klop. An independent proposal, put forward by Hennessy in [36,38],
is to add the auxiliary operator |/ with the following SOS rules to the signature
for CCS.

x
μ→ x′

x |/ y μ→ x′ || y
x

α→ x′, y
ᾱ→ y′

x |/ y τ→ x′ || y′

Note that the above operator is essentially a combination of the left and com-
munication merge operators. We denote the resulting language by CCSH .

Does bisimilarity afford a finite equational axiomatization over CCSH? In [20,
page 118], Bergstra and Klop conjectured a negative answer to the above ques-
tion. Their conjecture was finally confirmed about twenty years later by the
following theorem.

Theorem 3 (Aceto, Fokkink, Ingolfsdottir and Luttik [6]). Bisimulation
equivalence admits no finite (ground-)complete equational axiomatization over
the language CCSH .

The aforementioned negative result holds in a very strong form. Indeed, we prove
that no finite collection of equations over CCSH that are sound with respect to
bisimulation equivalence can prove all of the sound closed equalities of the form

en : a |/ pn ≈ apn +
n∑

i=0

τai (n ≥ 0) ,

where the terms pn are defined thus:

pn =
n∑

i=0

āai (n ≥ 0) .

The proof of Theorem 3 is given along proof-theoretic lines that have their roots
in Moller’s proof of Theorem 2. However, the presence of possible synchroniza-
tions in the terms used in the family of equations en is necessary for our result,
and requires careful attention in our proof. (Indeed, in the absence of synchro-
nization, Hennessy’s merge reduces to Bergstra and Klop’s left merge operator,
and thus affords a finite equational axiomatization.) In particular, the infinite
family of equations en and our arguments based upon it exploit the inability of

10 L. Aceto and A. Ingolfsdottir

any finite axiom system E that is sound with respect to bisimulation equivalence
to “expand” the synchronization behaviour of terms of the form p |/ q, for terms
q that, like the terms pn above eventually do, have a number of inequivalent
“summands” that is larger than the maximum size of the terms mentioned in
equations in E. As in the original arguments of Moller’s, the root of this prob-
lem can be traced back to the fact that, since |/ distributes with respect to the
choice operator + in the first argument but not in the second, no finite collection
of equations can express the interplay between interleaving and communication
that underlies the semantics of Hennessy’s merge.

Our Theorem 3 is the counterpart of Moller’s Theorem 2 over the language
CCSH . As we recalled in Remark 1, Moller’s non-finite axiomatizability result
for CCS holds for each “reasonable” congruence. It is therefore natural to ask
ourselves whether each “reasonable” congruence is not finitely based over CCSH

too. The following result shows that, in sharp contrast to the situation in stan-
dard bisimulation semantics, the language CCSH can be finitely axiomatized
modulo split-2 bisimulation equivalence [36,38], and therefore that, modulo this
non-interleaving equivalence, the use of Hennessy’s merge suffices to yield a finite
axiomatization of the parallel composition operation.

Theorem 4 (Aceto, Fokkink, Ingolfsdottir and Luttik [8]). Split-2 bisim-
ilarity affords a finite ground-complete equational axiomatization over the lan-
guage CCSH .

The above result hints at the possibility that non-interleaving equivalences like
split-2 bisimilarity may be finitely axiomatizable using a single binary auxiliary
operator. Whether a similar result holds true for standard bisimilarity remains
open. We conjecture that the use of two binary auxiliary operators is necessary
to achieve a finite axiomatization of parallel composition in bisimulation seman-
tics. This result would offer the definitive justification we seek for the canonical
standing of the auxiliary operators proposed by Bergstra and Klop. Preliminary
work on the confirmation of some form of this conjecture is under way [5].

4 The Influence of Time

So far in this paper we have presented, mostly negative, results on the finite
axiomatizability of notions of bisimilarity over variations on Milner’s CCS. Over
the years, several extensions of CCS with, e.g., time, probabilities and priority
have been presented in the literature. However, to the best of our knowledge,
the question whether the aforementioned negative results hold true also for these
extensions of classic process algebras like CCS has not received much attention
in the research literature. In what follows, we discuss some impossibility results
in the equational logic of timed bisimilarity over a fragment of Yi’s timed CCS
(TCCS) [52,53], which is one of the best-known timed extension of Milner’s CCS.

One of the first design decisions to be taken when developing a language for
the description of timing-based behaviours is what structure to use to model
time. Since we are interested in studying the equational theory of TCCS modulo

The Saga of the Axiomatization of Parallel Composition 11

bisimilarity, rather than selecting a single mathematical structure, such as the
natural numbers or the non-negative rationals or reals, to represent time, we
feel that it is more satisfying to adopt an axiomatic approach. We will therefore
axiomatize a class of mathematical models of time for which our negative re-
sults hold. The non-negative rationals and the non-negative reals will be specific
instances of our axiomatic framework, amongst others.

Following [41], we define a monoid (X,+, 0) to be:

– left-cancellative iff (x+ y = x+ z)⇒ (y = z), and
– anti-symmetric iff (x+ y = 0)⇒ (x = y = 0).

We define a partial order on X as x ≤ y iff x + z = y for some z ∈ X . A time
domain is a left-cancellative anti-symmetric monoid (D,+, 0) such that ≤ is a
total order. A time domain is non-trivial if D contains at least two elements.
Note that every non-trivial time domain does not have a largest element, and
is therefore infinite. A time domain has 0 as cluster point iff for each d ∈ D
such that d
= 0 there is a d′ ∈ D such that 0 < d′ < d. In what follows, we
assume that our time domain, denoted henceforth by D, is non-trivial and has
0 as cluster point.

Syntactically, we consider the language TCCS that is obtained by adding to
the signature of CCS delay prefixing operators of the form ε(d). , where d is a
non-zero element of a time domain D. In what follows, we only consider action
prefixing operators of the form at and parallel composition without synchroniza-
tion.

The operational semantics for closed TCCS terms is based on two types of
transition relations: a→ for action transitions and d→, where d ∈ D, for time-delay
transitions. Action transitions are defined by the rules in Table 1, whereas the
Plotkin-style rules defining delay transitions are given below.

0 d→ 0 ax
d→ ax

ε(d).x d→ x ε(d+ e).x d→ ε(e).x
x

e→ y

ε(d).x d+e→ y

x0
d→ y0 x1

d→ y1

x0 + x1
ε(d)→ y0 + y1

x0
d→ y0 x1

d→ y1

x0 ||x1
d→ y0 || y1

The notion of equivalence over TCCS that we are interested in is timed bisim-
ilarity. This is defined exactly as in Definition 1, with the proviso that the
meta-variable μ now ranges over time delays as well as actions. For example, 0
and ε(d).0 are timed bisimilar for each d, and so are a and a + ε(d).a. On the
other hand, a and ε(d).a are not timed bisimilar because the former term affords
an a-labelled transition whereas the latter does not. (Intuitively, the latter term
has to wait for d units of time before being able to perform the action a.)

It is natural to wonder whether TCCS affords a finite (ground-)complete ax-
iomatization modulo timed bisimilarity. Before addressing this question, let us

12 L. Aceto and A. Ingolfsdottir

remark that one can take two different approaches to formalizing the syntax of
TCCS in a term algebra.

1. The first approach is to use a single-sorted algebra with the only available
sort representing processes. Then ε(d). is a set of unary operators, one for
each d ∈ D.

2. The other approach is to take two different sorts, one for time and one for
processes, denoted by T and P, respectively. Then, ε() is a single function
symbol with arity T× P→ P.

If we decide to follow the first approach then, since our time domain is infinite,
we are immediately led to observe that no finite collection of sound equations
can prove all of the valid equalities of the form 0 ≈ ε(d).0. As a corollary of this
observation, we obtain the following result.

Theorem 5 (Aceto, Ingolfsdottir and Mousavi [12]). Timed bisimilarity
over single-sorted TCCS has no finite (ground-)complete axiomatization.

The lesson to be drawn from the above result is that, in the presence of an
infinite time domain, when studying the equational theory of TCCS, it is much
more natural to consider a two-sorted presentation of the calculus. However,
even in a two-sorted setting, we are still faced with the inability of any finite
sound axiom system to capture the interplay between interleaving and non-
determinism, which underlies Theorem 2. Therefore, by carefully adapting the
proof of Moller’s result, we obtain the following theorem.

Theorem 6 (Aceto, Ingolfsdottir and Mousavi [12]). Timed bisimilarity
over two-sorted TCCS has no finite (ground-)complete axiomatization.

As shown by Bergstra and Klop in [19], in the setting of classic CCS and in the
absence of synchronization one can finitely axiomatize bisimilarity by adding the
left merge operator to the syntax for CCS. It is therefore natural to ask ourselves
whether a finite axiomatization of timed bisimilarity over the fragment of TCCS
we consider in this study can be obtained by adding some version of the left merge
operator to the syntax for TCCS. Our order of business will now be to show that,
unlike in the setting of Milner’s CCS, even adding two variations on the left merge
operator does not improve the situation with respect to axiomatizability.

We begin by noting that adding the classic left merge operator proposed by
Bergstra and Klop to the syntax of TCCS does not lead to a axiomatizable
theory.

Theorem 7 (Aceto, Ingolfsdottir and Mousavi [12]). Timed bisimilarity
over two-sorted TCCS extended with Bergstra and Klop’s left merge operator has
no finite (ground-)complete axiomatization.

Following the tradition of Bergstra and Klop, the left merge operator was given
a timed semantics in [17] as follows.

x0
a→ y0

x0‖ x1
a→ y0 ||x1

x0
d→ y0 x1

d→ y1

x0‖ x1
d→ y0‖ y1

The Saga of the Axiomatization of Parallel Composition 13

This timed left merge operator enjoys most of the axioms for the classic left merge
operator. However, this operator does not help in obtaining a finite ground-
complete axiomatization for TCCS modulo bisimilarity either.

Theorem 8 (Aceto, Ingolfsdottir and Mousavi [12]). Two-sorted TCCS
extended with the timed left merge operator affords no finite (ground-)complete
axiomatization modulo timed bisimilarity.

Intuitively, the reason for the above-mentioned negative result is that the axiom

(ax)‖ y ≈ a(x || y) ,

which is sound in the untimed setting, is in general unsound over TCCS. For
example, consider the process a‖ ε(d).a; after making a time delay of length d,
it results in a‖ a, which is capable of performing two consecutive a-transitions.
On the other hand, a(0 || ε(d).a) after a time delay of length d remains the same
process and can only perform one a-transition, since the second a-transition still
has to wait for d time units before becoming enabled.

However, the above axiom is sound for a class of TCCS processes whose
behaviour, modulo timed bisimilarity, does not change by delaying. For instance,
we have that

a‖
(n∑

i=1

a

(i∑
j=1

aj
))

↔ a

(n∑
i=1

a

(i∑
j=1

aj
))

for each n ≥ 0. However, no finite sound axiom system can prove all of the above
equalities, and therefore cannot be complete.

Remark 2. All of the impossibility results presented in this section also hold for
conditional equations of the form P ⇒ t ≈ u, where P is an arbitrary predicate
over the time domain, and t, u are TCCS terms.

In the case of two-sorted TCCS, our proofs make use of the fact that the time do-
main has 0 as a cluster point. However, we conjecture that discrete-time TCCS,
or its extension with (timed) left merge, is not finitely axiomatizable modulo
timed bisimilarity either. Work on a proof of this conjecture is ongoing.

References

1. Aceto, L.: Deriving complete inference systems for a class of GSOS languages
generating regular behaviours. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994.
LNCS, vol. 836, pp. 449–464. Springer, Heidelberg (1994)

2. Aceto, L.: On Axiomatising finite concurrent processes. SIAM J. Comput. 23(4),
852–863 (1994)

3. Aceto, L., Bloom, B., Vaandrager, F.: Turning SOS rules into equations. Informa-
tion and Computation 111(1), 1–52 (1994)

4. Aceto, L., Chen, T., Fokkink, W., Ingolfsdottir, A.: On the axiomatizability of
priority. In: Bugliesi et al. [26], pp. 480–491

14 L. Aceto and A. Ingolfsdottir

5. Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: Are two binary operators
necessary to finitely axiomatize parallel composition? (in preparation)

6. Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: CCS with Hennessy’s merge
has no finite equational axiomatization. Theoretical Comput. Sci. 330(3), 377–405
(2005)

7. Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: Finite equational bases in
process algebra: Results and open questions. In: Middeldorp, A., van Oostrom, V.,
van Raamsdonk, F., de Vrijer, R.C. (eds.) Processes, Terms and Cycles: Steps on
the Road to Infinity. LNCS, vol. 3838, pp. 338–367. Springer, Heidelberg (2005)

8. Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: Split-2 bisimilarity has a finite
axiomatization over CCS with Hennessy’s merge. Logical Methods in Computer
Science 1(1), 1–12 (2005)

9. Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: A finite equational base for
CCS with left merge and communication merge. In: Bugliesi et al. [26], pp. 492–503

10. Aceto, L., Fokkink, W., Ingolfsdottir, A., Nain, S.: Bisimilarity is not finitely based
over BPA with interrupt. Theoretical Comput. Sci. 366(1–2), 60–81 (2006)

11. Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Hand-
book of Process Algebra, pp. 197–292. North-Holland, Amsterdam (2001)

12. Aceto, L., Ingolfsdottir, A., Mousavi, M.: Impossibility results for the equational
theory of timed CCS. In: Proceedings of the 2nd Conference on Algebra and Coal-
gebra in Computer Science. LNCS, Springer, Heidelberg (2007)

13. Austry, D., Boudol, G.: Algèbre de processus et synchronisations. Theoretical Com-
put. Sci. 30(1), 91–131 (1984)

14. Baeten, J.: A brief history of process algebra. Theoretical Comput. Sci. 335(2–3),
131–146 (2005)

15. Baeten, J., de Vink, E.: Axiomatizing GSOS with termination. In: Alt, H., Ferreira,
A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 583–595. Springer, Heidelberg (2002)

16. Baeten, J.C.M., Klop, J.W. (eds.): CONCUR 1990. LNCS, vol. 458. Springer,
Heidelberg (1990)

17. Baeten, J., Middelburg, C.A.: Process Algebra with Timing. Monographs in The-
oretical Computer Science. An EATCS Series. Springer-Verlag, Berlin (2002)

18. Baeten, J., Weijland, P.: Process Algebra. Cambridge Tracts in Theoretical Com-
puter Science 18. Cambridge University Press, Cambridge (1990)

19. Bergstra, J., Klop, J.W.: Fixed point semantics in process algebras. Report IW
206, Mathematisch Centrum, Amsterdam (1982)

20. Bergstra, J., Klop, J.W.: Process algebra for synchronous communication. Infor-
mation and Control 60(1/3), 109–137 (1984)

21. Bloom, S.L., Ésik, Z.: Nonfinite axiomatizability of shuffle inequalities. In: Mosses,
P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAP-
SOFT 1995. LNCS, vol. 915, pp. 318–333. Springer, Heidelberg (1995)

22. Bloom, S.L., Ésik, Z.: Free shuffle algebras in language varieties. Theoret. Comput.
Sci. 163(1-2), 55–98 (1996)

23. Bloom, S.L., Ésik, Z.: Axiomatizing shuffle and concatenation in languages. Inform.
and Comput. 139(1), 62–91 (1997)

24. Bloom, S.L., Ésik, Z.: Varieties generated by languages with poset operations.
Math. Structures Comput. Sci. 7(6), 701–713 (1997)

25. Bloom, S.L., Ésik, Z.: Shuffle binoids. RAIRO Inform. Théor. Appl. 32(4-6), 175–
198 (1998)

26. Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.): ICALP 2006. LNCS,
vol. 4052, pp. 10–14. Springer, Heidelberg (2006)

The Saga of the Axiomatization of Parallel Composition 15

27. de Simone, R.: Higher-level synchronising devices in Meije–SCCS. Theoretical
Comput. Sci. 37, 245–267 (1985)

28. Ésik, Z., Bertol, M.: Nonfinite axiomatizability of the equational theory of shuffle.
Acta Inform. 35(6), 505–539 (1998)

29. Ésik, Z., Okawa, S.: Series and parallel operations on pomsets. In: Pandu Rangan,
C., Raman, V., Ramanujam, R. (eds.) Foundations of Software Technology and
Theoretical Computer Science. LNCS, vol. 1738, pp. 316–328. Springer, Heidelberg
(1999)

30. Fokkink, W.: Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag, Berlin (2000)

31. Fokkink, W., Luttik, B.: An omega-complete equational specification of inter-
leaving. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 729–743. Springer, Heidelberg (2000)

32. Gischer, J.L.: The equational theory of pomsets. Theoretical Comput. Sci. 61, 199–
224 (1988)

33. van Glabbeek, R., Vaandrager, F.: Petri net models for algebraic theories of con-
currency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE Parallel
Architectures and Languages Europe. LNCS, vol. 259, pp. 224–242. Springer, Hei-
delberg (1987)

34. Grabowski, J.: On partial languages. Fundamenta Informaticae IV(2), 427–498
(1981)

35. Groote, J.F.: A new strategy for proving ω–completeness with applications in pro-
cess algebra. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458,
pp. 314–331. Springer, Heidelberg (1990)

36. Hennessy, M.: On the relationship between time and interleaving. Preprint, CMA,
Centre de Mathématiques Appliquées, Ecole des Mines de Paris (1981)

37. Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
38. Hennessy, M.: Axiomatising finite concurrent processes. SIAM J. Comput. 17(5),

997–1017 (1988)
39. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.

J. ACM 32(1), 137–161 (1985)
40. Hoare, C.: Communicating Sequential Processes. Prentice-Hall International, En-

glewood Cliffs (1985)
41. Jeffrey, A., Schneider, S., Vaandrager, F.: A comparison of additivity axioms in

timed transition systems. Report CS-R9366, CWI, Amsterdam (1993)
42. Keller, R.: Formal verification of parallel programs. Commun. ACM 19(7), 371–384

(1976)
43. Milner, R.: Flowgraphs and flow algebras. J. ACM 26(4), 794–818 (1979)
44. Milner, R.: Communication and Concurrency. Prentice-Hall International, Engle-

wood Cliffs (1989)
45. Moller, F.: Axioms for Concurrency. PhD thesis, Department of Computer Science,

University of Edinburgh, Report CST-59-89. Also published as ECS-LFCS-89-84
(July 1989)

46. Moller, F.: The importance of the left merge operator in process algebras. In:
Paterson, M.S. (ed.) Automata, Languages and Programming. LNCS, vol. 443, pp.
752–764. Springer, Heidelberg (1990)

47. Moller, F.: The nonexistence of finite axiomatisations for CCS congruences. In:
Proceedings 5th Annual Symposium on Logic in Computer Science, Philadelphia,
USA, pp. 142–153. IEEE Computer Society Press, Los Alamitos (1990)

16 L. Aceto and A. Ingolfsdottir

48. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
Theoretical Computer Science. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg
(1981)

49. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60–61, 17–139 (2004)

50. Pratt, V.: Modeling concurrency with partial orders. International Journal of Par-
allel Programming 15(1), 33–71 (1986)

51. Tschantz, S.T.: Languages under concatenation and shuffling. Mathematical Struc-
tures in Computer Science 4(4), 505–511 (1994)

52. Yi, W.: Real-time behaviour of asynchronous agents. In: Baeten, J.C.M., Klop,
J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 502–520. Springer, Heidelberg
(1990)

53. Yi, W.: A Calculus of Real Time Systems. PhD thesis, Chalmers University of
Technology, Göteborg, Sweden (1991)

Rule-Based Modelling of Cellular Signalling

Vincent Danos1,3,4, Jérôme Feret2, Walter Fontana3, Russell Harmer3,4,
and Jean Krivine5

1 Plectix Biosystems
2 École Normale Supérieure
3 Harvard Medical School

4 CNRS, Université Denis Diderot
5 École Polytechnique

Abstract. Modelling is becoming a necessity in studying biological sig-
nalling pathways, because the combinatorial complexity of such systems
rapidly overwhelms intuitive and qualitative forms of reasoning. Yet, this
same combinatorial explosion makes the traditional modelling paradigm
based on systems of differential equations impractical. In contrast, agent-
based or concurrent languages, such as κ [1,2,3] or the closely related
BioNetGen language [4,5,6,7,8,9,10], describe biological interactions in
terms of rules, thereby avoiding the combinatorial explosion besetting
differential equations. Rules are expressed in an intuitive graphical form
that transparently represents biological knowledge. In this way, rules
become a natural unit of model building, modification, and discussion.
We illustrate this with a sizeable example obtained from refactoring two
models of EGF receptor signalling that are based on differential equa-
tions [11,12]. An exciting aspect of the agent-based approach is that it
naturally lends itself to the identification and analysis of the causal struc-
tures that deeply shape the dynamical, and perhaps even evolutionary,
characteristics of complex distributed biological systems. In particular,
one can adapt the notions of causality and conflict, familiar from con-
currency theory, to κ, our representation language of choice. Using the
EGF receptor model as an example, we show how causality enables the
formalization of the colloquial concept of pathway and, perhaps more sur-
prisingly, how conflict can be used to dissect the signalling dynamics to
obtain a qualitative handle on the range of system behaviours. By taming
the combinatorial explosion, and exposing the causal structures and key
kinetic junctures in a model, agent- and rule-based representations hold
promise for making modelling more powerful, more perspicuous, and of
appeal to a wider audience.

1 Background

A large majority of models aimed at investigating the behavior of biological path-
ways are cast in terms of systems of differential equations [11,12,13,14,15,16].
The choice seems natural. The theory of dynamical systems offers an exten-
sive repertoire of mathematical techniques for reasoning about such networks.
It provides, at least in the limit of long times, a well-understood ontology of

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 17–41, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 V. Danos et al.

behaviors, like steady states, oscillations, and chaos, along with their linear sta-
bility properties. The ready availability of numerical procedures for integrating
systems of equations, while varying over parameters and initial conditions, com-
pletes a powerful workbench that has successfully carried much of physics and
chemical kinetics. Yet, this workbench is showing clear signs of cracking under
the ponderous combinatorial complexity of molecular signalling processes, which
involve proteins that interact through multiple post-translational modifications
and physical associations within an intricate topology of locales [17].

Representations of chemical reaction networks in terms of differential equa-
tions are about chemical kinetics, not the unfolding of chemistry. In fact, all
molecular species made possible by a set of chemical transformations must be
explicitly known in advance for setting up the corresponding system of kinetic
equations. Every molecular species has its own concentration variable and an
equation describing its rate of change as imparted by all reactions that pro-
duce or consume that species. These reactions, too, must be known in advance.
Many ion channels, kinases, phosphatases, and receptors – to mention just a
few – are proteins that possess multiple sites at which they can be modified
by phosphorylation, ubiquitination, methylation, glycosidilation, and a plethora
of other chemical tagging processes. About one in a hundred proteins have at
least 8 modifiable sites, which means 256 states. A simple heterodimer of two
distinct proteins, each with that much state, would weigh in at more than 65,000
equations. It is easily seen that this combinatorics can rapidly amount to more
possible chemical species than can be realized by the actual number of molecules
involved in a cellular process of this kind. The problem is not so much that a
deterministic description is no longer warranted, but rather that the equations,
whether deterministic or stochastic, can no longer be written down—and if they
could, what would one learn from them?

This difficulty is well recognized. One way out is to use aggregate variables
describing sets of modification forms. For example, one might bundle together all
phosphoforms of a receptor, regardless of which sites are phosphorylated. This,
however, is problematic. First, the choice of what to aggregate and not is unprin-
cipled. Second, the appropriate level of aggregation may change over time as the
system dynamics unfolds. Third, the aggregation is error prone, since it has to be
done without a prior microscopic description. A further, more subtle, difficulty
is that an extensional system of differential equations describes the constituent
molecules only in terms of interactions that are relevant in a given context of
other molecules. It does not characterize molecular components in terms of their
potential interactions that could become relevant if the composition of the sys-
tem were to change. As a consequence, “compositional perturbations”, such as
adding a novel molecular component (a drug) or modifying an extant one (to
model the effects of knocking out a site or adding a new domain) are virtu-
ally impossible to carry out by hand, since they require, again, enumerating all
chemical consequences in advance and then rewriting all affected equations.

These problems have led to recent attempts at describing molecular reac-
tion networks in terms of molecules as “agents”, whose possible interactions are

Rule-Based Modelling of Cellular Signalling 19

defined by rules that specify how a local pattern of “sites” and their “states” is
to be rewritten [18,19]. This resembles good old organic chemistry, except that
biologists think of post-translational modifications less as chemical transforma-
tions (which, of course, they ultimately are) than as state changes of the same
agent. A phosphorylated kinase is, at some useful level of description, still the
same entity - though in a different state - than its unphosphorylated version.
Indeed, biologists think of the state of an agent as a specific set of interaction
capabilities. The discontinuous change of such capabilities despite an underlying
continuity in agent-type hinges on the large size of a protein, which allows for
a significant change in hydrophobic and electrostatic dispositions without much
changing the protein’s overall chemical identity.

A rule may specify, for example, that if site Y996 of protein A is phospho-
rylated, protein B can bind to it with its site SH2. Since this rule applies re-
gardless of whether A or B are bound to other partners or possess other sites
with particular states, it captures a potentially large set of individual reactions
between distinct molecular species. The need for spelling out all these reactions
was spelling problems for “flat” (extensional) reaction network representations,
whereas modifying or extending a reaction system is now as simple as modifying
a single rule or merging sets of rules, respectively.

Our stance in this paper is to forgo writing out differential equations, and di-
rectly operate at the level of rules defining the interactions among a set of agents.
Biological signalling and control processes are, in fact, massively distributed sys-
tems, and this has led Regev et al. to propose Milner’s π-calculus [20], a minimal
language for describing concurrent systems, as a language for modelling biologi-
cal systems [21,22,23]. Since then, numerous variants of representations empha-
sizing different types of biological processes have been put
forward [19,24,25,26,27]. We shall use the language κ [2,3], as a direct and trans-
parent formalisation of molecular agents and their interactions in signalling net-
works. Most of the points we shall advance here are, however, independent of
any committment to a particular syntax, as long as domain-level modifications
and bindings can be represented, and one can condition those on the binding
and internal states of the various entities participating to a reaction.

Taking concurrency seriously means understanding the organization of such
systems in terms of observables defined from within rather than outside these
systems. Time is a particular case in point. In molecular systems, the temporal
precedence among events cannot be defined (at first) on physical time, since cells
or molecules do not bear watches, let alone synchronized ones. It is well known
in concurrency that temporal precedence is a logical relation that gives rise to a
partial order, as opposed to a total order. Some events must occur before others
can happen, while other events may happen in any sequence, reflecting their
mutual independence. Clearly, in any particular physical realization one will
observe a particular sequence of events. The issue, however, is to uncover which
aspects of that sequence are necessary and which contingent. The issue is to
discover the invariant structure underlying all observable sequences. Differential

20 V. Danos et al.

equations are unable to resolve this causality, precisely because they treat time
as global, as if everything proceeded in a synchronized fashion.

In contrast, concurrency approaches have long sought to understand the
dependencies that constrain an observable event. The traditional notions of
causality developed in concurrent models (such as Petri nets, a language which
is equivalent to structure-less reactions [28,29]) can be adapted to κ, and used
to clarify how a path toward a specified event has unfolded from initial condi-
tions. It is worth mentioning that κ can be seen as an applied graph-rewriting
framework, and as such, belongs to a family of formalisms where the notions
of causality, conflict, and the attendent concept of event structures, are well-
understood [30]. Similar notions of causality have been derived for π-calculus
itself, and some have been put to use in a bio-modelling scenario with an ambi-
tion to decribe the inner workings of a pathway by deriving causal traces (aka
minimal configurations in the event structure terminology) [31,32]. What we
shall use here is a related but subtler notion of minimal causal path, or story,
which seems an appropriate formalization of what biologists colloquially call a
“signalling pathway”, and may have an interest which is independent of the in-
tended application. Used in conjunction with stochastic simulation, stories can
generate insights into the collective properties of rule-based systems. We will
show how this works using an EGF receptor signalling model that would be
quite large and unwieldy by traditional standards. On the basis of relationships
of inhibition (or conflict) between rules, we will also see that one can identify key
junctures in the system’s dynamics that yield explanatory insights and suggest
numerical experiments.

To introduce the framework, we warm up with a simple example of an ubiq-
uitous control motif in cellular signal processing: a futile cycle of enzymatic
modification and demodification of a target substrate. In general, we have set
for an easy and accessible style of explanation, where definitions are precise but
not formal. The interested reader will find it easy to reconstruct the technical
underpinnings, as we have given a measure of further technical details in an ap-
pendix. It may also be worth mentioning that the notions presented here have
been implemented, and in both the short preliminary example and the larger
EGF receptor one, we have used those implementations to obtain the various
simulations, causal traces, and stories.

2 A Futile Cycle

2.1 Agents and Rules

The κ description of a system consists of a collection of agents and rules. An
agent has a name and a number of labeled sites, collectively referred to as the
agent’s interface. A site may have an internal state, typically used to denote its
phosphorylation status or other post-translational modification. Rules provide a
concise description of how agents interact. Elementary interactions consist of the
binding or unbinding of two agents, the modification of the state of a site, and
the deletion or creation of an agent. This seems limited, but closely matches the

Rule-Based Modelling of Cellular Signalling 21

style of reasoning that molecular biologists apply to mechanistic interactions in
cellular signalling. While this approach does not address all aspects of signaling
(such as compartmentation), it does cover a substantive body of events sufficient
for the present purpose.

To develop the main concepts, we start with a system consisting of three
agents: a kinase K, a target T with two phosphorylatable sites x and y, and a
phosphatase P. We first describe a phosphorylation event by means of three ele-
mentary actions and their corresponding rules: (1) the kinase K binds its target
T either at site x or y; (2) the kinase may (but need not) phosphorylate the
site to which it is bound; (3) the kinase dissociates (unbinds) from its target.
For ease of reference, we label rules with a mnemonic on the left. Using a tex-
tual notation, we represent internal states as ‘~u’ (unphosphorylated), and ‘~p’
(phosphorylated), and physical associations (bindings or links) as ‘!’ with shared
indices across agents to indicate the two endpoints of a link. The left hand side
of a rule specifies a condition in the form of a pattern expressed as a partial
graph, which represents binding states and site values of agents. The right hand
side of a rule specifies (usually elementary) changes to agents mentioned on the
left. A double arrow indicates a reversible rule, the name refers to the forward
version of the rule say r, while the opposite rule is written r_op. With these
conventions, the phosphorylation process of sites x or y translates into:

’KT@x’ K(a),T(x) <-> K(a!1),T(x!1)
’Tp@x’ K(a!1),T(x~u!1) -> K(a!1),T(x~p!1)
’KT@y’ K(a),T(y) <-> K(a!1),T(y!1)
’Tp@y’ K(a!1),T(y~u!1) -> K(a!1),T(y~p!1)

Note that not all sites of an agent interface need to be present in a rule, eg in the
first rule KT@x, T’s interface does not mention y. Likewise, if a site is mentioned
at all, its internal state may be left unspecified, eg in the same first rule one does
not say whether site x in T is phosphorylated or not. This is the ‘don’t care, don’t
write’ convention, only the information which is conditioning the triggering of a
rule needs to be represented.

The action of the phosphatase P, which undoes the action of K, is described
by a set of similar rules:

’PT@x’ P(a),T(x) <-> P(a!1),T(x!1)
’Tu@x’ P(a!1),T(x~p!1) -> P(a!1),T(x~u!1)
’PT@y’ P(a),T(y) <-> P(a!1),T(y!1)
’Tu@y’ P(a!1),T(y~p!1) -> P(a!1),T(y~u!1)

It is possible to associate rate constants with each rule, as we shall do later. We
refer to this rule set as the Goldbeter-Koshland (GK) loop [33]. It is a frequent
motif that appears in many variants throughout cellular signal transduction. No-
tice how the specification of elementary actions forces us to make our mechanistic
choices explicit. The example views phosphorylation of T by K as a distributed
mechanism, whereby the kinase lets go of its target before phosphorylating it
(or another instance) again, since it cannot remain bound to site x and phos-
phorylate site y. Other variants of multisite phosphorylation involve a processive

22 V. Danos et al.

mechanism whereby the same kinase acts sequentially on some or all sites of its
target. Further variants still would have to specify whether multiple kinases can
be bound to the same target or not.

2.2 The Contact Map

Large rule sets can be difficult to understand, and it is important to have a suite
of views that report at a glance information implied by the rules. Such cognitive
devices are useful for a piecewise modular construction of the system of interest.
They also allow for a modicum of reasoning about the system. A first useful view
of the rule set is the contact map, which is akin to a protein-protein interaction
(PPI) map and is shown in Fig. 1. The contact map is a graph whose nodes
are the agents with their interfaces and whose edges represent possible bindings
between sites. Potential site modifications are indicated by a colour code. The
contact map does not provide causal information, in the sense that it does not
specify which conditions must be met for a modification or binding to occur. It
only shows possibilities.

T

PK

x y

a a

Fig. 1. A Goldbeter-Koshland contact map: nodes represent the three kinds of agents
in the rule set, together with their sites, and each site is connected to sites it can bind
to; whether a site can be modified is indicated by a colour code (green). Although very
simple, the associated rule set generates already 38 non-isomorphic complexes (36 of
which contain T).

2.3 Stochastic Simulation

With a rule set in place, one can generate time courses, or stochastic trajectories,
for user-defined observables. Here we choose an initial state consisting of a 100 of
each of the three agents with their interfaces in defined states, T(x~u,y~u), K(a),
P(a). We decide to track two observables: (1) the number of doubly phosphory-
lated target molecules, regardless of whether sites x and y are bound to enzymes,
which is written as T(x~p?,y~p?), and (2) the number of target instances T that
are fully phosphorylated but free on both sites x and y, T(x~p,y~p). As can be
verified in Fig. 2, the latter observable has to be smaller since it is more stringent.
The trajectories are obtained using an entirely rule-based version of Gillespie’s
kinetics which generates a continuous time Markov chain [34]. At any given time
a rule can apply to a given state in a number of ways. That number is multiplied
by the rate of the rule and defines the rule’s activity or flux in that state of

Rule-Based Modelling of Cellular Signalling 23

the system. It determines the likelihood that this rule will fire next, while the
total activity of the system determines probabilistically the associated time ad-
vance. This simulation principle can be implemented within κ with rather nice
complexity properties, since the cost of a simulation event (triggering a rule)
can be made independent on the size of the agent population and depends only
logarithmically in the number of rules. This is very useful when it comes to
larger systems. One thing to keep in mind is that any obtained trajectory is but
one realization of a stochastic process that will differ slightly when repeated.
Sometimes, but not always, their average behaviour can be captured in a suit-
able differential system. Also, and evidently, the trajectories will depend on the
choice of rates (see the captions to Fig. 2(a) and 2(b)).

2.4 Precedence and Stories

The trajectory samples obtained above represent an agent-centric view of the
system’s evolution. For instance, they do not answer directly the question of
which succession of events results in a fully phosphorylated form of the target
T. This is where the notion of pathway or story comes into play. An event,
which is the application of a rule, is said to precede a posterior event, if those
events don’t commute, which can be 1) either because the latter cannot possibly
happen before the former, ie has to be after, or 2) because the former can no
longer happen after the latter, ie has to be before. Eg an event of type Tu@x has
to be after an event of type PT@x, and before an event of type PT@x_op. This
notion of logical precedence or causation defines a partial order on any sequence
of events along a trajectory. The fact that two events may succeed one another
in a particular trajectory does not imply that they are in such a relationship.
An example is provided by two successive events of type KT@x and KT@y. Events
that are not related by precedence are said to be concurrent.

The idea behind a story is to retain only those events in the causal lineage
that contributed a net progression towards an event of interest, or in other words
a story summarises how a given event type can be obtained. This means in
particular that circular histories which generate a situation that is subsequently
undone without leaving a side effect that impacts the causal lineage later on
should be eliminated. We therefore define a story as a sequence of events that:

- begins with the initial condition and ends with an event of a given type called
the observable,
- consists only of events that are in the causal lineage to the observable (which
eliminates events that are concurrent to the observable)
- contains no event subsequence with the same properties (which in particular
eliminates circles).

Taking as an initial condition one instance of each agent, and as an observable
the doubly phosphorylated form of the target, one obtains two stories depending
on whether K hits x or y first (Fig. 3 shows the former). If the initial condition
were to contain more than one K, there would be a third story in which both
sites are phosphorylated by different K-agents.

24 V. Danos et al.

(a) Association and modification rates are set to 1, and
dissociation rates are set to 10 (per time units).

(b) Same model perturbed by a tenfold increase in the
association and modification rate of P at site x.

Fig. 2. Goldbeter-Koshland loop simulation: the initial state has a hundred copies of
each agent, each disconnected and unphosphorylated; the level of doubly phosphory-
lated T is lower in the perturbed case (right)

2.5 Inhibition and Activation

Say a rule inhibits another one if the former can destroy an instance of the latter.
Note that this may not be a symmetric relationship. An example is given by the
application of the rules KT@x and PT@x (symmetric), or the rules PT@x_op and
Tu@x (dissymmetric). Similarly, say a rule activates another one if the former
can create a new instance of the latter. An example is PT@x which may create a
new instance of Tu@x.

Superimposing such inhibitions on a story, as in Fig. 3 above, suggest ways in
which one can prevent or delay a story’s ending. Indeed, numerically, a tenfold

Rule-Based Modelling of Cellular Signalling 25

[T(y~u,x~u)]_0 [K(a)]_1

[KT@x]_11

[Tp@x]_17

[KT@x_op]_23

[KT@y]_24

[Tp@y]_25

[obs]_26

PT@x

PT@y

Tu@x,y

Fig. 3. A story: the story observable is at the bottom, causal depth is represented
by shades of grey. Event numbers represent the actual step in the simulation where
these events occurred (missing events are either concurrent, or compressible). Various
inhibitions attached to the story are shown on the left (explained below).

increase in the rate constants of PT@x and Tu@x yields a much lower value for
the observable (see Fig. 2(b)).

We now proceed to apply these ideas to the more complex example of an
EGF receptor model coupled to a MAP kinase cascade. In its full form, as
presented in Ref. [35], EGFR signaling is a complex suite of pathways whose
boundaries to other signaling systems appear increasingly blurred. While the
present model falls far short of representing this complexity, it goes some way
towards demonstrating how to eventually represent and face it.

3 The EGFR Model

3.1 EGFR Model Elements

The EGFR signalling network plays an important, yet only partially understood,
role in regulating major events in mammalian cells, such as growth, proliferation,
survival, and differentiation. In outline, a signal arrives at the cell membrane in
the form of a ligand, EGF, which binds to the extra-cellular portion of a special
receptor protein, EGFR, that straddles the membrane. With the arrival of EGF,
an EGFR becomes capable of binding to a neighbouring EGFR also bound to a
ligand. Such receptor pairs can cross-activate one another, meaning that certain
of their intra-cellular residues become phosphorylated. These phosphorylated
residues now serve as binding sites for a variety of proteins in the cytoplasm.
This in turn leads to the activation of a small protein, Ras, that serves as a kind
of relay for triggering a cascade of phosphorylations comprising three stacked GK
loops in which the fully phosphorylated form of one loop acts as the kinase of
the next, causing the overall cascade to behave like an amplifier and culminating
in the activation of ERK.

The pathway to the activation of ERK has been the target of an intense
modelling effort over the past decade. The ubiquity and importance of the

26 V. Danos et al.

pathway for biomedical applications [36, Chap. 5] have spurred extensive studies
at the mechanistic level of protein-protein interactions and localizations. At the
same time, the subtleties uncovered by these investigations (see, for example,
the receptor network combinatorics of the pathway [37]) have made it clear that
intuition alone, however sharp, cannot confront its complexity and only risks
flushing enormous amounts of drug development money down the drain. To cal-
ibrate the reader on the magnitudes involved, the particular model presented
below contains 70 rules and generates over 1023 distinct molecular species (see
appendix for the complete and commented rule set). An exhaustive approach
with differential equations would, in principle, require that many equations—
and that is by no means a large example.

Fig. 4 depicts the model’s contact map. The associated rule-based model over-

RAS
S1
S2

Rafx

EGF
r

SoS

SS

a

b

Shc
Y3
18

PT
B

PP2A1 s

MKP3 s

MEKS2
18

S2
22

s

ERK

T1
85

Y1
87

CD

EGFR
L

Y1
06
8

Y1
14
8

CR

Y9
92

PP2A2 s

Grb2

SH
3n

SH
2

RasGAP

s

SH
2

Fig. 4. The contact map of the EGFR/ERK model

lays a causal structure on the contact map by specifying, for example, that Ras
can only bind Raf if it has been phosphorylated beforehand at site S1S2. The
rule set itself was mainly obtained from refactoring two existing ordinary dif-
ferential equations (ODE) models [11,12] treating two different aspects of EGF-
EGFR signalling: down-regulation of Erk activity through a negative feedback
and down-regulation of the signal through internalization.

In its present form, our EGFR model comprises three modules. Firstly, a re-
ceptor module, which for illustration purposes retains only the EGFR (or ErbB1)
receptor, but includes internalization dynamics using fictitious sites whose state
flags localization. This module can be refined to include a receptor heterodimer-
ization network comprising all four receptors of the ErbB family. Secondly, adap-
tors and relays, such as Sos, Grb2, and Ras. These too can be extended as the

Rule-Based Modelling of Cellular Signalling 27

complexity of the model is built up in a stepwise fashion. Finally, we have the
module containing the target MAPK cascade.

3.2 Ras Activation

An examination of the contact map immediately reveals a potentially critical role
for Ras in the behaviour of the model: Ras has only one site but can bind to three
distinct agents (SoS, RasGAP and Raf) and so probably forms a bottleneck.
Inspection of the rules governing these four agents allows us to refine the contact
map: Ras’s site has an internal state (representing active or inactive), only SoS
can bind to an inactive Ras, whereas RasGAP and Raf must compete for active
Ras.

In terms of signal propagation, SoS activates Ras so that Ras can in turn acti-
vate Raf. RasGAP plays an inhibitory role by deactivating Ras. We can observe
this chain of causality by looking at the two stories leading to Ras’s activation
(Fig. 5 and 6, events are labeled by rule names as given in the appendix). Each of
the two stories contains a rule that inhibits the other one, respectively Shc_Grb2
and EGFR_Grb2, a clue that these stories are competing ways to obtain the ob-
servable. In the former, Grb2 binds to the receptor directly, in the latter it binds
to Shc. Only the former would resist a Shc knock-out.

[Grb2(SH3,SH2)]_2 [SoS(b,a,SS~u)]_3

[Ras(S1S2~gdp)]_5

[EGF(r~ext)]_7

[EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_8

[EGF(r~ext)]_9

[EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_10

[EGF_EGFR]_12 [EGF_EGFR]_13

[Grb2_SoS]_50

[EGFR_EGFR]_14

[EGFR@1068]_22

[EGFR_Grb2]_26

[short arm SoS_Ras]_52

[Ras GTP]_54

SoS@SS

Shc_Grb2

Fig. 5. Short arm activation of Ras (without Shc); inhibitions by SoS@SS and Shc Grb2
shown on the left; the observable is the activation rule Ras GTP (oval shape)

RasGAP does not appear in either of the above stories, confirming that it plays
no role in the logical propagation of the signal. RasGAP, however, does play a role
in shaping the kinetics of signal propagation. Indeed, most sequences of events
leading to Raf’s recruitment do exhibit RasGAP intervention (and are therefore
not stories). This slightly paradoxical effect of the EGF signal is neatly captured
by the negative feed-forward loop in Fig. 7 (negative because it has a negative effect
on the story, via the rule directRasGAP_Ras, forwardbecause that effect proceeds
from a prior event to the story end). In order to propagate the signal, SoS is in-
duced to activate Ras (and hence the downstream cascade to ERK) but, at the

28 V. Danos et al.

[Shc(Y318~u,PTB)]_0

[Grb2(SH3,SH2)]_1 [SoS(b,a,SS~u)]_3

[Ras(S1S2~gdp)]_5

[EGF(r~ext)]_7 [EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_8 [EGF(r~ext)]_9[EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_10

[EGF_EGFR]_11[EGF_EGFR]_12

[Grb2_SoS]_47

[EGFR_EGFR]_13

[EGFR@1148]_15

[EGFR_Shc]_16

[Shc@318]_18

[Shc_Grb2]_19

[long arm SoS_Ras]_48

[Ras GTP]_49

SoS@SS

EGFR_Grb2

Fig. 6. Long arm activation of Ras (with Shc); inhibitions by SoS@SS and EGFR Grb2
shown on the left

same time, the signal also induces RasGAP to frustrate SoS’s work. Of course, a
signal needs to be controlled and eventually down-regulated, so the existence of
a RasGAP-like agent should be expected. Both the positive (SoS) and the nega-
tive (RasGAP) influences on Ras depend on the same signal which suggests that
Ras’s activation dynamics only depend on the relative concentrations of SoS and
RasGAP: if RasGAP dominates, Ras activation will be weak and short-lived; if
SoS dominates, it will be stronger and last longer.

[Grb2(SH3,SH2)]_2[SoS(b,a,SS~u)]_3

[Ras(S1S2~gdp)]_5

[EGF(r~ext)]_7 [EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_8 [EGF(r~ext)]_9 [EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_10

[EGF_EGFR]_12 [EGF_EGFR]_13

[Grb2_SoS]_24

[EGFR_EGFR]_16

[EGFR@1068]_19

[EGFR_Grb2]_22

[short arm SoS_Ras]_26

[Ras GTP]_60

EGFR@992

EGFR_RasGAP

direct RasGAP_Ras

EGFR@992

EGFR_RasGAP

direct RasGAP_Ras

Fig. 7. Battle between SoS and RasGAP; negative feed-forward loop from EGFR
dimerisation to Ras activation shown on the right (dotted arrows are activations, the
blunted arrow is an inhibition)

3.3 SoS Deactivation

As can be seen in Fig. 5, SoS has a second enemy in the form of activated ERK
which by rule SoS@SS may inhibit the formation of the complex between Grb2
and SoS by phosphorylating SoS. Fig. 8 shows one of the two stories leading
to activated ERK (the other uses the long arm), and there appears a negative
feedback loop, where the end inhibits an event internal to its own story.

Rule-Based Modelling of Cellular Signalling 29

[Grb2(SH3,SH2)]_1

[SoS(b,a,SS~u)]_2

[Ras(S1S2~gdp)]_4

[Raf(x~u)]_5

[MEK(s,S222~u,S218~u)]_6

[ERK(s,Y187~u,T185~u)]_7

[EGF(r~ext)]_8[EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_9 [EGF(r~ext)]_10 [EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_11

[EGF_EGFR]_18 [EGF_EGFR]_22

[Grb2_SoS]_32

[EGFR_EGFR]_23

[EGFR@1068]_24

[EGFR_Grb2]_29

[short arm SoS_Ras]_34

[Ras GTP]_35

[SoS_Ras_op]_37

[Ras_Raf]_52

[Raf]_54

[Ras_Raf_op]_74

[Raf_MEK@218]_87

[MEK@218]_89

[Raf_MEK@218_op]_91

[Raf_MEK@222]_153

[MEK@222]_160

[Raf_MEK@222_op]_179

[MEK_ERK@185]_243

[ERK@185]_251

[MEK_ERK@185_op]_262

[MEK_ERK@187]_344

[ERK@187]_349

[MEK_ERK@187_op]_356SoS_ERK

SoS@SS

SoS_ERK

SoS@SS

MKP_ERK@185

MKP_ERK@187

Fig. 8. Short arm story to ERK activation; negative feedback look from active ERK
to SoS shown on the left; MKP3 inhibitions shown on the right

For the duration of the SoS’s phosphorylation, this substantially weakens the
signal from SoS to Ras, essentially shifting the balance in favour of RasGAP.
As a result, the level of active Ras decreases which, with a small delay, causes
a significant reduction in active ERK at the bottom of the cascade. At that
moment, SoS is no longer being strongly targeted by ERK and can, once more,
signal to Ras. We thus expect a cyclic process of activation and then inhibition
of Ras, leading to an oscillating activation pattern for ERK, typical of a cascade
embedded in a negative feedback loop [16].

A crucial parameter determining the shape of these oscillations is the “recovery
rate” of SoS from its phosphorylation by ERK. A slow recovery rate leads to a clear
oscillation of the cascade. As the rate of recovery increases, the cascade oscillates
more quickly, albeit with the same amplitude. With a sufficiently rapid recovery
rate, the cascades achieves a transient activation, again with the same amplitude,
with a little oscillation as the signal dies (Fig. 9). Thus the qualitative observation
embodied in Fig. 8 is rather well echoed at the quantitative level.

30 V. Danos et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600

N
um

be
r

Time

21/5/2007 brightberl.ka sample=0.5000t.u

[ERK(Y187~p?,T185~p?)]
[MEK(S222~p?,S218~p?)]

[Raf(x~p?)]
[Ras(S1S2~gtp?)]

(a) Slow recovery rate of SoS.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600

N
um

be
r

Time

21/5/2007 brightberl.ka sample=0.5000t.u

[ERK(Y187~p?,T185~p?)]
[MEK(S222~p?,S218~p?)]

[Raf(x~p?)]
[Ras(S1S2~gtp?)]

(b) Fast recovery rate for SoS.

Fig. 9. Oscillations and rates of SoS recovery

Another factor regulating the effect of the negative feedback to SoS comes
from MKP3, the phosphatase targeting ERK, as suggested by the two inhibi-
tions shown on the right of the activated ERK story (Fig. 8). A higher concen-
tration of MKP3 will tend to hamper activation of ERK and this impacts the
rate of oscillation at the cascade: increasing the concentration of MKP3 over suc-
cessive simulations, one observes (without surprise) that the amplitude of ERK
activation decreases. However, one also observes that ERK remains active for
less time, leading to a gradual increase in the frequency of oscillation (Fig. 10).
In addition, the signal attenuates faster: with more phosphatase in the system,
ERK requires a higher “threshold” concentration of its kinase (MEK) in order
to achieve significant activation. While this obviously goes against ERK activa-
tion, it also protects SoS from being in turn inhibited by ERK. However, this

Rule-Based Modelling of Cellular Signalling 31

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500 600

N
um

be
r

Time

21/5/2007 brightberl.ka sample=0.5000t.u

[ERK(Y187~p?,T185~p?)]
[MEK(S222~p?,S218~p?)]

[Raf(x~p?)]
[Ras(S1S2~gtp?)]

(a) Low concentration of MKP3.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600

N
um

be
r

Time

21/5/2007 brightberl.ka sample=0.5000t.u

[ERK(Y187~p?,T185~p?)]
[MEK(S222~p?,S218~p?)]

[Raf(x~p?)]
[Ras(S1S2~gtp?)]

(b) High concentration of MKP3

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600

N
um

be
r

Time

13/4/2007 brightberl.ka sample=0.5000t.u

[ERK(Y187~p?,T185~p?)]
[Ras(S1S2~gtp?)]

[SoS(SS~p?)]

(c) Combination of fast feedback and slow recovery

Fig. 10. Impact of MKP3 concentration on pathway oscillations

secondary effect turns out to be fairly minor, since a typical system contains
more ERK than SoS molecules. Therefore, even a reduced level of ERK activa-
tion suffices to mount a powerful inhibition of SoS.

One final parameter substantially influences ERK’s level of activation: the
speed of SoS phosphorylation by ERK (ie the strength of the SoS@SS inhibition
shown Fig. 5 and 6). A slow rate limits the effect of the negative feedback,
leading to a longer and steadier period of Ras and ERK activation and little to
no oscillation. A fast rate accentuates the negative feedback effect, considerably
shortening the time during which Ras signals and, in tandem with a slow recovery
rate, leads to a pronounced, low-frequency oscillation (Fig. 10).

4 Conclusions

We have illustrated how rule-based modeling transcends the bottleneck of the
traditional ODE-based framework. It does so in many important ways, both

32 V. Danos et al.

practical and conceptual, which we summarize here. First, and this is the start-
ing point, rule-based modeling tames combinatorial explosion by decontextual-
izing reactions between molecular species into rules defined on patterns. As an
immediate corollary, modifications and extensions become fairly straightforward.

Rules represent nuggets of mechanistic knowledge that current experimen-
tal practice is rapidly accumulating. Rather than expressing such knowledge
in terms of human language or non-executable graphical information, it seems
vastly more useful to represent it in a context-free grammar ready for com-
putational consumption. Much like chemical reactions, rules can be viewed as
operational “instructions” that can be let loose on a set of molecular agents,
driving the unfolding of pathways and their kinetics. In this sense, κ-rules make
knowledge executable. The granularity of such rules is, in principle, adaptable
to the needs of lab scientists. We believe that the current level of granularity
offered by κ or the variant language BNG [18] meets the most urgent practical
needs.

Sets of rules are not just inputs to simulators, like systems of differential
equations are not just inputs to numerical integrators. Rather, rule sets replace
systems of differential equations as formal entities that can be subject to rig-
orous analysis from which to extract predictive and explanatory information
about the behavior of systems. In contrast to the synchronicity of differential
equations, rules operate in a concurrent execution model, which is a far more
appropriate representation of what is actually going on in cells. This constitutes
rather unfamiliar terrain for many biologists, yet this is a turf that has been suc-
cessfully plowed for over thirty years in computer science. We have shown how
notions of conflict and causation can be used to build maps that relate rules
to one another. We have defined a concept of story which we believe formalizes
the intuitive notion of “pathway” that biologists entertain. Stories are partial
orders representing causal lineages that explain how a given observable arises
in logical time. Stories change over time, since they depend on available molec-
ular resources. The superposition of stories with rule inhibition maps identifies
potential “story spoilers”, junctures at which logical structure meets kinetics.
We have made extensive use of this trick to explain several dynamical and logi-
cal features of a simplified EGFR signalling system. Our experience is that this
mode of reasoning matches quite naturally the way biologists intuitively go about
telling their “stories”. The only difference is that our framework formalizes this
process and therefore enables computational procedures to tackle much more
complicated systems in rigorous ways when the story-telling of biologists risks
degenerating into just that.

It is worth emphasizing that the main dynamic characteristics of our modest
EGFR case were obtained with uniform rate constants for all rules. The impact
of certain rules on these characteristics was then explored by varying certain
rate constants. This is not to say that rate constants don’t matter, but it does
hint at the importance of the causal architecture of a system in shaping dy-
namics. Disentangling the contribution of causal structure and rates to overall
systems dynamics is hardly possible in large systems of differential equations.

Rule-Based Modelling of Cellular Signalling 33

By forgoing this separation, modelers who fit rate constants to ODE systems
risk engaging in an idle encoding exercise rather than a modeling process, since
many behaviors can be inscribed into any sufficiently large system of ODEs by
appropriate choice of rate parameters. We believe that rule-based modeling af-
fords a strategy whereby one first tries to get the logical structure to generate
key dynamical characteristics and then tunes the rate constants to obtain the
fine structure. If the logical structure is insufficient, the odds are that our knowl-
edge is insufficient and that more experiments would be better than more rate
tuning.

It is useful to think of rule-based modeling as a task in concurrent program-
ming, where rules are computational instructions that contribute to system be-
havior, as in the bigraphical reactive systems [38]. It is difficult to grasp how
concurrent systems – in particular natural ones like cells, tissues, and organisms
– function and why they function the way they do. Modeling in a rule-based
format yields a better appreciation of the role played by individual mechanisms
in generating collective behavior. Linking architecture to behavior will produce
more informed strategies for intervention in the case of disease and will help us
distill the principles that enabled cells to evolve such versatile information pro-
cessing systems in the first place. As in programming, however, there is ample
opportunity for mistakes. In fact, a model might be wrong not because it isn’t a
correct description of the world, but because it may not express what the modeler
intended (think typo). To catch such mistakes is crucial and will eventually ne-
cessitate a veritable “modeling environment” with sophisticated debugging and
verification tools. The complete absence of such tools in the traditional ODE
framework, makes classic models beyond a certain size highly prone to error
and exceedingly difficult to maintain. As in programming, rule-based models are
“grown” by merging smaller models to build larger models that are easily refined
by incorporating new empirical knowledge. Rule-based modeling is as much a
scientific instrument as it is effective knowledge management.

References

1. Curien, P.L., Danos, V., Krivine, J., Zhang, M.: Computational self-assembly (sub-
mitted) (February 2007)

2. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Sci-
ence 325(1), 69–110 (2004)

3. Danos, V., Laneve, C.: Core formal molecular biology. In: Degano, P. (ed.) ESOP
2003 and ETAPS 2003. LNCS, vol. 2618, pp. 302–318. Springer, Heidelberg (2003)

4. Faeder, J., Blinov, M.B.G., Hlavacek, W.: BioNetGen: software for rule-based mod-
eling of signal transduction based on the interactions of molecular domains. Com-
plexity 10, 22–41 (2005)

5. Blinov, M., Yang, J., Faeder, J., Hlavacek, W.: Graph theory for rule-based mod-
eling of biochemical networks. In: Proc. BioCONCUR 2005 (2006)

6. Faeder, J., Blinov, M., Hlavacek, W.: Graphical rule-based representation of signal-
transduction networks. In: Proc. ACM Symp. Appl. Computing, pp. 133–140. ACM
Press, New York (2005)

34 V. Danos et al.

7. Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S.: Combinatorial com-
plexity and dynamical restriction of network flows in signal transduction. Systems
Biology 2(1), 5–15 (2005)

8. Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S.: Depicting signaling cascades.
Nat. Biotechnol. 24(2), 1–2 (2006)

9. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: A network model of
early events in epidermal growth factor receptor signaling that accounts for com-
binatorial complexity. BioSystems 83, 136–151 (2006)

10. Hlavacek, W., Faeder, J., Blinov, M., Posner, R., Hucka, M., Fontana, W.: Rules
for Modeling Signal-Transduction Systems. Science’s STKE 2006. 344 (2006)

11. Brightman, F., Fell, D.: Differential feedback regulation of the MAPK cascade
underlies the quantitative differences in EGF and NGF signalling in PC12 cells.
FEBS Lett. 482(3), 169–174 (2000)

12. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Müller, G.: Computational model-
ing of the dynamics of the map kinase cascade activated by surface and internalized
EGF receptors. Nature Biotechnology 20, 370–375 (2002)

13. Orton, R.J., Sturm, O.E., Vyshemirsky, V., Calder, M., Gilbert, D.R., Kolch, W.:
Computational modelling of the receptor tyrosine kinase activated MAPK pathway.
Biochemical Journal 392(2), 249–261 (2005)

14. Huang, C., Ferrell, J.: Ultrasensitivity in the mitogen-activated protein kinase cas-
cade (1996)

15. Kholodenko, B., Demin, O., Moehren, G., Hoek, J.: Quantification of Short Term
Signaling by the Epidermal Growth Factor Receptor. Journal of Biological Chem-
istry 274(42), 30169–30181 (1999)

16. Kholodenko, B.: Negative feedback and ultrasensitivity can bring about oscillations
in the mitogen-activated protein kinase cascades (2000)

17. Pawson, T., Nash, P.: Assembly of Cell Regulatory Systems Through Protein In-
teraction Domains. Science 300(5618), 445–452 (2003)

18. Blinov, M., Faeder, J., Hlavacek, W.: BioNetGen: software for rule-based modeling
of signal transduction based on the interactions of molecular domains. Bioinfor-
matics 20, 3289–3292 (2004)

19. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Path-
way logic: Symbolic analysis of biological signaling. In: Proceedings of the Pacific
Symposium on Biocomputing. pp. 400–412 (January 2002)

20. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

21. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemi-
cal processes using the π-calculus process algebra. In: Altman, R.B., Dunker, A.K.,
Hunter, L., Klein, T.E. (eds.) Pacific Symposium on Biocomputing, vol. 6, pp. 459–
470. World Scientific Press, Singapore (2001)

22. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic
name-passing calculus to representation and simulation of molecular processes.
Information Processing Letters (2001)

23. Regev, A., Shapiro, E.: Cells as computation. Nature 419 (September 2002)
24. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients:

An abstraction for biological compartments. Theoretical Computer Science (2003)
(to appear)

25. Cardelli, L.: Brane calculi. In: Proceedings of BIO-CONCUR’03, Marseille, France.
Electronic Notes in Theoretical Computer Science, Elsevier, Amsterdam (2003) (to
appear)

Rule-Based Modelling of Cellular Signalling 35

26. Priami, C., Quaglia, P.: Beta binders for biological interactions. Proceedings of
CMSB 3082, 20–33 (2004)

27. Danos, V., Krivine, J.: Formal molecular biology done in CCS. In: Proceedings
of BIO-CONCUR’03, Marseille, France. Electronic Notes in Theoretical Computer
Science, Elsevier, Amsterdam (2003) (to appear)

28. Nielsen, M., Winskel, G.: Models For Concurrency. In: Handbook of Logic and
the Foundations of Computer Science, vol. 4, pp. 1–148. Oxford University Press,
Oxford (1995)

29. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains.
Theoretical Computer Science 13, 85–108 (1981)

30. Baldan, P., Corradini, A., Montanari, U.: Unfolding and event structure semantics
for graph grammars. In: Thomas, W. (ed.) ETAPS 1999 and FOSSACS 1999.
LNCS, vol. 1578, pp. 367–386. Springer, Heidelberg (1999)

31. Baldi, C., Degano, P., Priami, C.: Causal pi-calculus for biochemical modeling. In:
Proceedings of the AI*IA Workshop on BioInformatics 2002, pp. 69–72 (2002)

32. Curti, M., Degano, P., Priami, C., Baldari, C.: Modelling biochemical pathways
through enhanced–calculus. Theoretical Computer Science 325(1), 111–140 (2004)

33. Goldbeter, A., Koshland, D.: An Amplified Sensitivity Arising from Covalent
Modification in Biological Systems. Proceedings of the National Academy of Sci-
ences 78(11), 6840–6844 (1981)

34. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem 81, 2340–2361 (1977)

35. Oda, K., Matsuoka, Y., Funahashi, A., Kitano, H.: A comprehensive pathway map
of epidermal growth factor receptor signaling. Molecular Systems Biology 1 (May
2005)

36. Weinberg, R.A.: The Biology of Cancer. Garland Science (June 2006)
37. Hynes, N., Lane, H.: ERBB receptors and cancer: the complexity of targeted in-

hibitors. Nature Reviews Cancer 5(5), 341–354 (2005)
38. Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CON-

CUR 2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001)
39. Winskel, G.: An introduction to event structures. In: REX Workshop 1988. LNCS,

Springer, Heidelberg (1989)

5 Appendix

5.1 κ, Briefly

In section 2.1 we introduced κ by means of an example. Here we provide some
formal definitions to fix concepts more precisely and convey a sense of what we
have implemented.

Agents. Let A be a countable set of names, S a countable set of sites, and V a
finite set of values. An agent is a tuple consisting of an agent name λ(a) ∈ A, a
finite set of sites σ(a) ⊆ S, and a partial valuation μ(a) in Vσ(a) assigning values
to some of the agent’s sites, and called the agent’s internal state. In the context
of signalling, agents are typically proteins (but they need not be).

36 V. Danos et al.

Solution of agents. By a solution we usually have container of molecules in
mind. In the case of chemistry proper, agents would be atoms and molecules are
atoms connected in particular ways. Likewise, in biological signalling, agents are
usually proteins and connected proteins (proteins that are noncovalently bound
to one another) are complexes. More precisely, a solution S is a set of agents,
together with a partial matching on the set

∑
a∈S σ(a) of all agent sites. The

matching specifies how agents are connected through their sites, but no site can
be connected twice. One writes (a, i), (b, j) ∈ S to express the fact that sites i, j
in agents a, b are connected in S.

A solution is essentially a graph whose nodes are agents and whose edges are
bonds between agents. Consequently, graph-theoretic notions such as subgraph,
connected component, path, etc. apply. We can think of a connected component
as a complex of proteins – the nodes of the component – bound to one another
as specified by the edges of the component.

A signature map Σ : A → ℘(S) is an assignment of a finite set of sites to each
agent name. We assume such a signature map to be fixed once and for all, and
consider only solutions S such that for all a ∈ S, σ(a) ⊆ Σ(λ(a)). An agent a
is said to be complete if σ(a) = Σ(λ(a)), and likewise a solution S is said to be
complete if all its agents are.

Rules. The examples of Subsection 2.1 introduced a rule as a transformation
of the graph of agents specified on the left-hand-side (lhs) of the rule into the
graph specified on its right-hand-side (rhs). Since the graph on the lhs can occur
in many ways within a solution, we refer to it as a “pattern”. A solution is a
graph, and so the lhs of a rule can be viewed as a solution as well (usually a
small one compared to the solution that represents the whole system). A rule
then is as a solution together with an action transforming it. The application
of a rule to a system means first identifying an embedding of the rule’s solution
(the lhs pattern) in the solution representing the system and then applying the
action to that location. This is made precise in the following by first defining
the notion of embedding.

A map φ between solutions S and T is an embedding if it is an injection on
agents, that preserves names, sites, internal states, and preserves and reflects
edges; that is to say for all a, b ∈ S, i, j ∈ S:

φ(a) = φ(b)⇒ a = b
λS(a) = λT (φ(a))
σS(a) ⊆ σT (φ(a))
μS(a)(i) = v ⇒ μT (φ(a))(i) = v
(a, i), (b, j) ∈ S ⇔ (φ(a), i), (φ(b), j) ∈ T

Hereafter, whenever we write φ : S → T we mean to say that φ is an embedding,
we also write cod(φ) for the set of sites in T which are in the image of φ, and
J (S, T) for the set of all embeddings of S into T .

A rule is a pair (S, α), where S is a solution (the left-hand-side in the nota-
tion of Subsection 2.1) and an action α over S (the rule action). An atomic action

Rule-Based Modelling of Cellular Signalling 37

changes the value of some site, or creates/deletes an edge between two sites,
or creates/deletes an agent. An action on S is a sequence of atomic actions.
A rule (S, α) is said to be atomic, if α is atomic. It is said to have arity
n, if S has n connected components, in which case any φ : S → T decom-
poses into n embeddings, one per connected component of S, which we call φ’s
components.

The number of all embeddings of the rule’s S into the system T , |J (S, T)|,
plays an important role in the probabilistic simulation of a system specified by
a concrete set of agents and complexes (the solution T) and a set of rules, as
sketched in Subsection 2.3.

Causation (activation) and conflict (inhibition) between events (rules). Given
an embedding φ : S → T , we write φ(α) · T for the result of α on T via φ.
We say that a site in T is modified by φ(α) if its internal state, or its con-
nections are. A rule set R defines a labelled transition relation over complete
solutions:

T −→r
φ φ(α(r)) · T

with r = (S(r), α(r)) ∈ R, and φ an embedding from S(r) into T . An event (r, φ)
consists in identifying an embedding φ of the rule pattern S(r) into a complete
solution T , and applying the rule action α(r) along φ.

Let E(T) denote the set of events in T . We can define the notions of conflict
and causation between events by comparing T with φ(α(r)) · T . Given an event
(r, φ) ∈ E(T), we say that (r, φ) conflicts with (s, ψ), if (s, ψ) ∈ E(T)\E(φ(α(r))·
T). We say that (r, φ) causes (s, ψ), if (s, ψ) ∈ E(φ(α(r)) · T) \ E(T).

Unlike in the classical notion of event structure [39], conflict here is not sym-
metric. It is quite possible that ψ does not conflict with φ, while φ conflicts with
ψ.

The following definition is useful in projecting the definitions of conflict and
causation at the level of events to the level of rules, where we refer to them as
inhibition and activation, respectively. Given an event e = (r, φ) in E(T), the
negative support of e, written e�−, is the set of sites in T which φ(α(r)) erases
or modifies. Similarly, the positive support of e, written e�+, is the set of sites
in φ(α(r)) · T which φ(α(r)) creates or modifies.

Using the notion of support, we can formulate necessary conditions for conflict
and causation between events. Consider an event e = (r, φ) in E(T). If e conflicts
with (s, ψ) ∈ E(T), then cod(ψ) ∩ e�−
= ∅. If e causes (s, ψ) ∈ E(φ(α(r)) · T),
then cod(ψ) ∩ e�+
= ∅. At the level of rules, we say that r inhibits s if for
some T , φ, ψ, cod(ψ) ∩ e�−
= ∅, and one says r activates s if for some T , φ, ψ,
cod(ψ) ∩ e�+
= ∅.

The notions of inhibition and activation between rules should not be con-
fused with the notions of conflict and causation between events from which
they are derived. The relations of inhibition and activation are static relation-
ships between rules and can be computed once and for all for a given set of
rules.

38 V. Danos et al.

5.2 The Rule Set of the EGFR Model

This appendix contains the κ-representation of the Schoeberl et al. (2002) EGF
receptor model [12], which introduced receptor internalisation, and combines it
with the negative feedback mechanism described in the earlier Brightman & Fell
(2000) model [11]. A useful review of these and many other models is provided
in Ref. [13]. Refactoring those models in κ involved mining the literature and
various databases to obtain the missing domain related information.

Rule names used in the main text and the figures of the paper are defined
below. Certain rules use a shorthand ‘!_’ notation, to mean that a site is ‘bound
to something’ but the rule does not test anything further than that. This is a
convenient way to shorten rules.

Rate constants of rules were set to 1 by default, except for internalisation rules.
The numerical experiments summarized in Fig.9 and Fig.10 varied pertinent
rate constants as explained above. The rules are presented roughly in the order
implied by the ERK activation story shown in Fig. 8. The initial state used in
our EGFR simulations is also shown below.

Activating receptor dimers

external dimers:
’EGF_EGFR’ EGF(r~ext), EGFR(L~ext,CR) <-> EGF(r~ext!1), EGFR(L~ext!1,CR)
’EGFR_EGFR’ EGFR(L~ext!_,CR), EGFR(L~ext!_,CR) <->

EGFR(L~ext!_,CR!1), EGFR(L~ext!_,CR!1)
simplified phosphorylation (internal or external)
’EGFR@992’ EGFR(CR!_,Y992~u) -> EGFR(CR!_,Y992~p)
’EGFR@1068’ EGFR(CR!_,Y1068~u) -> EGFR(CR!_,Y1068~p)
’EGFR@1148’ EGFR(CR!_,Y1148~u) -> EGFR(CR!_,Y1148~p)
simplified dephosphorylation (internal or external)
’992_op’ EGFR(Y992~p) -> EGFR(Y992~u)
’1068_op’ EGFR(Y1068~p) -> EGFR(Y1068~u)
’1148_op’ EGFR(Y1148~p) -> EGFR(Y1148~u)

Internalization, degradation and recycling

internalization:
’int_monomer’ EGF(r~ext!1), EGFR(L~ext!1,CR) ->

EGF(r~int!1), EGFR(L~int!1,CR) @ 0.02
’int_dimer’ EGF(r~ext!1), EGFR(L~ext!1,CR!2),

EGF(r~ext!3), EGFR(L~ext!3,CR!2) ->
EGF(r~int!1), EGFR(L~int!1,CR!2),
EGF(r~int!3), EGFR(L~int!3,CR!2) @ 0.02

dissociation:
’EGFR_EGFR_op’ EGFR(L~int!_,CR!1), EGFR(L~int!_,CR!1) ->

EGFR(L~int!_,CR), EGFR(L~int!_,CR)
’EGF_EGFR_op’ EGF(r~int!1), EGFR(L~int!1,CR) ->

EGF(r~int), EGFR(L~int,CR)
degradation:
’deg_EGF’ EGF(r~int) ->

Rule-Based Modelling of Cellular Signalling 39

’deg_EGFR’ EGFR(L~int,CR) ->
recycling:
’rec_EGFR’ EGFR(L~int,Y992~u,Y1068~u,Y1148~u) ->

EGFR(L~ext,Y992~u,Y1068~u,Y1148~u)

SoS and RasGAP recruitment

’EGFR_RasGAP’ EGFR(Y992~p), RasGAP(SH2) <-> EGFR(Y992~p!1), RasGAP(SH2!1)
’EGFR_Grb2’ EGFR(Y1068~p), Grb2(SH2) <-> EGFR(Y1068~p!1), Grb2(SH2!1)
’Grb2_SoS’ Grb2(SH3), SoS(a,SS~u) ->

Grb2(SH3!1), SoS(a!1,SS~u)
’Grb2_SoS_op’ Grb2(SH3!1), SoS(a!1) -> Grb2(SH3), SoS(a)
’EGFR_Shc’ EGFR(Y1148~p), Shc(PTB) <-> EGFR(Y1148~p!1), Shc(PTB!1)
’Shc_Grb2’ Shc(Y318~p), Grb2(SH2) <-> Shc(Y318~p!1), Grb2(SH2!1)
’Shc@318’ EGFR(CR!_,Y1148~p!1), Shc(PTB!1,Y318~u) ->

EGFR(CR!_,Y1148~p!1), Shc(PTB!1,Y318~p)
’Shc@318_op’ Shc(Y318~p) -> Shc(Y318~u)

Activating Ras

activate:
’long arm SoS_Ras’ EGFR(Y1148~p!1), Shc(PTB!1,Y318~p!2),

Grb2(SH2!2,SH3!3), SoS(a!3,b), Ras(S1S2~gdp) ->
EGFR(Y1148~p!1), Shc(PTB!1,Y318~p!2),
Grb2(SH2!2,SH3!3), SoS(a!3,b!4), Ras(S1S2~gdp!4)

’short arm SoS_Ras’ EGFR(Y1068~p!1), Grb2(SH2!1,SH3!2),
SoS(a!2,b), Ras(S1S2~gdp) ->
EGFR(Y1068~p!1), Grb2(SH2!1,SH3!2),
SoS(a!2,b!3), Ras(S1S2~gdp!3)

’Ras GTP’ SoS(b!1), Ras(S1S2~gdp!1) -> SoS(b!1), Ras(S1S2~gtp!1)
’SoS_Ras_op’ SoS(b!1), Ras(S1S2!1) -> SoS(b), Ras(S1S2)

deactivate:
’direct RasGAP_Ras’ EGFR(Y992~p!1), RasGAP(SH2!1,s), Ras(S1S2~gtp) ->

EGFR(Y992~p!1), RasGAP(SH2!1,s!2), Ras(S1S2~gtp!2)
’Ras GDP’ RasGAP(s!1), Ras(S1S2~gtp!1) ->

RasGAP(s!1), Ras(S1S2~gdp!1)
’RasGAP_Ras_op’ RasGAP(s!1), Ras(S1S2!1) -> RasGAP(s), Ras(S1S2)
’intrinsic Ras GDP’ Ras(S1S2~gtp) -> Ras(S1S2~gdp)

Activating Raf

activation:
’Ras_Raf’ Ras(S1S2~gtp), Raf(x~u) -> Ras(S1S2~gtp!1), Raf(x~u!1)
’Raf’ Ras(S1S2~gtp!1), Raf(x~u!1) -> Ras(S1S2~gtp!1), Raf(x~p!1)
’Ras_Raf_op’ Ras(S1S2~gtp!1), Raf(x!1) -> Ras(S1S2~gtp), Raf(x)
deactivation:
’PP2A1_Raf’ PP2A1(s), Raf(x~p) -> PP2A1(s!1), Raf(x~p!1)
’Raf_op’ PP2A1(s!1), Raf(x~p!1) -> PP2A1(s!1), Raf(x~u!1)
’PP2A1_Raf_op’ PP2A1(s!1), Raf(x!1) -> PP2A1(s), Raf(x)

40 V. Danos et al.

Activating MEK

activation:
’Raf_MEK@222’ Raf(x~p), MEK(S222~u) -> Raf(x~p!1), MEK(S222~u!1)
’MEK@222’ Raf(x~p!1), MEK(S222~u!1) -> Raf(x~p!1), MEK(S222~p!1)
’Raf_MEK@222_op’ Raf(x~p!1), MEK(S222!1) -> Raf(x~p), MEK(S222)
’Raf_MEK@218’ Raf(x~p), MEK(S218~u) -> Raf(x~p!1), MEK(S218~u!1)
’MEK@218’ Raf(x~p!1), MEK(S218~u!1) -> Raf(x~p!1), MEK(S218~p!1)
’Raf_MEK@218_op’ Raf(x~p!1), MEK(S218!1) -> Raf(x~p), MEK(S218)
deactivation:
’PP2A2_MEK@222’ PP2A2(s), MEK(S222~p) -> PP2A2(s!1), MEK(S222~p!1)
’MEK@222_op’ PP2A2(s!1), MEK(S222~p!1) -> PP2A2(s!1), MEK(S222~u!1)
’PP2A2_MEK@222_op’ PP2A2(s!1), MEK(S222!1) -> PP2A2(s), MEK(S222)
’PP2A2_MEK@218’ PP2A2(s), MEK(S218~p) -> PP2A2(s!1), MEK(S218~p!1)
’MEK@218_op’ PP2A2(s!1), MEK(S218~p!1) -> PP2A2(s!1), MEK(S218~u!1)
’PP2A2_MEK@218_op’ PP2A2(s!1), MEK(S218!1) -> PP2A2(s), MEK(S218)

Activating ERK

activation:
’MEK_ERK@185’ MEK(s,S218~p,S222~p), ERK(T185~u) ->

MEK(s!1,S218~p,S222~p), ERK(T185~u!1)
’ERK@185’ MEK(s!1,S218~p,S222~p), ERK(T185~u!1) ->

MEK(s!1,S218~p,S222~p), ERK(T185~p!1)
’MEK_ERK@185_op’ MEK(s!1), ERK(T185!1) -> MEK(s), ERK(T185)
’MEK_ERK@187’ MEK(s,S218~p,S222~p), ERK(Y187~u) ->

MEK(s!1,S218~p,S222~p), ERK(Y187~u!1)
’ERK@187’ MEK(s!1,S218~p,S222~p), ERK(Y187~u!1) ->

MEK(s!1,S218~p,S222~p), ERK(Y187~p!1)
’MEK_ERK@187_op’ MEK(s!1), ERK(Y187!1) -> MEK(s), ERK(Y187)
deactivation:
’MKP_ERK@185’ MKP3(s), ERK(T185~p) -> MKP3(s!1), ERK(T185~p!1)
’ERK@185_op’ MKP3(s!1), ERK(T185~p!1) -> MKP3(s!1), ERK(T185~u!1)
’MKP_ERK@185_op’ MKP3(s!1), ERK(T185!1) -> MKP3(s), ERK(T185)
’MKP_ERK@187’ MKP3(s), ERK(Y187~p) -> MKP3(s!1), ERK(Y187~p!1)
’ERK@187_op’ MKP3(s!1), ERK(Y187~p!1) -> MKP3(s!1), ERK(Y187~u!1)
’MKP_ERK@187_op’ MKP3(s!1), ERK(Y187!1) -> MKP3(s), ERK(Y187)

Deactivating SoS

’SoS_ERK’ SoS(SS~u), ERK(s,T185~p,Y187~p) ->
SoS(SS~u!1), ERK(s!1,T185~p,Y187~p)

’SoS_ERK_op’ SoS(SS!1), ERK(s!1) -> SoS(SS), ERK(s)
feedback creation
’SoS@SS’ SoS(SS~u!1), ERK(s!1,T185~p,Y187~p) ->

SoS(SS~p!1), ERK(s!1,T185~p,Y187~p)
feedback recovery
’SoS@SS_op’ SoS(SS~p) -> SoS(SS~u)

%init: 10*(EGF(r~ext))
+ 100*(EGFR(L~ext,CR,Y992~u,Y1068~u,Y1148~u))

Rule-Based Modelling of Cellular Signalling 41

+ 100*(Shc(PTB,Y318~u))
+ 100*(Grb2(SH2,SH3!1),SoS(a!1,b,SS~u))
+ 200*(RasGAP(SH2,s))
+ 100*(Ras(S1S2~gdp))
+ 100*(Raf(x~u))
+ 25*(PP2A1(s))
+ 50*(PP2A2(s))
+ 200*(MEK(s,S222~u,S218~u))
+ 200*(ERK(s,T185~u,Y187~u))
+ 50*(MKP3(s))

Making Random Choices Invisible to the
Scheduler�

Konstantinos Chatzikokolakis and Catuscia Palamidessi

INRIA and LIX, École Polytechnique, France
{kostas,catuscia}@lix.polytechnique.fr

Abstract. When dealing with process calculi and automata which ex-
press both nondeterministic and probabilistic behavior, it is customary
to introduce the notion of scheduler to resolve the nondeterminism. It
has been observed that for certain applications, notably those in secu-
rity, the scheduler needs to be restricted so not to reveal the outcome
of the protocol’s random choices, or otherwise the model of adversary
would be too strong even for “obviously correct” protocols. We propose
a process-algebraic framework in which the control on the scheduler can
be specified in syntactic terms, and we show how to apply it to solve the
problem mentioned above. We also consider the definition of (probabilis-
tic) may and must preorders, and we show that they are precongruences
with respect to the restricted schedulers. Furthermore, we show that all
the operators of the language, except replication, distribute over proba-
bilistic summation, which is a useful property for verification.

1 Introduction

Security protocols, in particular those for anonymity and fair exchange, often
use randomization to achieve their targets. Since they usually involve more than
one agent, they also give rise to concurrent and interactive activities that can be
best modeled by nondeterminism. Thus it is convenient to specify them using
a formalism which is able to represent both probabilistic and nondeterministic
behavior. Formalisms of this kind have been explored in both Automata Theory
[1,2,3,4,5] and in Process Algebra [6,7,8,9,10,11]. See also [12,13] for comparative
and more inclusive overviews.

Due to the presence of nondeterminism, in such formalisms it is not possible
to define the probability of events in absolute terms. We need first to decide
how each nondeterministic choice during the execution will be resolved. This
decision function is called scheduler. Once the scheduler is fixed, the behavior of
the system (relatively to the given scheduler) becomes fully probabilistic and a
probability measure can be defined following standard techniques.

It has been observed by several researchers that in security the notion of
scheduler needs to be restricted, or otherwise any secret choice of the protocol

� This work has been partially supported by the INRIA DREI Équipe Associée
PRINTEMPS and by the INRIA ARC project ProNoBiS.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 42–58, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Making Random Choices Invisible to the Scheduler 43

could be revealed by making the choice of the scheduler depend on it. This issue
was for instance one of the main topics of discussion at the panel of CSFW 2006.
We illustrate it here with an example on anonymity. We use the standard CCS
notation, plus a construct of probabilistic choice P +p Q representing a process
that evolves into P with probability p and into Q with probability 1− p.

The system Sys consists of a receiver R and two senders S, T communicating
via private channels a, b respectively. Which of the two senders is successful is
decided probabilistically by R. After reception, R sends a signal ok.

R
Δ= a.ok .0 +0.5 b.ok .0 S

Δ= ā.0 T
Δ= b̄.0 Sys Δ= (νa)(νb)(R | S | T)

The signal ok is not private, but since it is the same in both cases, in principle
an external observer should not be able to infer from it the identity of the sender
(S or T). So the system should be anonymous. However, consider a team of two
attackers A and B defined as

A
Δ= ok .s̄.0 B

Δ= ok .t̄.0

and consider the parallel composition Sys | A | B . We have that, under cer-
tain schedulers, the system is no longer anonymous. More precisely, a scheduler
could leak the identity of the sender via the channels s, t by forcing R to syn-
chronize with A on ok if R has chosen the first alternative, and with B otherwise.
This is because in general a scheduler can see the whole history of the compu-
tation, in particular the random choices, even those which are supposed to be
private.

There is another issue related to verification: a private choice has certain alge-
braic properties that would be useful in proving equivalences between processes.
In fact, if the outcome of a choice remains private, then it should not matter
at which point of the execution the process makes such choice, until it actually
uses it. Consider for instance A and B defined as follows

A
Δ= a(x).([x = 0]ok

+0.5

[x = 1]ok)

B
Δ= a(x).[x = 0]ok

+0.5

a(x).[x = 1]ok

Process A receives a value and then decides randomly whether it will accept the
value 0 or 1. Process B does exactly the same thing except that the choice is
performed before the reception of the value. If the random choices in A and B are
private, intuitively we should have that A and B are equivalent (A ≈ B). This is
because it should not matter whether the choice is done before or after receiving
a message, as long as the outcome of the choice is completely invisible to any
other process or observer. However, consider the parallel context C = a0 | a1.
Under any scheduler A has probability at most 1/2 to perform ok . With B,
on the other hand, the scheduler can choose between a0 and a1 based on the
outcome of the probabilistic choice, thus making the maximum probability of
ok equal to 1. The execution trees of A | C and B | C are shown in Figure 1.

44 K. Chatzikokolakis and C. Palamidessi

A | ā0 | ā1
([0 = 0]ok +0.5 [0 = 1]ok) | ā1 ok

0
([1 = 0]ok +0.5 [1 = 1]ok) | ā0 0

ok

B | ā0 | ā1
a(x).[x = 0]ok | ā0 | ā1 ok

0
a(x).[x = 1]ok | ā0 | ā1 0

ok

Fig. 1. Execution trees for A | C and B | C

In general when +p represents a private choice we would like to have

C[P +p Q] ≈ C[τ.P] +p C[τ.Q] (1)

for all processes P,Q and all contexts C not containing replication (or recursion).
In the case of replication the above cannot hold since !(P +pQ) makes available
each time the choice between P and Q, while (!τ.P) +p (!τ.Q) chooses once and
for all which of the two (P or Q) should be replicated. Similarly for recursion.
The reason why we need a τ is explained in Section 5.

The algebraic property (1) expresses in an abstract way the privacy of the
probabilistic choice. Moreover, this property is also useful for the verification of
security properties. The interested reader can find in [14] an example of appli-
cation to a fair exchange protocol.

We propose a process-algebraic approach to the problem of hiding the outcome
of random choices. Our framework is based on CCSp, a calculus obtained by
adding to CCS an internal probabilistic choice. This calculus is a variant of the
one studied in [11], the main differences being that we use replication instead
of recursion, and we lift some restrictions that were imposed in [11] to obtain
a complete axiomatization. The semantics of CCSp is given in terms of simple
probabilistic automata [4,7].

In order to limit the power of the scheduler, we extend CCSp with terms rep-
resenting the scheduler explicitly. The latter interacts with the original processes
via a labeling system. This will allow to specify which choices should be visible
to schedulers, and which ones should not. We call the extended calculus CCSσ.

We then adapt the standard notions of probabilistic testing preorders to
CCSσ, and we show that they are precongruences with respect to all the opera-
tors except the +. We also prove that, under suitable conditions on the labelings
of C, τ.P and τ.Q, CCSσ satisfies the property expressed by (1), where ≈ is
probabilistic testing equivalence.

We apply our approach to an anonymity example (the Dining Cryptographers
Protocol, DCP). We also briefly outline how to extend CCSσ so to allow the
definition of private nondeterministic choice, and we apply it to the DCP with
nondeterministic master. To our knowledge this is the first formal treatment of
the scheduling problem in DCP and the first formalization of a nondeterministic
master for the (probabilistic) DCP.

See www.lix.polytechnique.fr/∼catuscia/papers/Scheduler/report.pdf for
the report version of this paper, containing more details.

Making Random Choices Invisible to the Scheduler 45

1.1 Related Work

The works that are most closely related to ours are [15,16,17]. In [15,16] the au-
thors consider probabilistic automata and introduce a restriction on the sched-
uler to the purpose of making them suitable to applications in security protocols.
Their approach is based on dividing the actions of each component of the system
in equivalence classes (tasks). The order of execution of different tasks is decided
in advance by a so-called task scheduler. The remaining nondeterminism within
a task is resolved by a second scheduler, which models the standard adversar-
ial scheduler of the cryptographic community. This second entity has limited
knowledge about the other components: it sees only the information that they
communicate during execution.

In [17] the authors define a notion of admissible scheduler by introducing an
equivalence relation on the nodes of the execution tree, and requiring that an
admissible scheduler maps two equivalent nodes into bisimilar steps. Both our
paper and [17] have developed, independently, the solution to the problem of the
scheduler in the Dining Cryptographers as an example of application to security.

Our approach is in a sense dual to the above ones. Instead of defining a restric-
tion on the class of schedulers, we propose a way of controlling the scheduler at
the syntactic level. More precisely, we introduce labels in process terms, and we
use them to represent both the nodes of the execution tree and the next action
or step to be scheduled. We make two nodes indistinguishable to schedulers, and
hence the choice between them private, by associating to them the same label.
Furthermore, in contrast with [15,16], our “equivalence classes” (schedulable ac-
tions with the same label) can change dynamically, because the same action can
be associated to different labels during the execution. However we don’t know
at the moment whether this difference determines a separation in the expressive
power.

Another work along these lines is [18], which uses partitions on the state-space
to obtain partial-information schedulers. However in that paper the authors con-
sider a synchronous parallel composition, so the setting is rather different.

2 Preliminaries

We recall here some notions about the simple probabilistic automata and CCSp.

2.1 Simple Probabilistic Automata [4,7]

A discrete probability measure over a set X is a function μ : 2X �→ [0, 1] such that
μ(X) = 1 and μ(∪iXi) =

∑
i μ(Xi) where Xi is a countable family of pairwise

disjoint subsets of X . We denote the set of all discrete probability measures
over X by Disc(X). For x ∈ X , we denote by δ(x) (the Dirac measure on x)
the probability measure that assigns probability 1 to {x}. We also denote by∑

i[pi]μi the probability measure obtained as a convex sum of the measures μi.
A (simple) probabilistic automaton is a tuple (S, q, A,D) where S is a set of

states, q ∈ S is the initial state, A is a set of actions and D ⊆ S×A×Disc(S) is

46 K. Chatzikokolakis and C. Palamidessi

a transition relation. Intuitively, if (s, a, μ) ∈ D then there is a transition (step)
from the state s performing the action a and leading to a distribution μ over
the states of the automaton. The idea is that the choice of the transition in D
is performed nondeterministically, and the choice of the target state among the
ones allowed by μ (i.e. the q’s such that μ(q) > 0) is performed probabilistically.

A probabilistic automatonM is fully probabilistic if from each state ofM there
is at most one transition available. An execution α of a probabilistic automaton
is a (possibly infinite) sequence s0a1s1a2s2 . . . of alternating states and actions,
such that q = s0, and for each i (si, ai+1, μi) ∈ D and μi(si+1) > 0 hold. We
will use lstate(α) to denote the last state of a finite execution α, and exec∗(M)
and exec(M) to represent the set of all the finite and of all the executions of M ,
respectively.

A scheduler of a probabilistic automaton M = (S, q, A,D) is a function

ζ : exec∗(M) �→ D

such that ζ(α) = (s, a, μ) ∈ D implies that s = lstate(α). The idea is that a
scheduler selects a transition among the ones available inD, basing its decision on
the history of the execution. The execution tree of M relative to the scheduler ζ,
denoted by etree(M, ζ), is a fully probabilistic automaton M ′ = (S′, q′, A′,D′)
such that S′ ⊆ exec(M), q′ = q, A′ = A, and (α, a, μ′) ∈ D′ if and only if
ζ(α) = (lstate(α), a, μ) for some μ and μ′(αas) = μ(s). Intuitively, etree(M, ζ) is
produced by unfolding the executions ofM and resolving all deterministic choices
using ζ. Note that etree(M, ζ) is a simple and fully probabilistic automaton.

2.2 CCS with Internal Probabilistic Choice

Let a range over a countable set of channel names. The syntax of CCSp is:

α ::= a | ā | τ prefixes
P,Q ::= α.P | P | Q | P +Q |

∑
i piPi | (νa)P | !P | 0 processes

The term
∑

i piPi represents an internal probabilistic choice, all the rest is
standard. We will also use the notation P1 +p P2 to represent a binary sum∑

i piPi with p1 = p and p2 = 1− p.
The semantics of a CCSp term is a probabilistic automaton defined according

to the rules in Figure 2. We write s a−→ μ when (s, a, μ) is a transition of the
probabilistic automaton. We also denote by μ | Q the measure μ′ such that
μ′(P | Q) = μ(P) for all processes P and μ′(R) = 0 if R is not of the form
P | Q. Similarly (νa)μ = μ′ such that μ′((νa)P) = μ(P). A transition of the
form P

a−→ δ(P ′), i.e. a transition having for target a Dirac measure, corresponds
to a transition of a non-probabilistic automaton.

3 A Variant of CCS with Explicit Scheduler

In this section we present CCSσ, a variant of CCS in which the scheduler is
explicit, in the sense that it has a specific syntax and its behavior is defined

Making Random Choices Invisible to the Scheduler 47

ACT
α.P

α−→ δ(P)
RES P

α−→ μ α �= a, a

(νa)P α−→ (νa)μ

SUM1 P
α−→ μ

P + Q
α−→ μ

PAR1
P

α−→ μ

P | Q α−→ μ | Q

COM P
a−→ δ(P ′) Q

a−→ δ(Q′)
P | Q τ−→ δ(P ′ | Q′)

PROB �
i piPi

τ−→
�

i [pi]δ(Pi)

REP1 P
α−→ μ

!P α−→ μ | !P
REP2 P

a−→ δ(P1) P
a−→ δ(P2)

!P τ−→ δ(P1 | P2 | !P)

Fig. 2. The semantics of CCSp. SUM1 and PAR1 have corresponding right rules SUM2
and PAR2, omitted for simplicity.

I ::= 0 I | 1 I | ε label indexes
L ::= lI labels

P, Q ::= processes
L:α.P prefix

| P | Q parallel
| P + Q nondeterm. choice
| L:

�
i piPi internal prob. choice

| (νa)P restriction
| !P replication
| L:0 nil

S, T ::= scheduler
L.S schedule single action

| (L, L).S synchronization
| if L label test

then S
else S

| 0 nil

CP ::= P ‖ S complete process

Fig. 3. The syntax of the core CCSσ

by the operational semantics of the calculus. Processes in CCSσ contain labels
that allow us to refer to a particular sub-process. A scheduler also behaves like
a process, using however a different syntax, and its purpose is to guide the
execution of the main process using the labels that the latter provides. A complete
process is a process running in parallel with a scheduler.

3.1 Syntax

Let a range over a countable set of channel names and l over a countable set of
atomic labels. The syntax of CCSσ, shown in Figure 3, is the same as the one of
CCSp except for the presence of labels. These are used to select the subprocess
which “performs” a transition. Since only the operators with an initial rule can
originate a transition, we only need to assign labels to the prefix and to the
probabilistic sum. For reasons explained later, we also put labels on 0, even
though this is not required for scheduling transitions. We use labels of the form
ls where l is an atomic label and the index s is a finite string of 0 and 1, possibly

48 K. Chatzikokolakis and C. Palamidessi

ACT
l:α.P ‖ l.S

α−→ δ(P ‖ S)
RES P ‖ S

α−→ μ α �= a, a

(νa)P ‖ S
α−→ (νa)μ

SUM1 P ‖ S
α−→ μ

P + Q ‖ S
α−→ μ

PAR1
P ‖ S

α−→ μ

P | Q ‖ S
α−→ μ | Q

COM P ‖ l1
a−→ δ(P ′ ‖ 0) Q ‖ l2

a−→ δ(Q′ ‖ 0)
P | Q ‖ (l1, l2).S

τ−→ δ(P ′ | Q′ ‖ S)

REP1 P ‖ S
α−→ μ

!P ‖ S
α−→ ρ0(μ) | ρ1(!P)

PROB
l:
�

i piPi ‖ l.S
τ−→

�
i [pi]δ(Pi ‖ S)

REP2 P ‖ l1
a−→ δ(P1 ‖ 0) P ‖ l2

a−→ δ(P2 ‖ 0)
!P ‖ (l1, l2).S

τ−→ δ(ρ0(P1) | ρ10(P2) | ρ11(!P) ‖ S)

IF1 l ∈ tl(P) P ‖ S1
α−→ μ

P ‖ if l then S1 else S2
α−→ μ

IF2 l /∈ tl(P) P ‖ S2
α−→ μ

P ‖ if l then S1 else S2
α−→ μ

Fig. 4. The semantics of CCSσ. SUM1 and PAR1 have corresponding right rules SUM2
and PAR2, omitted for simplicity.

empty. With a slight abuse of notation we will sometimes use l to denote an
arbitrary label, not necessarily atomic. Indexes are used to avoid multiple copies
of the same label in case of replication, which occurs dynamically due to the
bang operator.

A scheduler selects a sub-process for execution on the basis of its label, so
we use l.S to represent a scheduler that selects the process with label l and
continues as S. In the case of synchronization we need to select two processes
simultaneously, hence we need a scheduler of the form (l1, l2).S. Using if-then-
else the scheduler can test whether a label is available in the process (in the
top-level) and act accordingly. A complete process is a process put in parallel
with a scheduler, for example l1 :a.l2 : b ‖ l1.l2. Note that for processes with an
infinite execution path we need schedulers of infinite length.

3.2 Semantics

The operational semantics CCSσ is given in terms of probabilistic automata
defined according to the rules shown in Figure 4.

ACT is the basic communication rule. In order for l :α.P to perform α, the
scheduler should select this process for execution, so it needs to be of the form
l.S. After the execution the complete process will continue as P ‖ S. The rules
RES, SUM1, COM, PROB and PAR1 should be clear. Similarly to the Section
2.2, we denote by (νa)μ the measure μ′ such that μ′((νa)P ‖ S) = μ(P ‖ S) and
μ | Q denotes the measure μ′ such that μ′(P | Q ‖ S) = μ(P ‖ S). Note that in

Making Random Choices Invisible to the Scheduler 49

SUM1, PAR1 the scheduler resolves the non-deterministic choice by selecting a
label inside P . In PROB, however, the scheduler cannot affect the outcome of
the probabilistic choice, it can only schedule the choice itself.

REP1 and REP2 model replication. The rules are the same as in CCSp, with
the addition of a re-labeling operator ρk. The reason for this is that we want to
avoid ending up with multiple copies of the same label as the result of replication,
since this would create ambiguities in scheduling as explained in Section 3.3.
ρk(P) replaces all labels ls inside P with lsk, and it is defined as

ρk(ls :α.P) = lsk :α.ρk(P)
ρk(ls :

∑
i piPi) = lsk :

∑
i piρk(Pi)

and homomorphically on the other operators (for instance ρk(P | Q) = ρk(P) |
ρk(Q)). We also denote by ρk(μ) the measure μ′ such that μ′(ρk(P) ‖ S) =
μ(P ‖ S). Note that we relabel only the resulting process, not the continuation
of the scheduler: there is no need for relabeling the scheduler since we are free
to choose the continuation as we please.

Finally if-then-else allows the scheduler to adjust its behaviour based on the
labels that are available in P . tl(P) gives the set of top-level labels of P and is
defined as tl(l :α.P) = tl(l :

∑
i piPi) = tl(l :0) = {l} and as the union of the top-

level labels of all sub-processes for the other operators. Then if l then S1 else S2
behaves like S1 if l is available in P and as S2 otherwise. This is needed when
P is the outcome of a probabilistic choice, as discussed in Section 4.

3.3 Deterministic Labelings

The idea in CCSσ is that a syntactic scheduler will be able to completely resolve
the nondeterminism of the process, without needing to rely on a semantic sched-
uler at the level of the automaton. This means that the execution of a process
in parallel with a scheduler should be fully probabilistic. To achieve this we will
impose a condition on the labels that we can use in CCSσ processes. A labeling
is an assignment of labels to the prefixes, the probabilistic sums and the 0s of a
process. We will require all labelings to be deterministic in the following sense.

Definition 1. A labeling of a process P is deterministic iff for all schedulers S
there is only one transition rule P ‖ S α−→ μ that can be applied and the labelings
of all processes P ′ such that μ(P ′ ‖ S′) > 0 are also deterministic.

A labeling is linear iff all labels are pairwise distinct. We can show that linear
labelings are preserved by transitions, which leads to the following proposition.

Proposition 1. A linear labeling is deterministic.

There are labelings that are deterministic without being linear. In fact, such
labelings will be the means by which we hide information from the scheduler.
However, the property of being deterministic is crucial since it implies that the
scheduler will resolve all the nondeterminism of the process.

Proposition 2. Let P be a CCSσ process with a deterministic labeling. Then
for all schedulers S, the automaton produced by P ‖ S is fully probabilistic.

50 K. Chatzikokolakis and C. Palamidessi

4 Expressiveness of the Syntactic Scheduler

CCSσ with deterministic labelings allows us to separate probabilities from non-
determinism: a process in parallel with a scheduler behaves in a fully probabilistic
way and the nondeterminism arises from the fact that we can have many differ-
ent schedulers. We may now ask the question: how powerful are the syntactic
schedulers wrt the semantic ones, i.e. those defined directly over the automaton?

Let P be a CCSp process and Pσ be the CCSσ process obtained from P by
applying a linear labeling. We say that the semantic scheduler ζ of P is equivalent
to the syntactic scheduler S of Pσ, written ζ ∼P S, iff the automata etree(P, ζ)
and Pσ ‖ S are probabilistically bisimilar in the sense of [5].

A scheduler S is non-blocking for a process P if it always schedules some tran-
sitions, except when P itself is blocked. Let Sem(P) be the set of the semantic
schedulers for the process P and Syn(Pσ) be the set of the non-blocking syntac-
tic schedulers for process Pσ. Then we can show that for all semantic schedulers
of P we can create a equivalent syntactic one for Pσ.

Proposition 3. Let P be a CCS process and let Pσ be a CCSσ process obtained
by adding a linear labeling to P . Then ∀ζ ∈ Sem(P) ∃S ∈ Syn(Pσ) : ζ ∼P S.

To obtain this result the label test (if-then-else) is crucial: the scheduler uses it
to find out the result of the probabilistic choice and adapt its behaviour accord-
ingly (as the semantic scheduler is allowed to do). For example let P = l :(l1 :a+p

l2 : b) | (l3 :c+ l4 :d). For this process, the scheduler l.(if l1 then l3.l1 else l4.l2)
first performs the probabilistic choice. If the result is l1 :a it performs c, a, oth-
erwise it performs d, b. This is also the reason we need labels for 0, in case it is
one of the operands of the probabilistic choice.

One would expect to obtain also the inverse of Proposition 3, showing the
same expressive power for the two kinds of schedulers. We believe that this is
indeed true, but it is technically more diffucult to state. The reason is that the
simple translation we did from CCSp processes to CCSσ, namely adding a linear
labeling, might introduce choices that are not present in the original process.
For example let P = (a+p a) | (c+ d) and Pσ = l :(l1 :a+p l2 : a) | (l3 :c+ l4 :d).
In P the choice a +p a is not a real choice, it can only do an τ transition and
go to a with probability 1. But in Pσ we make the two outcomes distinct due
to the labeling. So the syntactic scheduler l.(if l1 then l3.l1 else l4.l2) has no
semantic counterpart simply because Pσ has more choices that P , but this is an
artifact of the translation. A more precise translation that would establish the
exact equivalence of schedulers is left as future work.

4.1 Using Non-linear Labelings

Up to now we are using only linear labelings which, as we saw, give us the whole
power of semantic schedulers. However, we can construct non-linear labelings
that are still deterministic, that is there is still only one transition possible at
any time even though we have multiple occurrences of the same label. There are
various cases of useful non-linear labelings.

Making Random Choices Invisible to the Scheduler 51

Proposition 4. Let P ,Q be CCSσ processes with deterministic labelings (not
necessarily disjoint). The following labelings are all deterministic:

l :(P +p Q) (2)
l1 :a.P + l2 :b.Q (3)

(νa)(νb)(l1 :a.P + l1 :b.Q | l2 :ā) (4)

Consider the case where P and Q in the above proposition share the same
labels. In (2) the scheduler cannot select an action inside P,Q, it must select
the choice itself. After the choice, only one of P,Q will be available so there
will be no ambiguity in selecting transitions. The case (3) is similar but with
nondeterministic choice. Now the guarding prefixes must have different labels,
since the scheduler should be able to resolve the choice, however after the choice
only one of P,Q will be available. Hence, again, the multiple copies of the labels
do not constitute a problem. In (4) we allow the same label on the guarding
prefixes of a nondeterministic choice. This is because the guarding channels a, b
are restricted and only one of the corresponding output actions is available (ā).
As a consequence, there is no ambiguity in selecting transitions. A scheduler
(l1, l2) can only perform a synchronization on a, even though l1 appears twice.

However, using multiple copies of a label limits the power of the scheduler,
since the labels provide information about the outcome of a probabilistic choice.
In fact, this is exactly the technique we will use to achieve the goals described in
the introduction. Consider for example the process l : (l1 : ā.R1 +p l1 : ā.R2) | l2 :
a.P | l3 :a.Q. From Proposition 4(2) its labeling is deterministic. However, since
both branches of the probabilistic sum have the same label l1, and the labels
inside R1, R2 are not in the top-level so they cannot be used in a label test, the
scheduler cannot resolve the choice between P and Q based on the outcome of
the choice. There is still nondeterminism: the scheduler l.(l1, l2) will select P and
the scheduler l.(l1, l3) will select Q. However this selection will be independent
from the outcome of the probabilistic choice.

Note that we did not impose any direct restrictions on the schedulers, we still
consider all possible syntactic schedulers for the process above. However, having
the same label twice limits the power of the syntactic schedulers with respect
to the semantic ones. This approach has the advantage that the restrictions are
limited to the choices with the same label. We already know that having pairwise
distinct labels gives the full power of the semantic scheduler. So the restriction
is local to the place where we, intentionally, put the same labels.

5 Testing Relations for CCSσ Processes

Testing relations [19] are a method of comparing processes by considering their
interaction with the environment. A test is a process running in parallel with the
one being tested and which can perform a distinguished action ω that represents
success. Two processes are testing equivalent if they can pass the same tests. This
idea is very useful for the analysis of security protocols, as suggested in [20], since

52 K. Chatzikokolakis and C. Palamidessi

a test can be seen as an adversary who interferes with a communication agent
and declares ω if an attack is successful.

In the probabilistic setting we take the approach of [13] which considers the
exact probability of passing a test. This approach leads to the definition of two
preorders �may and �must. P �may Q means that if P can pass O then Q can
also pass O with the same probability. P �must Q means that if P always passes
O with at least some probability then Q always passes O with at least the same
probability.

A labeling of a process is fresh (with respect to a set P of processes) if it is
linear and its labels do not appear in any other process in P . A test O is a CCSσ

process with a fresh labeling, containing the distinguished action ω. Let TestP
denote the set of all tests with respect to P and let (ν)P denote the restriction
on all channels of P , thus allowing only τ actions. We define pω(P, S,O) to
be the probability of the set of executions of the fully probabilistic automaton
(ν)(P | O) ‖ S that contain ω.

Definition 2. Let P,Q be CCSσ processes. We define must and may testing
preorders as follows:

P �may Q iff ∀O ∀SP ∃SQ : pω(P, SP , O) ≤ pω(Q,SQ, O)

P �must Q iff ∀O ∀SQ ∃SP : pω(P, SP , O) ≤ pω(Q,SQ, O)

where O ranges over TestP ,Q and SX ranges over Syn((ν)(X | O)).

Also let ≈may,≈must be the equivalences induced by �may,�must respectively.
A context C is a process with a hole. A preorder� is a precongruence if P � Q

implies C[P] � C[Q] for all contexts C. May and must testing are precongruences
if we restrict to contexts with fresh labelings and without occurrences of +. This
is the analogous of the precongruence property in [3].

Proposition 5. Let P,Q be CCSσ processes such that P �may Q and let C be
a context with a fresh labeling and in which + does not occur. Then C[P] �may
C[Q]. Similarly for �must.

This also implies that ≈may,≈must are congruences, except for +. The problem
with + is that P and τ.P are must equivalent, but Q+ P and Q+ τ.P are not.
This is typical for the CCS +: usually it does not preserve weak equivalences.
Note that P,Q in the above proposition are not required to have linear labelings.
This means that some choices inside P may be hidden from the scheduler while
the context is fully visible, i.e. the scheduler’s restriction is local.

If we remove the freshness condition then Proposition 5 is no longer true. Let
P = l1 :a.l2 : b, Q = l3 :a.l4 : b and C = l : (l1 :a.l2 : c +p []). We have P ≈may Q
but C[P], C[Q] can be separated by the test O = ā.b̄.ω | ā.c̄.ω (the labeling is
omitted for simplicity since tests always have fresh labelings). It is easy to see
that C[Q] can pass the test with probability 1 by selecting the correct branch of
O based on the outcome of the probabilistic choice. In C[P] this is not possible
because of the labels l1, l2 that are common in P,C.

We can now state formally the result that we announced in the introduction.

Making Random Choices Invisible to the Scheduler 53

Theorem 1. Let P,Q be CCSσ processes and C a context with a fresh labeling
and without occurrences of bang. Then

l :(C[l1 :τ.P] +p C[l1 :τ.Q]) ≈may C[l :(P +p Q)] and
l :(C[l1 :τ.P] +p C[l1 :τ.Q]) ≈must C[l :(P +p Q)]

There are two crucial points in the above theorem. The first is that the labels
of the context are replicated, thus the scheduler cannot use them to distinguish
between C[l1 : τ.P] and C[l1 : τ.Q]. The second is that P,Q are protected by a
τ action labeled by the same label l1. This is to ensure that in the case of a
nondeterministic sum (C = R + []) the scheduler cannot find out whether the
second operand of the choice is P or Q before it actually selects the second
operand. For example let R = a +0.5 0, P = a, Q = 0 (all omitted labels are
fresh). Then R1 = (R + P) +0.1 (R + Q) is not testing equivalent to R2 =
R + (P +0.1 Q) since they can be separated by O = a.ω and a scheduler that
resolvesR+P to P and R+Q to R (it will be of the form if lP then SP else SR).
However, if we take R′1 = (R + l1 : τ.P) +0.1 (R + l1 : τ.Q) then R′1 is testing
equivalent to R2 since now the scheduler cannot see the labels of P,Q so if it
selects P then it is bound to also select Q.

The problem with bang is the persistence of the processes. Clearly !P+p!Q
cannot be equivalent to !(P +p Q), since the first replicates only one of P,Q
while the second replicates both. However Theorem 1 and Proposition 5 imply
that C′[l : (C[l1 : τ.P] +p C[l1 : τ.Q])] ≈may C′[C[l : (P +p Q)]], where C is a
context without bang and C′ is a context without +. The same is also true for
≈must. This means that we can lift the sum towards the root of the context
until we reach a bang. Intuitively we cannot move the sum outside the bang
since each replicated copy must perform a different probabilistic choice with a
possibly different outcome.

6 An Application to Security

In this section we discuss an application of our framework to anonymity. In
particular, we show how to specify the Dining Cryptographers protocol [21] so
that it is robust to scheduler-based attacks. We first propose a method to encode
secret value passing, which will turn out to be useful for the specification

6.1 Encoding Secret Value Passing

We propose to encode the passing of a secret message as follows:

l :c(x).P Δ=
∑

i l :cvi.P [vi/x] l : c̄〈v〉.P Δ= l :cv.P

This is the usual encoding of value passing in CSS except that we use the same
label in all the branches of the nondeterministic sum. To ensure that the resulting
labeling is deterministic we should restrict the channels cvi and make sure that
there is at most one output on c. We write (νc)P for (νcv1) . . . (νcvn)P . For

54 K. Chatzikokolakis and C. Palamidessi

Master
Δ= l1 :

�2
i=0 pi(m0〈i == 0〉

� �� �
l2

| m1〈i == 1〉
� �� �

l3

| m2〈i == 2〉
� �� �

l4

)

Crypti
Δ= mi(pay)
� �� �

l5,i

. ci,i(coin1)� �� �
l6,i

. ci,i⊕1(coin2)� �� �
l7,i

. outi〈pay ⊗ coin1 ⊗ coin2〉� �� �
l8,i

Coini
Δ= l9,i :((c̄i,i〈0〉� �� �

l10,i

| c̄i�1,i〈0〉� �� �
l11,i

) +0.5 (c̄i,i〈1〉� �� �
l10,i

| c̄i�1,i〈1〉� �� �
l11,i

))

Prot
Δ= (νm)(Master | (νc)(

�2
i=0 Crypti |

�2
i=0 Coini))

Fig. 5. Encoding of the dining cryptographers with probabilistic master

instance, the labeling of the process (νc)(l1 :c(x).P | l : (l2 : c̄〈v1〉 +p l2 : c̄〈v2〉)) is
deterministic. This example is indeed a combination of the cases (2) and (4) of
Proposition 4. The two outputs on c are on different branches of the probabilistic
sum, so during an execution at most one of them will be available. Thus there
is no ambiguity in scheduling the sum produced by c(x). The scheduler l.(l1, l2)
will perform a synchronization on cv1 or cv2, whatever is available after the
probabilistic choice. Hence we have managed to hide the information about the
value transmitted to P .

6.2 Dining Cryptographers with Probabilistic Master

The problem of the Dining Cryptographers is the following: Three cryptogra-
phers dine together. After the dinner, the bill has to be paid by either one of
them or by another agent called the master. The master decides who will pay
and then informs each of them separately whether he has to pay or not. The
cryptographers would like to find out whether the payer is the master or one of
them. However, in the latter case, they wish to keep the payer anonymous.

The Dining Cryptographers Protocol (DCP) solves the above problem as fol-
lows: each cryptographer tosses a fair coin which is visible to himself and his
neighbor to the right. Each cryptographer checks the two adjacent coins and, if
he is not paying, announces agree if they are the same and disagree otherwise.
However, the paying cryptographer says the opposite. It can be proved that the
master is paying if and only if the number of disagrees is even [21].

An external observer O is supposed to see only the three announcements
outi〈. . .〉. As discussed in [22], DCP satisfies anonymity if we abstract from their
order. If their order is observable, on the contrary, a scheduler can reveal the
identity of the payer to O simply by forcing the payer to make his announcement
first. Of course, this is possible only if the scheduler is unrestricted and can choose
its strategy depending on the decision of the master or on the results of the coins.

In our framework we can solve the problem by giving a specification of the
DCP in which the choices of the master and of the coins are made invisible to the
scheduler. The specification is shown in Figure 5. The symbols⊕ and� represent

Making Random Choices Invisible to the Scheduler 55

P ::= . . . | l:{P}
CP ::= P ‖ S, T

INDEP P ‖ T
α−→ μ

l:{P} ‖ l.S, T
α−→ μ′

where μ′(P ′ ‖ S, T ′) = μ(P ′ ‖ T ′)

Fig. 6. Adding an “independent” scheduler to the calculus

the addition and subtraction modulo 3, while ⊗ represents the addition modulo
2 (xor). The notation i ==n stands for 1 if i = n and 0 otherwise.

There are many sources of nondeterminism: the order of communication be-
tween the master and the cryptographers, the order of reception of the coins, and
the order of the announcements. The crucial points of our specification, which
make the nondeterministic choices independent from the probabilistic ones, are:
(a) all communications internal to the protocol are done by secret value passing,
and (b) in each probabilistic choice the different branches have the same labels.
For example, all branches of the master contain an output on m0, always labeled
by l2, but with different values each time.

Thanks to the above independence, the specification satisfies strong proba-
bilistic anonymity. There are various equivalent definitions of this property, we
follow here the version presented in [22]. Let o represent an observable, i.e. a
sequence of announcements, and pS(o | mi〈1〉) the conditional probability, under
scheduler S, that we get o given that Cryptographer i is the payer.

Proposition 6 (Strong probabilistic anonymity). The protocol in Figure 5
satisfies the following property: for all schedulers S and for all observables o:
pS(o | m0〈1〉) = pS(o | m1〈1〉) = pS(o | m2〈1〉).

Note that different schedulers will produce different traces (we still have nonde-
terminism) but they will not depend on the choice of the master.

Some previous treatment of the DCP, including [22], solve the problem of
the leak of information due to too-powerful schedulers by simply considering as
observable sets of announcements instead than sequences. Thus one could think
that using a true concurrent semantics, for instance event structures, would solve
the problem in general. This is false: for instance, true concurrency would not
help in the anonymity example in the introduction.

6.3 Dining Cryptographers with Nondeterministic Master

We sketch here a method to hide also certain nondeterministic choices from the
scheduler, and we show an application to the variant of the Dining Cryptogra-
phers with nondeterministic master.

First we need to extend the calculus with a second independent scheduler T
that we assume to resolve the nondeterministic choices that we want to make
transparent to the main scheduler S. The new syntax and semantics are shown in
Figure 6. l : {P} represents a process where the scheduling of P is protected from
the main scheduler S. The scheduler S can “ask” T to schedule P by selecting
the label l. Then T resolves the nondeterminism of P as expressed by the INDEP

56 K. Chatzikokolakis and C. Palamidessi

rule. Note that we need to adjust also the other rules of the semantics to take
T into account, but this change is straightforward. We assume that T does not
collaborate with S so we do not need to worry about the labels in P .

To model the dining cryptographers with nondeterministic master we replace
the Master process in Figure 5 by the following one.

Master
Δ= l1 :

{∑2
i=0 l12,i :τ.(m0〈i == 0〉︸ ︷︷ ︸

l2

| m1〈i == 1〉︸ ︷︷ ︸
l3

| m2〈i == 2〉︸ ︷︷ ︸
l4

)
}

Essentially we have replaced the probabilistic choice by a protected nondeter-
ministic one. Note that the labels of the operands are different but this is not a
problem since this choice will be scheduled by T . Note also that after the choice
we still have the same labels l2, l3, l4, however the labeling is still deterministic.

In case of a nondeterministic selection of the culprit, and a probabilistic
anonymity protocol, the notion of strong probabilistic anonymity has not been
established yet, although some possible definitions have been discussed in [22].
Our framework makes it possible to give a natural and precise definition.

Definition 3 (Strong probabilistic anonymity for nondeterministic se-
lection of the culprit). A protocol with nondeterministic selection of the cul-
prit satisfies strong probabilistic anonymity iff for all observables o, schedulers
S, and independent schedulers T1, T2 which select different culprits, we have:
pS,T1(o) = pS,T2(o).

Proposition 7. The DCP with nondeterministic selection of the culprit speci-
fied in this section satisfies strong probabilistic anonymity.

7 Conclusion and Future Work

We have proposed a process-calculus approach to the problem of limiting the
power of the scheduler so that it does not reveal the outcome of hidden random
choices, and we have shown its applications to the specification of information-
hiding protocols. We have also discussed a feature, namely the distributivity
of certain contexts over random choices, that makes our calculus appealing for
verification. Finally, we have considered the probabilistic testing preorders and
shown that they are precongruences in our calculus.

Our plans for future work are in two directions: (a) we would like to inves-
tigate the possibility of giving a game-theoretic characterization of our notion
of scheduler, and (b) we would like to incorporate our ideas in some existing
probabilistic model checker, for instance PRISM.

Acknowledgments. We would like to thank Vincent Danos for pointing out
to us an attack to the Dining Cryptographers protocol based on the scheduler,
which inspired this work. We also thank Roberto Segala and Daniele Varacca
for their valuable comments on a previous version of this paper.

Making Random Choices Invisible to the Scheduler 57

References

1. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs.
In: Proc. of the Symp. on Foundations of Comp. Sci., pp. 327–338. IEEE Computer
Society Press, Los Alamitos (1985)

2. Hansson, H., Jonsson, B.: A framework for reasoning about time and reliability.
In: Proceedings of the Symp. on Real-Time Systems, pp. 102–111. IEEE Computer
Society Press, Los Alamitos (1989)

3. Yi, W., Larsen, K.: Testing probabilistic and nondeterministic processes. In: Proc.
of the IFIP Symp. on Protocol Specification, Testing and Verification (1992)

4. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, MIT/LCS/TR-676 (1995)

5. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic
Journal of Computing 2(2), 250–273 (1995)

6. Hansson, H., Jonsson, B.: A calculus for communicating systems with time and
probabitilies. In: Proc. of the Real-Time Systems Symp., pp. 278–287. IEEE Com-
puter Society Press, Los Alamitos (1990)

7. Bandini, E., Segala, R.: Axiomatizations for probabilistic bisimulation. In: Orejas,
F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 370–
381. Springer, Heidelberg (2001)

8. Andova, S.: Probabilistic process algebra. PhD thesis, TU Eindhoven (2002)
9. Mislove, M., Ouaknine, J., Worrell, J.: Axioms for probability and nondeterminism.

In: Proc. of EXPRESS. ENTCS, vol. 96, pp. 7–28. Elsevier, Amsterdam (2004)
10. Palamidessi, C., Herescu, O.: A randomized encoding of the π-calculus with mixed

choice. Theoretical Computer Science 335(2-3), 373–404 (2005)
11. Deng, Y., Palamidessi, C., Pang, J.: Compositional reasoning for probabilistic

finite-state behaviors. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F.,
de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity.
LNCS, vol. 3838, pp. 309–337. Springer, Heidelberg (2005)

12. Sokolova, A., de Vink, E.: Probabilistic automata: system types, parallel compo-
sition and comparison. In: Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.,
Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 1–43.
Springer, Heidelberg (2004)

13. Jonsson, B., Larsen, K., Yi, W.: Probabilistic extensions of process algebras. In:
Handbook of Process Algebra, pp. 685–710. Elsevier, Amsterdam (2001)

14. Chatzikokolakis, K., Palamidessi, C.: A framework for analyzing probabilistic pro-
tocols and its application to the partial secrets exchange. In: De Nicola, R., San-
giorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 146–162. Springer, Heidelberg
(2005)

15. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala,
R.: Task-structured probabilistic i/o automata. In: Proc. of WODES (2006)

16. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala,
R.: Time-bounded task-PIOAs: A framework for analyzing security protocols. In:
Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 238–253. Springer, Heidelberg
(2006)

17. Garcia, F., van Rossum, P., Sokolova, A.: Probabilistic anonymity and admissible
schedulers, arXiv:0706.1019v1 (2007)

58 K. Chatzikokolakis and C. Palamidessi

18. de Alfaro, L., Henzinger, T., Jhala, R.: Compositional methods for probabilistic
systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154,
Springer, Heidelberg (2001)

19. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Com-
puter Science 34(1-2), 83–133 (1984)

20. Abadi, M., Gordon, A.: A calculus for cryptographic protocols: The spi calculus.
Information and Computation 148(1), 1–70 (1999)

21. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. Journal of Cryptology 1, 65–75 (1988)

22. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Abadi, M., de Al-
faro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer, Heidelberg
(2005)

Strategy Logic

Krishnendu Chatterjee1, Thomas A. Henzinger1,2, and Nir Piterman2

1 University of California, Berkeley, USA
2 EPFL, Switzerland

c krish@eecs.berkeley.edu, {tah,Nir.Piterman}@epfl.ch

Abstract. We introduce strategy logic, a logic that treats strategies in
two-player games as explicit first-order objects. The explicit treatment
of strategies allows us to specify properties of nonzero-sum games in a
simple and natural way. We show that the one-alternation fragment of
strategy logic is strong enough to express the existence of Nash equilibria
and secure equilibria, and subsumes other logics that were introduced to
reason about games, such as ATL, ATL∗, and game logic. We show that
strategy logic is decidable, by constructing tree automata that recognize
sets of strategies. While for the general logic, our decision procedure is
nonelementary, for the simple fragment that is used above we show that
the complexity is polynomial in the size of the game graph and opti-
mal in the size of the formula (ranging from polynomial to 2EXPTIME
depending on the form of the formula).

1 Introduction

In graph games, two players move a token across the edges of a graph in order
to form an infinite path. The vertices are partitioned into player-1 and player-2
nodes, depending on which player chooses the successor node. The objective of
player 1 is to ensure that the resulting infinite path lies inside a given winning set
Ψ1 of paths. If the game is zero-sum, then the goal of player 2 is to prevent this.
More generally, in a nonzero-sum game, player 2 has her own winning set Ψ2.

Zero-sum graph games have been widely used in the synthesis (or control)
of reactive systems [22,24], as well as for defining and checking the realizability
of specifications [1,8], the compatibility of interfaces [7], simulation relations
between transition systems [11,19], and for generating test cases [3], to name
just a few of their applications. The study of nonzero-sum graph games has been
more recent, with assume-guarantee synthesis [4] as one of its applications.

The traditional formulation of graph games consists of a two-player graph
(the “arena”) and winning conditions Ψ1 and Ψ2 for the two players (in the
zero-sum case, Ψ1 = ¬Ψ2), and asks for computing the winning sets W1 and W2
of vertices for the two players (in the zero-sum case, determinacy [18] ensures
that W1 = ¬W2). To permit the unambiguous, concise, flexible, and structured
expression of problems and solutions involving graph games, researchers have
introduced logics that are interpreted over two-player graphs. An example is the
temporal logic ATL [2], which replaces the unconstrained path quantifiers of CTL

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 59–73, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

60 K. Chatterjee, T.A. Henzinger, and N. Piterman

with constrained path quantifiers: while the CTL formula ∀Ψ asserts that the
path property Ψ is inevitable —i.e., Ψ holds on all paths from a given state—
the ATL formula 〈〈1〉〉Ψ asserts that Ψ is enforcible by player 1 —i.e., player 1 has
a strategy so that Ψ holds on all paths that can result from playing that strat-
egy. The logic ATL has proved useful for expressing proof obligations in system
verification, as well as for expressing subroutines of verification algorithms.

However, because of limitations inherent in the definition of ATL, several
extensions have been proposed [2], among them the temporal logic ATL∗, the
alternating-time μ-calculus, and a so-called game logic of [2]: these are motivated
by expressing general ω-regular winning conditions, as well as tree properties of
computation trees that result from fixing the strategy of one player (module
checking [17]). All of these logics treat strategies implicitly through modalities.
This is convenient for zero-sum games, but awkward for nonzero-sum games. In-
deed, it was not known if Nash equilibria, one of the most fundamental concepts
in game theory, can be expressed in these logics.

In order to systematically understand the expressiveness of game logics, and to
specify nonzero-sum games, we study in this paper a logic that treats strategies
as explicit first-order objects. For example, using explicit strategy quantifiers,
the ATL formula 〈〈1〉〉Ψ becomes (∃x ∈ Σ)(∀y ∈ Γ)Ψ(x, y) —i.e., “there exists
a player-1 strategy x such that for all player-2 strategies y, the unique infinite
path that results from the two players following the strategies x and y satisfies
the property Ψ .” Strategies are a natural primitive when talking about games
and winning, and besides ATL and its extensions, Nash equilibria are naturally
expressible in strategy logic.

As an example, we define winning secure equilibria [5] in strategy logic. A
winning secure equilibrium is a special kind of Nash equilibrium, which is im-
portant when reasoning about the components of a system, each with its own
specification. At such an equilibrium, both players can collaborate to satisfy the
combined objective Ψ1 ∧ Ψ2. Moreover, whenever player 2 decides to abandon
the collaboration and enforce ¬Ψ1, then player 1 has the ability to retaliate and
enforce ¬Ψ2; that is, player 1 has a winning strategy for the relativized objective
Ψ2 ⇒ Ψ1 (where ⇒ denotes implication). The symmetric condition holds for
player 2; in summary: (∃x ∈ Σ)(∃y ∈ Γ)[(Ψ1 ∧ Ψ2)(x, y) ∧ (∀y′ ∈ Γ)(Ψ2 ⇒
Ψ1)(x, y′) ∧ (∀x′ ∈ Σ)(Ψ1 ⇒ Ψ2)(x′, y)]. Note that the same player-1 strategy
x which is involved in producing the outcome Ψ1 ∧ Ψ2 must be able to win for
Ψ2 ⇒ Ψ1; such a condition is difficult to state without explicit quantification
over strategies.

Our results are twofold. First, we study the expressive power of strategy logic.
We show that the logic is rich enough to express many interesting properties
of zero-sum and nonzero-sum games that we know, including ATL∗, game logic
(and thus module checking), Nash equilibria, and secure equilibria. Indeed, ATL∗

and the equilibria can be expressed in a simple fragment of strategy logic with
no more than one quantifier alternation (note the ∃∀ alternation in the above
formula for defining winning secure equilibria). We also show that the simple
one-alternation fragment can be translated to ATL∗ (the translation in general

Strategy Logic 61

is double exponential in the size of the formula) and thereby the equilibria can
be expressed in ATL∗.

Second, we analyze the computational complexity of strategy logic. We show
that, provided all winning conditions are specified in linear temporal logic (or by
word automata), strategy logic is decidable. The proof goes through automata
theory, using tree automata to specify the computation trees that result from
fixing the strategy of one player. The complexity is nonelementary, with the
number of exponentials depending on the quantifier alternation depth of the
formula. In the case of the simple one-alternation fragment of strategy logic,
which suffices to express ATL∗ and equilibria, we obtain much better bounds:
for example, for infinitary path formulas (path formulas that are independent of
finite prefixes), there is a linear translation of a simple one-alternation fragment
formula to an ATL∗ formula.

In summary, strategy logic provides a decidable language for talking in a
natural and uniform way about all kinds of properties on game graphs, includ-
ing zero-sum, as well as nonzero-sum objectives. Of course, for more specific
purposes, such as zero-sum reachability games, more restrictive and less expen-
sive logics, such as ATL, are more appropriate; however, the consequences of
such restrictions, and their relationships, is best studied within a clean, general
framework such as the one provided by strategy logic. In other words, strategy
logic can play for reasoning about games the same role that first-order logic with
explicit quantification about time has played for temporal reasoning: the latter
has been used to categorize and compare temporal logics (i.e., logics with implicit
time), leading to a notion of completeness and other results in correspondence
theory [10,15].

In this work we consider perfect-information games and, consequently, only
pure strategies (no probabilistic choice). An extension of this work to the set-
ting of partial-information games is an interesting research direction (cf. [12]).
Other possible extensions include reasoning about concurrent games and about
perfect-information games with probabilistic transitions, as well as increasing
the expressive power of the logic by allowing more ways to bound strategies
(e.g., comparing strategies).

2 Graph Games

A game graph G = ((S,E), (S1, S2)) consists of a directed graph (S,E) with
a finite set S of states, a set E of edges, and a partition (S1, S2) of the state
space S. The states in S1 are called player-1 states; the states in S2, player-2
states. For a state s ∈ S, we write E(s) to denote the set {t | (s, t) ∈ E} of
successor states. We assume that every state has at least one out-going edge;
i.e., E(s) is nonempty for all s ∈ S.

Plays. A game is played by two players: player 1 and player 2, who form an
infinite path in the game graph by moving a token along edges. They start by
placing the token on an initial state and then they take moves indefinitely in the
following way. If the token is on a state in S1, then player 1 moves the token

62 K. Chatterjee, T.A. Henzinger, and N. Piterman

along one of the edges going out of the state. If the token is on a state in S2,
then player 2 does likewise. The result is an infinite path π = 〈s0, s1, s2, . . .〉 in
the game graph; we refer to such infinite paths as plays. Hence given a game
graph G, a play is an infinite sequence 〈s0, s1, s2, . . .〉 of states such that for all
k ≥ 0, we have (sk, sk+1) ∈ E. We write Π for the set of all plays.

Strategies. A strategy for a player is a recipe that specifies how to extend plays.
Formally, a strategy σ for player 1 is a function σ: S∗ ·S1 → S that given a finite
sequence of states, which represents the history of the play so far, and which
ends in a player-1 state, chooses the next state. A strategy must choose only
available successors, i.e., for all w ∈ S∗ and all s ∈ S1, we have σ(w · s) ∈ E(s).
The strategies for player 2 are defined symmetrically. We denote by Σ and Γ
the sets of all strategies for player 1 and player 2, respectively. Given a starting
state s ∈ S, a strategy σ for player 1, and a strategy τ for player 2, there is a
unique play, denoted as π(s, σ, τ) = 〈s0, s1, s2, . . .〉, which is defined as follows:
s = s0, and for all k ≥ 0, we have (a) if sk ∈ S1, then σ(s0, s1, . . . , sk) = sk+1,
and (b) if sk ∈ S2, then τ(s0, s1, . . . , sk) = sk+1.

3 Strategy Logic

Strategy logic is interpreted over labeled game graphs. Let P be a finite set
of atomic propositions. A labeled game graph G = (G,P, L) consists of a game
graph G together with a labeling function L: S → 2P that maps every state s
to the set L(s) of atomic propositions that are true at s. We assume that there
is a special atomic proposition tt ∈ P such that tt ∈ L(s) for all s ∈ S.

Syntax. The formulas of strategy logic consist of the following kinds of sub-
formulas. Path formulas Ψ are LTL formulas, which are interpreted over infinite
paths of states. Atomic strategy formulas are path formulas Ψ(x, y) with two
arguments —a variable x that denotes a player-1 strategy, and a variable y
that denotes a player-2 strategy. From atomic strategy formulas, we define a
first-order logic of quantified strategy formulas. The formulas of strategy logic
are the closed strategy formulas (i.e., strategy formulas without free strategy
variables); they are interpreted over states. We denote path and strategy for-
mulas by Ψ and Φ, respectively. We use the variables x, x1, x2, . . . to range over
strategies for player 1, and denote the set of such variables by X ; similarly, the
variables y, y1, y2, . . . ∈ Y range over strategies for player 2. Formally, the path
and strategy formulas are defined by the following grammar:

Ψ ::= p | Φ | Ψ ∧ Ψ | ¬Ψ | ©Ψ | Ψ U Ψ, where p ∈ P and Φ is closed;

Φ ::= Ψ(x, y) | Φ ∧ Φ | Φ ∨ Φ | Qx.Φ | Qy.Φ, where Q ∈ {∃, ∀}, x ∈ X, y ∈ Y.

Observe that the closed strategy formulas can be reused as atomic propositions.
We formally define the free variables of strategy formulas as follows:

Free(Ψ(x, y)) = {x, y};
Free(Φ1 ∧ Φ2) = Free(Φ1) ∪ Free(Φ2);

Strategy Logic 63

Free(Φ1 ∨ Φ2) = Free(Φ1) ∪ Free(Φ2);
Free(Qx.Φ′) = Free(Φ′) \ {x}, for Q ∈ {∃, ∀};
Free(Qy.Φ′) = Free(Φ′) \ {y}, for Q ∈ {∃, ∀}.

A strategy formula Φ is closed if Free(Φ) = ∅. We define additional boolean
connectives such as ⇒ , and additional temporal operators such as � and �, as
usual.

Semantics. For a set Z ⊆ X ∪Y of variables, a strategy assignment AZ assigns
to every variable x ∈ Z ∩ X , a player-1 strategy AZ(x) ∈ Σ, and to every
variable y ∈ Z ∩ Y , a player-2 strategy AZ(y) ∈ Γ . Given a strategy assignment
AZ and player-1 strategy σ ∈ Σ, we denote by AZ [x ← σ] the extension of the
assignment AZ to the set Z ∪ {x}, defined as follows: for w ∈ Z ∪ {x}, we have
AZ [x ← σ](w) = AZ(w) if w
= x, and AZ [x ← σ](x) = σ. The definition of
AZ [y ← τ] for player-2 strategies τ ∈ Γ is analogous.

The semantics of path formulas Ψ is the usual semantics of LTL. We now
describe the satisfaction of a strategy formula Φ at a state s ∈ S with respect to
a strategy assignment AZ , where Free(Φ) ⊆ Z:

(s,AZ) |= Ψ(x, y) iff π(s,AZ(x), AZ(y)) |= Ψ ;

(s,AZ) |= Φ1 ∧ Φ2 iff (s,AZ) |= Φ1 and (s,AZ) |= Φ2;

(s,AZ) |= Φ1 ∨ Φ2 iff (s,AZ) |= Φ1 or (s,AZ) |= Φ2;

(s,AZ) |= ∃x.Φ′ iff ∃σ ∈ Σ. (s,AZ [x← σ]) |= Φ′;

(s,AZ) |= ∀x.Φ′ iff ∀σ ∈ Σ. (s,AZ [x← σ]) |= Φ′;

(s,AZ) |= ∃y.Φ′ iff ∃τ ∈ Γ. (s,AZ [y ← τ]) |= Φ′;

(s,AZ) |= ∀y.Φ′ iff ∀τ ∈ Γ. (s,AZ [y ← τ]) |= Φ′.

The semantics of a closed strategy formula Φ is the set [[Φ]] = {s ∈ S | (s,A∅) |=
Φ} of states.

Unnested path formulas. Of special interest is the fragment of strategy logic
where path formulas do not allow any nesting of temporal operators. This frag-
ment has a CTL-like flavor, and as we show later, results in a decision procedure
with a lower computational complexity. Formally, the unnested path formulas
are restricted as follows:

Ψ ::= p | Φ | Ψ ∧ Ψ | ¬Ψ | ©Φ | Φ U Φ, where p ∈ P and Φ is closed.

The resulting closed strategy formulas are called the unnested-path-formula frag-
ment of strategy logic.

Examples. We now present some examples of formulas of strategy logic. We first
show how to express formulas of the logics ATL and ATL∗ [2] in strategy logic.
The alternating-time temporal logic ATL∗ consists of path formulas quantified
by the alternating path operators 〈〈1〉〉 and 〈〈2〉〉, the existential path operator
〈〈1, 2〉〉 (or ∃), and the universal path operator 〈〈∅〉〉 (or ∀). The logic ATL is
the subclass of ATL∗ where only unnested path formulas are considered. Some

64 K. Chatterjee, T.A. Henzinger, and N. Piterman

examples of ATL and ATL∗ formulas and the equivalent strategy formulas are as
follows: for a proposition p ∈ P ,

〈〈1〉〉(�p) = {s ∈ S | ∃σ. ∀τ. π(s, σ, τ) |= �p} = [[∃x. ∀y. (�p)(x, y)]];

〈〈2〉〉(��p) = {s ∈ S | ∃τ. ∀σ. π(s, σ, τ) |= ��p} = [[∃y. ∀x. (��p)(x, y)]];

〈〈1, 2〉〉(�p) = {s ∈ S | ∃σ. ∃τ. π(s, σ, τ) |= �p} = [[∃x. ∃y. (�p)(x, y)]];

〈〈∅〉〉(��p) = {s ∈ S | ∀σ. ∀τ. π(s, σ, τ) |= �p} = [[∀x. ∀y. (��p)(x, y)]].

Consider the strategy formula Φ = ∃x. (∃y1. (�p)(x, y1) ∧ ∃y2. (�q)(x, y2)).
This formula is different from the two formulas 〈〈1, 2〉〉(�p)∧〈〈1, 2〉〉(�q) (which is
too weak) and 〈〈1, 2〉〉(�(p∧ q)) (which is too strong). It follows from the results
of [2] that the formula Φ cannot be expressed in ATL∗.

One of the features of strategy logic is that we can restrict the kinds of strate-
gies that interest us. For example, the following strategy formula describes the
states from which player 1 can ensure the goal Φ1 while playing against any
strategy that ensures Φ2 for player 2:

∃x1. ∀y1. ((∀x2.Φ2(x2, y1)) ⇒ Φ1(x1, y1))

The mental exercise of “I know that you know that I know that you know . . . ”
can be played in strategy logic up to any constant level. The analogue of the
above formula, where the level of knowledge is nested up to level k, can be
expressed in strategy logic. For example, the formula above (“knowledge nesting
1”) is different from the following formula with “knowledge nesting 2”:

∃x1. ∀y1. ((∀x2.(∀y2.Φ1(x2, y2)) ⇒ Φ2(x2, y1)) ⇒ Φ1(x1, y1))

We do not know whether the corresponding fixpoint of ‘full knowledge nesting’
can be expressed in strategy logic.

As another example, we consider the notion of dominating and dominated
strategies [21]. Given a path formula Ψ and a state s ∈ S, a strategy x1 for
player 1 dominates another player-1 strategy x2 if for all player-2 strategies y,
whenever π(s, x2, y) |= Ψ , then π(s, x1, y) |= Ψ . The strategy x1 is dominating if
it dominates every player-1 strategy x2. The following strategy formula expresses
that x1 is a dominating strategy:

∀x2. ∀y. (Ψ(x2, y) ⇒ Ψ(x1, y))

Given a path formula Ψ and a state s ∈ S, a strategy x1 for player 1 is dominated
if there is a player-1 strategy x2 such that (a) for all player-2 strategies y1, if
π(s, x1, y1) |= Ψ , then π(s, x2, y1) |= Ψ , and (b) for some player-2 strategy y2, we
have both π(s, x2, y2) |= Ψ and π(s, x1, y2)
|= Ψ . The following strategy formula
expresses that x1 is a dominated strategy:

∃x2. ((∀y1. Ψ(x1, y1) ⇒ Ψ(x2, y1)) ∧ (∃y2. Ψ(x2, y2) ∧ ¬Ψ(x1, y2)))

The formulas for dominating and dominated strategies express properties about
strategies and are not closed formulas.

Strategy Logic 65

4 Simple One-Alternation Fragment of Strategy Logic

In this section we define a subset of strategy logic. Intuitively, the alternation
depth of a formula is the number of changes between ∃ and ∀ quantifiers (a
formal definition is given in Section 6). The subset we consider here is a subset
of the formulas that allow only one alternation of strategy quantifiers. We refer
to this subset as the simple one-alternation fragment. We show later how several
important concepts in nonzero-sum games can be captured in this fragment.

Syntax. We are interested in strategy formulas that depend on three path formu-
las: Ψ1, Ψ2, and Ψ3. The strategy formulas in the simple one-alternation fragment
assert that there exist player-1 and player-2 strategies that ensure Ψ1 and Ψ2,
respectively, and at the same time cooperate to satisfy Ψ3. Formally, the simple
one-alternation strategy formulas are restricted as follows:

Φ ::= Φ ∧ Φ | ¬Φ | ∃x1. ∃y1. ∀x2. ∀y2. (Ψ1(x1, y2) ∧ Ψ2(x2, y1) ∧ Ψ3(x1, y1)),

where x1, x2 ∈ X , and y1, y2 ∈ Y . The resulting closed strategy formulas
are called the simple one-alternation fragment of strategy logic. Obviously, the
formulas have a single quantifier alternation. We use the abbreviation
(∃ Ψ1, ∃ Ψ2, Ψ3) for simple one-alternation strategy formulas of the form ∃x1.∃y1.
∀x2.∀y2. (Ψ1(x1, y2) ∧ Ψ2(x2, y1) ∧ Ψ3(x1, y1)).

Notation. For a path formula Ψ and a state s we define the set Win1(s, Ψ) =
{σ ∈ Σ | ∀τ ∈ Γ. π(s, σ, τ) |= Ψ} to denote the set of player-1 strategies that en-
force Ψ against all player-2 strategies. We refer to the strategies in Win1(s, Ψ) as
the winning player-1 strategies for Ψ from s. Analogously, we define Win2(s, Ψ) =
{τ ∈ Γ | ∀σ ∈ Σ. π(s, σ, τ) |= Ψ} as the set of winning player-2 strategies for
Ψ from s. Using the notation Win1 and Win2, the semantics of simple one-
alternation strategy formulas can be written as follows: if Φ = (∃ Ψ1, ∃ Ψ2, Ψ3),
then [[Φ]] = {s ∈ S | ∃σ ∈ Win1(s, Ψ1). ∃τ ∈ Win2(s, Ψ2). π(s, σ, τ) |= Ψ3}.

5 Expressive Power of Strategy Logic

In this section we show that ATL∗ and several concepts in nonzero-sum games
can be expressed in the simple one-alternation fragment of strategy logic. We also
show that game logic, which was introduced in [2] to express the module-checking
problem [17], can be expressed in the one-alternation fragment of strategy logic
(but not in the simple one-alternation fragment).

Expressing ATL∗ and ATL. For every path formula Ψ , we have

〈〈1〉〉(Ψ) = {s ∈ S | ∃σ. ∀τ. π(s, σ, τ) |= Ψ}=[[∃x. ∀y. Ψ(x, y)]] = [[(∃Ψ, ∃tt, tt)]];
〈〈1, 2〉〉(Ψ) = {s ∈ S | ∃σ. ∃τ. π(s, σ, τ) |= Ψ}=[[∃x. ∃y. Ψ(x, y)]] = [[(∃tt, ∃tt, Ψ)]].

The formulas 〈〈2〉〉(Ψ) and 〈〈∅〉〉(Ψ) can be expressed similarly. Hence the logic
ATL∗ can be defined in the simple one-alternation fragment of strategy logic,

66 K. Chatterjee, T.A. Henzinger, and N. Piterman

and ATL can be defined in the simple one-alternation fragment with unnested
path formulas.

Expressing Nash equilibria. In nonzero-sum games the input is a labeled
game graph and two path formulas, which express the objectives of the two
players. We define Nash equilibria [13] and show that their existence can be
expressed in the simple one-alternation fragment of strategy logic.

Payoff profiles. Given a labeled game graph (G,P, L), two path formulas Ψ1
and Ψ2, strategies σ and τ for the two players, and a state s ∈ S, the payoff for
player �, where � ∈ {1, 2}, is defined as follows:

p
(s, σ, τ, Ψ
) =

{
1 if π(s, σ, τ) |= Ψ
;
0 otherwise.

The payoff profile (p1, p2) consists of the payoffs p1 = p1(s, σ, τ, Ψ1) and p2 =
p2(s, σ, τ, Ψ2) for player 1 and player 2.

Nash equilibria. A strategy profile (σ, τ) consists of strategies σ ∈ Σ and τ ∈ Γ
for the two players. Given a labeled game graph (G,P, L) and two path formulas
Ψ1 and Ψ2, the strategy profile (σ∗, τ∗) is a Nash equilibrium at a state s ∈ S if
the following two conditions hold:

(1) ∀σ ∈ Σ. p1(s, σ, τ∗, Ψ1) ≤ p1(s, σ∗, τ∗, Ψ1);

(2) ∀τ ∈ Γ. p2(s, σ∗, τ, Ψ2) ≤ p2(s, σ∗, τ∗, Ψ2).

The state sets of the corresponding payoff profiles are defined as follows: for
i, j ∈ {0, 1}, we have

NE (i, j) = {s ∈ S | there exists a Nash equilibrium (σ∗, τ∗) at s such that
p1(s, σ∗, τ∗, Ψ1) = i and p2(s, σ∗, τ∗, Ψ2) = j}.

Existence of Nash equilibria. We now define the state sets of the payoff profiles
for Nash equilibria by simple one-alternation strategy formulas. The formulas
are as follows:

NE (1, 1) = [[(∃tt, ∃tt, Ψ1 ∧ Ψ2)]];

NE (0, 0) = [[(∃¬Ψ2, ∃¬Ψ1, tt)]];

NE (1, 0) = {s ∈ S | ∃σ. (∃τ. π(s, σ, τ) |= Ψ1 ∧ ∀τ ′. π(s, σ, τ ′) |= ¬Ψ2)}
= [[(∃¬Ψ2, ∃tt, Ψ1)]];

NE (0, 1) = [[(∃tt, ∃¬Ψ1, Ψ2)]].

Expressing secure equilibria. A notion of conditional competitiveness in
nonzero-sum games was formalized by introducing secure equilibria [5]. We
show that the existence of secure equilibria can be expressed in the simple one-
alternation fragment of strategy logic.

Lexicographic ordering of payoff profiles. We define two lexicographic orderings
 1 and 2 on payoff profiles. For two payoff profiles (p1, p2) and (p′1, p′2), we
have

Strategy Logic 67

(p1, p2) 1 (p′1, p
′
2) iff (p1 ≤ p′1) ∨ (p1 = p′1 ∧ p2 ≥ p′2);

(p1, p2) 2 (p′1, p
′
2) iff (p2 ≤ p′2) ∨ (p2 = p′2 ∧ p1 ≥ p′1).

Secure equilibria. A secure equilibrium is a Nash equilibrium with respect to
the lexicographic preference orderings 1 and 2 on payoff profiles for the two
players. Formally, given a labeled game graph (G,P, L) and two path formulas
Ψ1 and Ψ2, a strategy profile (σ∗, τ∗) is a secure equilibrium at a state s ∈ S if
the following two conditions hold:

(1) ∀σ∈ Σ. (p1(s, σ, τ∗, Ψ1), p2(s, σ, τ∗, Ψ2)) 1(p1(s, σ∗, τ∗, Ψ1),p2(s, σ∗, τ∗, Ψ2));

(2) ∀τ ∈ Γ. (p1(s, σ∗, τ, Ψ1), p2(s, σ∗, τ, Ψ2)) 2(p1(s, σ∗, τ∗, Ψ1),p2(s, σ∗, τ∗, Ψ2)).

The state sets of the corresponding payoff profiles are defined as follows: for
i, j ∈ {0, 1}, we have

SE (i, j) = {s ∈ S | there exists a secure equilibrium (σ∗, τ∗) at s such that
p1(s, σ∗, τ∗, Ψ1) = i and p2(s, σ∗, τ∗, Ψ2) = j}.

It follows from the definitions that the sets SE (i, j), for i, j ∈ {0, 1}, can be
expressed in the one-alternation fragment (in the ∃∀ fragment). The state sets
of maximal payoff profiles for secure equilibria are defined as follows: for i, j ∈
{0, 1}, we have

MS (i, j)={s∈SE (i, j) | if s∈SE (i′, j′), then (i′, j′) 1 (i, j) ∧ (i′, j′) 2 (i, j)}.

The following alternative characterizations of these sets are established in [5]:

MS (1, 0) = {s ∈ S |Win1(s, Ψ1 ∧ ¬Ψ2)
= ∅};
MS (0, 1) = {s ∈ S |Win2(s, Ψ2 ∧ ¬Ψ1)
= ∅};
MS (1, 1) = {s ∈ S | ∃σ ∈Win1(s, Ψ2 ⇒ Ψ1). ∃τ ∈Win2(s, Ψ1 ⇒ Ψ2).

π(s, σ, τ) |= Ψ1 ∧ Ψ2};
MS (0, 0) = S \ (MS (1, 0) ∪MS (0, 1) ∪MS (1, 1)).

Existence of secure equilibria. From the alternative characterizations of the state
sets of the maximal payoff profiles for secure equilibria, it follows that these sets
can be defined by simple one-alternation strategy formulas. The formulas are as
follows:

MS (1, 0) = [[(∃(Ψ1 ∧ ¬Ψ2), ∃tt, tt)]];

MS (0, 1) = [[(∃tt, ∃(Ψ2 ∧ ¬Ψ1), tt)]];

MS (1, 1) = [[(∃(Ψ2 ⇒ Ψ1), ∃(Ψ1 ⇒ Ψ2), Ψ1 ∧ Ψ2)]].

The set MS (0, 0) can be obtained by complementing the disjunction of the three
formulas for MS (1, 0), MS (0, 1), and MS (1, 1).

Game logic and module checking. The syntax of game logic [2] is as follows.
State formulas have the form ∃∃{1}. θ or ∃∃{2}. θ, where θ is a tree formula.

68 K. Chatterjee, T.A. Henzinger, and N. Piterman

Tree formulas are (a) state formulas, (b) boolean combinations of tree formulas,
and (c) either ∃Ψ or ∀Ψ , where Ψ is a path formula. Informally, the formula
∃∃{1}. θ is true at a state if there is a strategy σ for player 1 such that the tree
formula θ is satisfied in the tree that is generated by fixing the strategy σ for
player 1 (see [2] for details). Game logic can be defined in the one-alternation
fragment of strategy logic (but not in the simple one-alternation fragment). The
following example illustrates how to translate a state formula of game logic into
a one-alternation strategy formula:

[[∃∃{1}.(∃Ψ1 ∧ ∀Ψ2 ∨ ∀Ψ3)]] = [[∃x. (∃y1. Ψ1(x, y1) ∧ ∀y2. Ψ2(x, y2) ∨ ∀y3. Ψ3(x, y3)]]

Consequently, the module-checking problem [17] can be expressed by one-
alternation strategy formulas.

The following theorem compares the expressive power of strategy logic and
its fragments with ATL∗, game logic, the alternating-time μ-calculus [2,16], and
monadic second-order logic [23,26] (see [6] for proofs).

Theorem 1. 1. The expressiveness of the simple one-alternation fragment of
strategy logic coincides with ATL∗, and the one-alternation fragment of strat-
egy logic is more expressive than ATL∗.

2. The one-alternation fragment of strategy logic is more expressive than game
logic, and game logic is more expressive than the simple one-alternation frag-
ment of strategy logic.

3. The alternating-time μ-calculus is not as expressive as the alternation-free
fragment of strategy logic, and strategy logic is not as expressive as the
alternating-time μ-calculus.

4. Monadic second order logic is more expressive than strategy logic.

6 Model Checking Strategy Logic

In this section we solve the model-checking problem for strategy logic. We encode
strategies by using strategy trees. We reason about strategy trees using tree
automata, making our solution similar to Rabin’s usage of tree automata for
solving the satisfiability problem of monadic second-order logic [23]. We give the
necessary definitions and proceed with the algorithm.

Strategy trees and tree automata. Given a finite set Υ of directions, an
Υ -tree is a set T ⊆ Υ ∗ such that if x · υ ∈ T , where υ ∈ Υ and x ∈ Υ ∗, then also
x ∈ T . The elements of T are called nodes, and the empty word ε is the root
of T . For every υ ∈ Υ and x ∈ T , the node x is the parent of x · υ. Each node
x
= ε of T has a direction in Υ . The direction of the root is the symbol ⊥ (we
assume that ⊥
∈ Υ). The direction of a node x · υ is υ. We denote by dir(x) the
direction of node x. An Υ -tree T is a full infinite tree if T = Υ ∗. A path π of a
tree T is a set π ⊆ T such that ε ∈ π, and for every x ∈ π there exists a unique
υ ∈ Υ such that x · υ ∈ π.

Given two finite sets Υ and Λ, a Λ-labeled Υ -tree is a pair 〈T, ρ〉, where T is
an Υ -tree, and ρ: T → Λ maps each node of T to a letter in Λ. When Υ and Λ

Strategy Logic 69

are not important or clear from the context, we call 〈T, ρ〉 a labeled tree. We say
that an ((Υ ∪ {⊥}) × Λ)-labeled Υ -tree 〈T, ρ〉 is Υ -exhaustive if for every node
z ∈ T , we have ρ(z) ∈ {dir(z)} × Λ.

Consider a game graph G = ((S,E), (S1, S2)). For α ∈ {1, 2}, a strategy σ:
S∗ ·Sα → S can be encoded by an S-labeled S-tree 〈S∗, ρ〉 by setting σ(v) = ρ(v)
for every v ∈ S∗ · Sα. Notice that σ may be encoded by many different trees.
Indeed, for a node v = s0 · · · sn such that either sn ∈ S3−α or there exists some
i such that (si, si+1) /∈ E, the label ρ(v) may be set arbitrarily. We may encode
k different strategies by considering an Sk-labeled S-tree. Given a letter λ ∈ Sk,
we denote by λi the projection of λ on its i-th coordinate. In this case, the i-th
strategy is σi(v) = ρ(v)i for every v ∈ S∗ · Sα. Notice that the different encoded
strategies may belong to different players. We refer to such trees as strategy trees,
and from now on, we may refer to a strategy as a tree 〈S∗, σ〉. In what follows
we encode strategies by strategy trees. We construct tree automata that accept
the strategy assignments that satisfy a given formula of strategy logic.

We use tree automata to reason about strategy trees. As we only use well-
known results about such automata, we do not give a full formal definition, and
refer the reader to [25]. Here, we use alternating parity tree automata (APTs).
The language of an automaton is the set of labeled trees that it accepts. The
size of an automaton is measured by the number of states, and the index, which
is a measure of the complexity of the acceptance (parity) condition. The im-
portant qualities of automata that are needed for this paper are summarized in
Theorem 2 below.

Theorem 2. 1. Given an LTL formula Ψ , we can construct an APT AΨ with
2O(|Ψ |) states and index 3 such that AΨ accepts all labeled trees all of whose
paths satisfy Ψ [27].

2. Given two APTs A1 and A2 with n1 and n2 states and indices k1 and k2, re-
spectively, we can construct APTs for the conjunction and disjunction of A1
and A2 with n1 +n2 states and index max(k1, k2). We can also construct an
APT for the complementary language of A1 with n1 states and index k1 [20].

3. Given an APT A with n states and index k over the alphabet Λ×Λ′, we can
construct an APT A′ that accepts a labeled tree over the alphabet Λ if some
extension (or all extensions) of the labeling with labels from Λ′ is accepted by
A. The number of states of A′ is exponential in n · k, and its index is linear
in n · k [20].

4. Given an APT A with n states and index k, we can check whether the lan-
guage of A is empty or universal in time exponential in n · k [9,20].

Model-checking algorithm. The complexity of the model-checking algorithm
for strategy formulas depends on the number of quantifier alternations of a for-
mula. We now formally define the alternation depth of a closed strategy formula.
The alternation depth of a variable of a closed strategy formula is the number of
quantifier switches (∃∀ or ∀∃) that bind the variable. The alternation depth of a
closed strategy formula is the maximal alternation depth of a variable occurring
in the formula.

70 K. Chatterjee, T.A. Henzinger, and N. Piterman

Given a strategy formula Φ, we construct by induction on the structure of the
formula a nondeterministic parity tree (NPT) automaton that accepts the set
of strategy assignments that satisfy the formula. Without loss of generality, we
assume that the variables in X ∪ Y are not reused; that is, in a closed strategy
formula, there is a one-to-one and onto relation between the variables and the
quantifiers.

Theorem 3. Given a labeled game graph G and a closed strategy formula Φ of
alternation depth d, we can compute the set [[Φ]] of states in time proportional
to d-EXPTIME in the size of G, and (d + 1)-EXPTIME in the size of Φ. If
Φ contains only unnested path formulas, then the complexity in the size of the
formula reduces to d-EXPTIME.

Proof. The case where closed strategy formula Φ is used as a state formula in
a larger formula Φ′, is solved by first computing the set of states satisfying Φ,
adding this information to the labeled game graph G, and then computing the
set of states satisfying Φ′. In addition, if d is the alternation-depth of Φ then Φ is
a boolean combination of closed strategy formulas of alternation depth at most
d. Thus, it suffices to handle a closed strategy formula, and reduce the boolean
reasoning to intersection, union, and complementation of the respective sets.

Consider a strategy formula Φ. Let Z = {x1, . . . , xn, y1, . . . , ym} be the set of
variables used in Φ. Consider the alphabet Sn+m and an Sn+m-labeled S-tree
σ. For a variable v ∈ X ∪ Y , we denote by σv the strategy that stands in the
location of variable v and for a set Z ′ ⊆ Z we denote by σZ′ the set of strategies
for the variables in Z ′. We now describe how to construct an APT that accepts
the set of strategy assignments that satisfy Φ. We build the APT by induction
on the structure of the formula. For a subformula Φ′ we consider the following
cases.

Case 1. Φ′ = Ψ(x, y) —by Theorem 2 we can construct an APT A that accepts
trees all of whose paths satisfy Ψ . According to Theorem 2, A has 2O(|Ψ |)

states.
Case 2. Φ′ = Φ1 ∧ Φ2 —given APTs A1 and A2 that accept the set of strategy

assignments that satisfy Φ1 and Φ2, respectively; we construct an APT A for
the conjunction of A1 and A2. According to Theorem 2, |A| = |A1| + |A2|
and the index of A is the maximum of the indices of A1 and A2.

Case 3. Φ′ = ∃x.Φ1 —given an APT A1 that accepts the set of strategy assign-
ments that satisfy Φ1 we do the following. According to Theorem 2, we can
construct an APT A′ that accepts a tree iff there exists a way to extend
the labeling of the tree with a labeling for the strategy for x such that the
extended tree is accepted by A1. The number of states of A′ is exponential in
n · k and its index is linear in n · k. The cases where Φ′ = ∃y.Φ1, Φ′ = ∀x.Φ1,
and Φ′ = ∀y.Φ1 are handled similarly.

We note that for a closed strategy formula Φ, the resulting automaton reads S∅-
labeled S-trees. Thus, the input alphabet of the automaton has a single input
letter and it only reads the structure of the S-tree.

Strategy Logic 71

The above construction starts with an automaton that is exponential in the
size of a given LTL formula and incurs an additional exponent for every quantifier.
In order to pay an exponent ‘only’ for every quantifier alternation, we have to use
nondeterministic and universal automata, and maintain them in this form as long
as possible. Nondeterministic automata are good for existential quantification,
which comes to them for free, and universal automata are good for universal
quantification. By careful analysis of the quantifier alternation hierarchy, we
can choose to create automata of the right kind (nondeterministic or universal),
and maintain them in this form under disjunctions and conjunctions. Then, the
complexity is d+ 1 exponents in the size of the formula and d exponents in the
size of the game.

Consider the case where only unnested path formulas are used. Then, given
a path formula Ψ(x, y), we construct an APT A that accepts trees all of whose
paths satisfy Ψ . As Ψ(x, y) does not use nesting of temporal operators, we can
construct A with a linear number of states in the size of Ψ .1 It follows that the
total complexity is d exponents in the size of the formula and d exponents in the
size of the game. Thus in the case of unnested path formulas one exponent can
be removed. The exact details are omitted due to lack of space.

One-alternation fragment. Since ATL∗ can be expressed in the simple one-
Xalternation fragment of strategy logic, it follows that model checking
simple one-alternation strategy formulas is 2EXPTIME-hard [2]. Also, since
module checking can be expressed in the one-alternation fragment, it follows
that model checking one-alternation strategy formulas with unnested path for-
mulas is EXPTIME-hard [17]. These lower bounds together with Theorem 3
yield the following results.

Theorem 4. Given a labeled game graph G and a closed one-alternation strategy
formula Φ, the computation of [[Φ]] is EXPTIME-complete in the size of G, and
2EXPTIME-complete in the size of Φ. If Φ contains only unnested path formulas,
then the complexity in the size of the formula is EXPTIME-complete.

Model checking the simple one-alternation fragment. We now present
a model-checking algorithm for the simple one-alternation fragment of strategy
logic, with better complexity than the general algorithm. We first present a few
notations.

Notation. For a labeled game graph G and a set U ⊆ S of states, we denote by
G � U the restriction of the labeled game graph to the set U , and we use the
notation only when for all states u ∈ U , we have E(u) ∩ U
= ∅; i.e., all states
in U have a successor in U . A path formula Ψ is infinitary if the set of paths
that satisfy Ψ is independent of all finite prefixes. The classical Büchi, coBüchi,
parity, Rabin, Streett, and Müller conditions are all infinitary conditions. Every
1 For a single temporal operator the number of states is constant, and boolean combi-

nations between two automata may lead to an automaton whose size is the product of
the sizes of the two automata. The number of multiplications is at most logarithmic
in the size of the formula, resulting in a linear total number of states.

72 K. Chatterjee, T.A. Henzinger, and N. Piterman

LTL objective on a labeled game graph can be reduced to an infinitary condition,
such as a parity or Müller condition, on a modified game graph.

Lemma 1. Let G be a labeled game graph, and let Φ = (∃ Ψ1, ∃ Ψ2, Ψ3) be a
simple one-alternation strategy formula with path formulas Ψ1, Ψ2, and Ψ3 such
that Ψ1 and Ψ2 are infinitary. Let W1 = 〈〈1〉〉(Ψ1) and W2 = 〈〈2〉〉(Ψ2). Then
[[Φ]] = 〈〈1, 2〉〉(Ψ1 ∧ Ψ2 ∧ Ψ3) in the restricted graph G � (W1 ∩W2).

Lemma 2. Let G be a labeled game graph, and let Φ = (∃ Ψ1, ∃ Ψ2, Ψ3) be a
simple one-alternation strategy formula with unnested path formulas Ψ1, Ψ2, and
Ψ3. Let W1 = 〈〈1〉〉(Ψ1) and W2 = 〈〈2〉〉(Ψ2). Then [[Φ]] = 〈〈1, 2〉〉(Ψ1 ∧ Ψ2 ∧ Ψ3) ∩
W1 ∩W2.

Theorem 5. Let G be a labeled game graph with n states, and let Φ = (∃ Ψ1, ∃ Ψ2,
breakΨ3) be a simple one-alternation strategy formula.
1. We can compute the set [[Φ]] of states in n2O(|Φ|) · 22O(|Φ|·log |Φ|)

time; hence for
formulas Φ of constant length the computation of [[Φ]] is polynomial in the
size of G. The computation of [[Φ]] is 2EXPTIME-complete in the size of Φ.

2. If Ψ1, Ψ2, and Ψ3 are unnested path formulas, then there is a ATL∗ formula
Φ′ with unnested path formulas such that |Φ′| = O(|Ψ1| + |Ψ2| + |Ψ3|) and
[[Φ]] = [[Φ′]]. Therefore [[Φ]] can be computed in polynomial time.

Theorem 5 follows from Lemmas 1 and 2 (see [6] for the proofs). We present
some details only for part (1): given Ψ1, Ψ2, and Ψ3 as parity conditions, from
Lemma 1, it follows that [[(∃Ψ1, ∃Ψ2, Ψ3)]] can be computed by first solving two
parity games, and then model checking a graph with a conjunction of parity
conditions (i.e., a Streett condition). Since an LTL formula Ψ can be converted
to an equivalent deterministic parity automaton with 22O(|Ψ|·log |Ψ|)

states and
2O(|Ψ |) parities (by converting Ψ to a nondeterministic Büchi automaton, and
then determinizing), applying an algorithm for solving parity games [14] and a
polynomial-time algorithm for model checking Streett conditions, we obtain the
desired upper bound. Observe that the model-checking complexity of the sim-
ple one-alternation fragment of strategy logic with unnested path formulas, as
well as the program complexity of the simple one-alternation fragment (i.e., the
complexity in terms of the game graph, for formulas of bounded size), are expo-
nentially better than the corresponding complexities of the full one-alternation
fragment.

Acknowledgements. This research was supported in part by the Swiss Na-
tional Science Foundation and by the NSF grants CCR-0225610 and CCR-
0234690.

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable concurrent pro-
gram specifications. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini,
M. (eds.) Automata, Languages and Programming. LNCS, vol. 372, pp. 1–17.
Springer, Heidelberg (1989)

Strategy Logic 73

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49, 672–713 (2002)

3. Blass, A.,Gurevich,Y.,Nachmanson, L., Veanes,M.: Play to test. In:Grieskamp,W.,
Weise,C. (eds.)FATES2005.LNCS,vol. 3997, pp. 32–46.Springer,Heidelberg (2006)

4. Chatterjee, K., Henzinger, T.A.: Assume guarantee synthesis. In: 30th TACAS.
LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg (2007)

5. Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Games with secure equilibria. In:
19th LICS, pp. 160–169. IEEE Computer Society Press, Los Alamitos (2004)

6. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Technical Report
UCB/EECS-2007-78, UC Berkeley (2007)

7. de Alfaro, L., Henzinger, T.A.: Interface automata. In: 9th FASE, pp. 109–120.
ACM Press, New York (2001)

8. Dill, D.L.: Trace theory for automatic hierarchical verification of speed independent
circuits. MIT Press, Cambridge (1989)

9. Emerson, E.A., Jutla, C., Sistla, A.P.: On model-checking for fragments of μ-
calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396.
Springer, Heidelberg (1993)

10. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: 7th POPL, pp. 163–173. ACM Press, New York (1980)

11. Henzinger, T.A., Kupferman, O., Rajamani, S.: Fair simulation. Information and
Computation 173(1), 64–81 (2002)

12. Kaiser, L.: Game quantification on automatic structures and hierarchical model
checking games. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 411–425.
Springer, Heidelberg (2006)

13. Nash Jr., J.F.: Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences 36, 48–49 (1950)

14. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Ti-
son, S. (eds.) STACS2000.LNCS, vol. 1770, pp. 290–301. Springer,Heidelberg (2000)

15. Kamp, J.A.W.: Tense Logic and the Theory of Order. PhD thesis, UCLA (1968)
16. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Sci-

ence 27, 333–354 (1983)
17. Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Information and Com-

putation 164, 322–344 (2001)
18. Martin, D.A.: Borel determinacy. Annals of Mathematics 65, 363–371 (1975)
19. Milner, R.: An algebraic definition of simulation between programs. In: 2nd IJCAI,

pp. 481–489. British Computer Society (1971)
20. Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. Theoretical

Computer Science 54, 267–276 (1987)
21. Owen, G.: Game Theory. Academic Press, London (1995)
22. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: 16th POPL, pp.

179–190. ACM Press, New York (1989)
23. Rabin, M.O.: Decidability of second order theories and automata on infinite trees.

Transaction of the AMS 141, 1–35 (1969)
24. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. IEEE

Transactions on Control Theory 77, 81–98 (1989)
25. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W.,

Puech, C. (eds.) STACS 95. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)
26. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages.

Beyond Words, vol. 3, ch. 7, pp. 389–455. Springer, Heidelberg (1997)
27. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and

Computation 115(1), 1–37 (1994)

Solving Games Via Three-Valued
Abstraction Refinement�

Luca de Alfaro and Pritam Roy

Computer Engineering Department
University of California, Santa Cruz, USA

Abstract. Games that model realistic systems can have very large state-spaces,
making their direct solution difficult. We present a symbolic abstraction-
refinement approach to the solution of two-player games. Given a property, an
initial set of states, and a game representation, our approach starts by construct-
ing a simple abstraction of the game, guided by the predicates present in the
property and in the initial set. The abstraction is then refined, until it is possible
to either prove, or disprove, the property over the initial states. Specifically, we
evaluate the property on the abstract game in three-valued fashion, computing
an over-approximation (the may states), and an under-approximation (the must
states), of the states that satisfy the property. If this computation fails to yield
a certain yes/no answer to the validity of the property on the initial states, our
algorithm refines the abstraction by splitting uncertain abstract states (states that
are may-states, but not must-states). The approach lends itself to an efficient sym-
bolic implementation. We discuss the property required of the abstraction scheme
in order to achieve convergence and termination of our technique. We present the
results for reachability and safety properties, as well as for fully general ω-regular
properties.

1 Introduction

Games provide a computational model that is widely used in applications ranging from
controller design, to modular verification, to system design and analysis. The main ob-
stacle to the practical application of games to design and control problems lies in very
large state space of games modeling real-life problems. In system verification, one of
the main methods for coping with large-size problems is abstraction. An abstraction
is a simplification of the original system model. To be useful, an abstraction should
contain sufficient detail to enable the derivation of the desired system properties, while
being succinct enough to allow for efficient analysis. Finding an abstraction that is
simultaneously informative and succinct is a difficult task, and the most successful ap-
proaches rely on the automated construction, and gradual refinement, of abstractions.
Given a system and the property, a coarse initial abstraction is constructed: this initial
abstraction typically preserves only the information about the system that is most im-
mediately involved in the property, such as the values of the state variables mentioned in
the property. This initial abstraction is then gradually, and automatically, refined, until

� This research was supported in part by the NSF grant CCR-0132780.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 74–89, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Solving Games Via Three-Valued Abstraction Refinement 75

the property can be proved or disproved, in the case of a verification problem, or until
the property can be analyzed to the desired level of accuracy, in case of a quantitative
problem.

One of the most successful techniques for automated abstraction refinement is the
technique of counterexample-guided refinement, or CEGAR [2,5,3]. According to this
technique, given a system abstraction, we check whether the abstraction satisfies the
property. If the answer is affirmative, we are done. Otherwise, the check yields an ab-
stract counterexample, encoding a set of “suspect” system behaviors. The abstract coun-
terexample is then further analyzed, either yielding a concrete counterexample (a proof
that the property does not hold), or yielding a refined abstraction, in which that partic-
ular abstract counterexample is no longer present. The process continues until either a
concrete counterexample is found, or until the property can be shown to hold (i.e., no
abstract counterexamples are left). The appeal of CEGAR lies in the fact that it is a fully
automatic technique, and that the abstraction is refined on-demand, in a property-driven
fashion, adding just enough detail as is necessary to perform the analysis. The CEGAR
technique has been extended to games in counterexample-guided control [12].

We propose here an alternative technique to CEGAR for refining game abstractions:
namely, we propose to use three-valued analysis [16,17,9] in order to guide abstraction
refinement for games. Our proposed technique works as follows. Given a game abstrac-
tion, we analyze it in three-valued fashion, computing the set of must-win states, which
are known to satisfy the property, and the set of never-win states, which are known not
to satisfy the property; the remaining states, for which the satisfaction is unknown, are
called the may-win states. If this three-valued analysis yields the desired information
(for example, showing the existence of an initial state with a given property), the analy-
sis terminates. Otherwise, we refine the abstraction in a way that reduces the number of
may-win states. The abstraction refinement proceeds in a property-dependent way. For
reachability properties, where the goal is to reach a set of target states, we refine the ab-
straction at the may-must border, splitting a may-win abstract state into two parts, one of
which is known to satisfy the property (and that will become a must-win state). For the
dual case of safety properties, where the goal is to stay always in a set of “safe” states,
the refinement occurs at the may-never border. We show that the proposed abstraction
refinement scheme can be uniformly extended to games with parity objectives: this en-
ables the solution of games with arbitrary ω-regular objectives, via automata-theoretic
transformations [19].

Our proposed three-valued abstraction refinement technique can be implemented in
fully symbolic fashion, and it can be applied to games with both finite and infinite
state spaces. The technique terminates whenever the game has a finite region algebra
(a partition of the state space) that is closed with respect to Boolean and controllable-
predecessor operators [10]: this is the case for many important classes of games, among
which timed games [13,8]. Furthermore, we show that the technique never performs
unnecessary refinements: the final abstraction is never finer than a region algebra that
suffices for proving the property.

In its aim of reducing the number of may-states, our technique is related to the three-
valued abstraction refinement schemes proposed for CTL and transition systems in
[16,17]. Differently from these approaches, however, we avoid the explicit construction

76 L. de Alfaro and P. Roy

of the tree-valued transition relation of the abstraction, relying instead on may and must
versions of the controllable predecessor operators. Our approach provides precision and
efficiency benefits. In fact, to retain full precision, the must-transitions of a three-valued
model need to be represented as hyper-edges, rather than normal edges [17,9,18]; in
turn, hyper-edges are computationally expensive both to derive and to represent. The
may and must predecessor operators we use provide the same precision as the hyper-
edges, without the associated computational penalty. For a similar reason, we show that
our three-valued abstraction refinement technique for game analysis is superior to the
CEGAR technique of [12], in the sense that it can prove a given property with an abstrac-
tion that never needs to be finer, and that can often be coarser. Again, the advantage is
due to the fact that [12] represents player-1 moves in the abstract model via must-edges,
rather than must hyper-edges. A final benefit of avoiding the explicit construction of the
abstract model, relying instead on predecessor operators, is that the resulting technique
is simpler to present, and simpler to implement.

2 Preliminary Definitions

A two-player game structure G = 〈S, λ, δ〉 consists of:

– A state space S.
– A turn function λ : S → {1, 2}, associating with each state s ∈ S the player
λ(s) whose turn it is to play at the state. We write ∼1 = 2, ∼2 = 1, and we let
S1 = {s ∈ S | λ(s) = 1} and S2 = {s ∈ S | λ(s) = 2}.

– A transition function δ : S �→ 2S \ ∅, associating with every state s ∈ S a non-
empty set δ(s) ⊆ S of possible successors.

The game takes place over the state space S, and proceeds in an infinite sequence of
rounds. At every round, from the current state s ∈ S, player λ(s) ∈ {1, 2} chooses
a successor state s′ ∈ δ(s), and the game proceeds to s′. The infinite sequence of
rounds gives rise to a path s ∈ Sω: precisely, a path of G is an infinite sequence
s = s0, s1, s2, . . . of states in S such that for all k ≥ 0, we have sk+1 ∈ δ(sk). We
denote by Ω the set of all paths.

2.1 Game Objectives

An objective Φ for a game structure G = 〈S, λ, δ〉 is a subset Φ ⊆ Sω of the sequences
of states of G. A game(G,Φ) consists of a game structure G together with an objective
Φ for a player. We consider winning objectives that consist in ω-regular conditions [19];
in particular, we will present algorithms for reachability, safety, and parity objectives.
We often use linear-time temporal logic (LTL) notation [14] when defining objectives.
Given a subset T ⊆ S of states, the reachability objective ♦T = {s0, s1, s2, · · · ∈
Sω | ∃k ≥ 0.sk ∈ T } consists of all paths that reach T ; the safety objective �T =
{s0, s1, s2, · · · ∈ Sω | ∀k ≥ 0.sk ∈ T } consists of all paths that stay in T forever.
We also consider parity objectives: the ability to solve games with parity objectives
suffices for solving games with arbitrary LTL (or omega-regular) winning objectives
[19]. A parity objective is specified via a partition 〈B0, B1, . . . , Bn〉 of S, for some

Solving Games Via Three-Valued Abstraction Refinement 77

n ≥ 0. Given a path s, let Infi(s) ⊆ S be the set of states that occur infinitely often
along s, and let MaxCol(s) = max{i ∈ {0, . . . , n} | Bi ∩ Infi(s)
= ∅} be the index
of the largest partition visited infinitely often along the path. Then, ϕn = {s ∈ Ω |
MaxCol(s) is even}.

2.2 Strategies and Winning States

A strategy for player i ∈ {1, 2} in a game G = 〈S, λ, δ〉 is a mapping πi : S∗ ×
Si �→ S that associates with every nonempty finite sequence σ of states ending in Si,
representing the past history of the game, a successor state. We require that, for all σ ∈
Sω and all s ∈ Si, we have πi(σs) ∈ δ(s). An initial state s0 ∈ S and two strategies π1,
π2 for players 1 and 2 uniquely determine a sequence of states Outcome(s0, π1, π2) =
s0, s1, s2, . . ., where for k > 0 we have sk+1 = π1(s0, . . . , sk) if sk ∈ S1, and sk+1 =
π2(s0, . . . , sk) if sk ∈ S2.

Given an initial state s0 and a winning objective Φ ⊆ Sω for player i ∈ {1, 2},
we say that state s ∈ S is winning for player i if there is a player-i strategy πi such
that, for all player ∼i strategies π∼i, we have Outcome(s0, π1, π2) ∈ Φ. We denote by
〈i〉Φ ⊆ S the set of winning states for player i for objective Φ ⊆ Sω. A result by [11],
as well as the determinacy result of [15], ensures that for all ω-regular goals Φ we have
〈1〉Φ = S\〈2〉¬Φ, where¬Φ = S\Φ. Given a set θ ⊆ S of initial states, and a property
Φ ⊆ Sω, we will present algorithms for deciding whether θ∩〈i〉Φ
= ∅ or, equivalently,
whether θ ⊆ 〈i〉Φ, for i ∈ {1, 2}.

2.3 Game Abstractions

An abstraction V of a game structure G = 〈S, λ, δ〉 consists of a set V ⊆ 22S\∅ of
abstract states: each abstract state v ∈ V is a non-empty subset v ⊆ S of concrete
states. We require

⋃
V = S. For subsets T ⊆ S and U ⊆ V , we write:

U↓ =
⋃

u∈U u T ↑mV = {v ∈ V | v ∩ T
= ∅} T ↑MV = {v ∈ V | v ⊆ T }

Thus, for a set U ⊆ V of abstract states, U↓ is the corresponding set of concrete
states. For a set T ⊆ S of concrete states, T ↑mV and T ↑MV are the set of abstract states
that constitute over and under-approximations of the concrete set T . We say that the
abstraction V of a state-space S is precise for a set T ⊆ S of states if T ↑mV = T ↑MV .

2.4 Controllable Predecessor Operators

Two-player games with reachability, safety, or ω-regular winning conditions are com-
monly solved using controllable predecessor operators. We define the player-1 control-
lable predecessor operator Cpre1 : 2S �→ 2S as follows, for all X ⊆ S and i ∈ {1, 2}:

Cprei(X) = {s ∈ Si | δ(s) ∩X
= ∅} ∪ {s ∈ S∼i | δ(s) ⊆ X}. (1)

Intuitively, for i ∈ {1, 2}, the set Cprei(X) consists of the states from which player
i can force the game to X in one step. In order to allow the solution of games on the
abstract state space V , we introduce abstract versions of Cpre·. As multiple concrete

78 L. de Alfaro and P. Roy

states may correspond to the same abstract state, we cannot compute, on the abstract
state space, a precise analogous of Cpre·. Thus, for player i ∈ {1, 2}, we define two
abstract operators: the may operator CpreV,m

i : 2V �→ 2V , which constitutes an over-
approximation of Cprei, and the must operator CpreV,M

i : 2V �→ 2V , which constitutes
an under-approximation of Cprei [9]. We let, for U ⊆ V and i ∈ {1, 2}:

CpreV,m
i (U) = Cprei(U↓)↑mV CpreV,M

i (U) = Cprei(U↓)↑MV . (2)

By the results of [9], we have the duality

CpreV,M
i (U) = V \ CpreV,m

∼i (V \ U).

The fact that CpreV,m
· and CpreV,M

· are over and under-approximations of the concrete
predecessor operator is made precise by the following observation: for all U ⊆ V and
i ∈ {1, 2}, we have CpreV,M

i (U)↓ ⊆ Cprei(U↓) ⊆ CpreV,m
i (U)↓.

2.5 μ-Calculus

We will express our algorithms for solving games on the abstract state space in μ-
calculus notation [11]. Consider a function γ : 2V �→ 2V , monotone when 2V is consid-
ered as a lattice with the usual subset ordering. We denote by μZ.γ(Z) (resp. νZ.γ(Z))
the least (resp. greatest) fixpoint of γ, that is, the least (resp. greatest) set Z ⊆ V such
that Z = γ(Z). As is well known, since V is finite, these fixpoints can be computed via
Picard iteration: μZ.γ(Z) = limn→∞ γn(∅) and νZ.γ(Z) = limn→∞ γn(V). In the
solution of parity games we will make use of nested fixpoint operators, which can be
evaluated by nested Picard iteration [11].

3 Reachability and Safety Games

We present our three-valued abstraction refinement technique by applying it first to the
simplest games: reachability and safety games. It is convenient to present the arguments
first for reachability games; the results for safety games are then obtained by duality.

3.1 Reachability Games

Our three-valued abstraction-refinement scheme for reachability proceeds as follows.
We assume we are given a game G = 〈S, λ, δ〉, together with an initial set θ ⊆ S and a
final set T ⊆ S, and an abstraction V for G that is precise for θ and T . The question to
be decided is: θ ∩ 〈1〉♦T = ∅?

The algorithm proceeds as follows. Using the may and must predecessor operators,
we compute respectively the setWm

1 of may-winning abstract states, and the setWM
1 of

must-winning abstract states. IfWm
1 ∩θ↑mV = ∅, then the algorithm answers the question

No; if WM
1 ∩ θ↑MV
= ∅, then the algorithm answers the question Yes. Otherwise, the

algorithm picks an abstract state v such that

v ∈ (Wm
1 \WM

1) ∩ CpreV,m
1 (WM

1). (3)

Solving Games Via Three-Valued Abstraction Refinement 79

Algorithm 1. 3-valued Abstraction Refinement for Reachability Games
Input: A concrete game structure G = 〈S, λ, δ〉, a set of initial states θ ⊆ S, a set of target states
T ⊆ S, and an abstraction V ⊆ 22S\∅ that is precise for θ and T .
Output: Yes if θ ∩ 〈1〉♦T �= ∅, and No otherwise.

1. while true do
2. W M

1 := μY.(T↑M
V ∪ CpreV,M

1 (Y))
3. W m

1 := μY.(T↑m
V ∪ CpreV,m

1 (Y))
4. if W m

1 ∩ θ↑m
V = ∅ then return No

5. else if W M
1 ∩ θ↑M

V �= ∅ then return Yes
6. else
7. choose v ∈ (W m

1 \W M
1) ∩ CpreV,m

1 (W M
1)

8. let v1 := v ∩ Cpre1(W
M
1 ↓) and v2 := v \ v1

9. let V := (V \ {v}) ∪ {v1, v2}
10. end if
11. end while

1

2

4

5

6 73

va vb vc vd

Fig. 1. Three-Valued Abstraction Refinement in Reachability Game

Such a state lies at the border between WM
1 and Wm

1 . The state v is split into two
abstract states v1 and v2, where:

v1 = v ∩ Cpre1(W
M
1 ↓) v2 = v \ Cpre1(W

M
1 ↓).

As a consequence of (3), we have that v1, v2
= ∅. The algorithm is given in detail
as Algorithm 1. We first state the partial correctness of the algorithm, postponing the
analysis of its termination to Section 3.3.

Lemma 1. At Step 4 of Algorithm 1, we have WM
1 ↓ ⊆ 〈1〉♦T ⊆Wm

1 ↓.

Theorem 1. (partial correctness) If Algorithm 1 terminates, it returns the correct an-
swer.

Example 1. As an example, consider the game G illustrated in Figure 1. The state
space of the game is S = {1, 2, 3, 4, 5, 6, 7}, and the abstract state space is

80 L. de Alfaro and P. Roy

Algorithm 2. 3-valued Abstraction Refinement for Safety Games
Input: A concrete game structure G = 〈S, λ, δ〉, a set of initial states θ ⊆ S, a set of target states
T ⊆ S, and an abstraction V ⊆ 22S\∅ that is precise for θ and T .
Output: Yes if θ ∩ 〈1〉�T �= ∅, and No otherwise.

1. while true do
2. W M

1 := νY.(T↑M
V ∩ CpreV,M

1 (Y))
3. W m

1 := νY.(T↑m
V ∩ CpreV,m

1 (Y))
4. if W m

1 ∩ θ↑m
V = ∅ then return No

5. else if W M
1 ∩ θ↑M

V �= ∅ then return Yes
6. else
7. choose v ∈ (W m

1 \W M
1) ∩ CpreV,m

2 (V \W m
1)

8. let v1 := v ∩ Cpre2(S \ (W m
1 ↓)) and v2 := v \ v1

9. let V := (V \ {v}) ∪ {v1, v2}
10. end if
11. end while

V = {va, vb, vc, vd}, as indicated in the figure; the player-2 states are S2 = {2, 3, 4}.
We consider θ = {1} and T = {7}. After Steps 2 and 3 of Algorithm 1, we have
Wm

1 = {va, vb, vc, vd}, and WM
1 = {vc, vd}. Therefore, the algorithm can answer nei-

ther No in Steps 4, nor Yes in Step 5, and proceeds to refine the abstraction. In Step 7, the
only candidate for splitting is v = vb, which is split into v1 = vb∩Cpre1(W

M
1 ↓) = {3},

and v2 = vb \ v1 = {2, 4}. It is easy to see that at the next iteration of the analysis, v1
and va are added to WM

1 , and the algorithm returns the answer Yes.

3.2 Safety Games

We next consider a safety game specified by a target T ⊆ S, together with an initial
condition θ ⊆ S. Given an abstraction V that is precise for T and θ, the goal is to
answer the question of whether θ ∩ 〈1〉�T = ∅. As for reachability games, we begin
by computing the set Wm

1 of may-winning states, and the set WM
1 of must-winning

states. Again, if Wm
1 ∩ θ↑mV = ∅, we answer No, and if WM

1 ∩ θ↑MV
= ∅, we answer
Yes. In safety games, unlike in reachability games, we cannot split abstract states at
the may-must boundary. For reachability games, a may-state can only win by reaching
the goal T , which is contained in WM

1 ↓: hence, we refine the may-must border. In a
safety game with objective �T , on the other hand, we have Wm

1 ↓ ⊆ T , and a state in
Wm

1 ↓ can be winning even if it never reaches WM
1 ↓ (which indeed can be empty if the

abstraction is too coarse). Thus, to solve safety games, we split abstract states at the
may-losing boundary, that is, at the boundary between Wm

1 and its complement. This
can be explained by the fact that 〈1〉�T = S \ 〈2〉♦¬T : the objectives �T and ♦¬T
are dual. Therefore, we adopt for �T the same refinement method we would adopt for
♦¬T , and the may-must boundary for 〈2〉♦¬T is the may-losing boundary for 〈1〉�T .
The algorithm is given below.

Lemma 2. At Step 4 of Algorithm 2, we have WM
1 ↓ ⊆ 〈1〉�T ⊆Wm

1 ↓.

Solving Games Via Three-Valued Abstraction Refinement 81

Theorem 2. (partial correctness) If Algorithm 2 terminates, it returns the correct an-
swer.

3.3 Termination

We present a condition that ensures termination of Algorithms 1 and 2. The condition
states that, if there is a finite algebra of regions (sets of concrete states) that is closed
under Boolean operations and controllable predecessor operators, and that is precise for
the sets of initial and target states, then (i) Algorithms 1 and 2 terminate, and (ii) the
algorithms never produce abstract states that are finer than the regions of the algebra
(guaranteeing that the algorithms do not perform unnecessary work). Formally, a region
algebra for a game G = 〈S, λ, δ〉 is an abstraction U such that:

– U is closed under Boolean operations: for all u1, u2 ∈ U , we have u1 ∪ u2 ∈ U
and S \ u1 ∈ U .

– U is closed under controllable predecessor operators: for all u ∈ U , we have
Cpre1(u) ∈ U and Cpre2(u) ∈ U .

Theorem 3. (termination) Consider a game G with a finite region algebra U . Assume
that Algorithm 1 or 2 are called with arguments G, θ, T , with θ, T ∈ U , and with an
initial abstraction V ⊆ U . Then, the following assertions hold for both algorithms:

1. The algorithms, during their executions, produce abstract states that are all mem-
bers of the algebra U .

2. The algorithms terminate.

The proof of the results is immediate. Many games, including timed games, have the
finite region algebras mentioned in the above theorem [13,10].

3.4 Approximate Abstraction Refinement Schemes

While the abstraction refinement scheme above is fairly general, it makes two assump-
tions that may not hold in a practical implementation:

– it assumes that we can compute CpreV,m
∗ and CpreV,M

∗ of (2) precisely;
– it assumes that, once we pick an abstract state v to split, we can split it into v1 and
v2 precisely, as outlined in Algorithms 1 and 2.

In fact, both assumptions can be related, yielding a more widely applicable abstraction
refinement algorithm for two-player games. We present the modified algorithm for the
reachability case only; the results can be easily extended to the dual case of safety
objectives. Our starting point consists in approximate versions CpreV,m+

i ,CpreV,M−
i :

2V �→ 2V of the operators CpreV,m
i , CpreV,M

i , for i ∈ {1, 2}. We require that, for all
U ⊆ V and i ∈ {1, 2}, we have:

CpreV,m
i (U) ⊆ CpreV,m+

i (U) CpreV,M−
i (U) ⊆ CpreV,M

i (U) . (4)

With these operators, we can phrase a new, approximate abstraction scheme for reacha-
bility, given in Algorithm 3. The use of the approximate operators means that, in Step 8,

82 L. de Alfaro and P. Roy

Algorithm 3. Approximate 3-valued Abstraction Refinement for Reachability Games
Input: A concrete game structure G = 〈S, λ, δ〉, a set of initial states θ ⊆ S, a set of target states
T ⊆ S, and an abstraction V ⊆ 22S\∅ that is precise for θ and T .
Output: Yes if θ ∩ 〈1〉♦T �= ∅, and No otherwise.

1. while true do
2. W M−

1 := μY.(T↑M
V ∪ CpreV,M−

1 (Y))
3. W m+

1 := μY.(T↑m
V ∪ CpreV,m+

1 (Y))
4. if W m+

1 ∩ θ↑m
V = ∅ then return No

5. else if W M−
1 ∩ θ↑M

V �= ∅ then return Yes
6. else
7. choose v ∈ (W m+

1 \W M−
1) ∩ CpreV,m+

1 (W M−
1)

8. let v1 := v ∩ Cpre1(W
M−
1 ↓)

9. if v1 = ∅ or v1 = v
10. then split v arbitrarily into non-empty v1 and v2

11. else v2 = r \ v1

12. end if
13. let V := (V \ {v}) ∪ {v1, v2}
14. end if
15. end while

we can be no longer sure that both v1
= ∅ and v \v1
= ∅. If the “precise” split of Step 8
fails, we resort instead to an arbitrary split (Step 10). The following theorem states
that the algorithm essentially enjoys the same properties of the “precise” Algorithms 1
and 2.

Theorem 4. The following assertions hold.

1. Correctness. If Algorithm 3 terminates, it returns the correct answer.
2. Termination. Assume that Algorithm 3 is given as input a game G with a finite re-

gion algebra U , and arguments θ, T ∈ U , as well as with an initial abstraction
V ⊆ U . Assume also that the region algebra U is closed with respect to the opera-
tors CpreV,M−

i and CpreV,m+
i , for i ∈ {1, 2}, and that Step 10 of Algorithm 3 splits

the abstract states in regions in U . Then, Algorithm 3 terminates, and it produces
only abstract states in U in the course of its execution.

3.5 Comparision with Counterexample-Guided Control

It is instructive to compare our three-valued refinement approach with the
counterexample-guided control approach of [12]. In [12], an abstact game structure
is constructed and analyzed. The abstract game contains must transitions for player 1,
and may transitions for player 2. Every counterexample to the property (spoiling strat-
egy for player 2) found in the abstract game is analyzed in the concrete game. If the
counterexample is real, the property is disproved; If the counterexample is spurious, it
is ruled out by refining the abstraction. The process continues until either the property
is disproved, or no abstract counterexamples is found, proving the property.

Solving Games Via Three-Valued Abstraction Refinement 83

21 3 4

5 6

θ
va vb

vc

Fig. 2. Safety game, with objective �T for T = {1, 2, 3, 4}

The main advantage of our proposed three-valued approach over counterexample-
guided control is, somewhat paradoxically, that we do not explicitly construct the ab-
stract game. It was shown in [17,9] that, for a game abstraction to be fully precise,
the must transitions should be represented as hyper-edges (an expensive representation,
space-wise). In the counterexample-guided approach, instead, normal must edges are
used: the abstract game representation incurs a loss of precision, and more abstraction
refinement steps may be needed than with our proposed three-valued approach. This is
best illustrated with an example.

Example 2. Consider the game structure depicted in Figure 2. The state space is S =
{1, 2, 3, 4, 5, 6}, with S1 = {1, 2, 3, 4} and S2 = {5, 6}; the initial states are θ =
{1, 2}. We consider the safety objective �T for T = {1, 2, 3, 4}. We construct the
abstraction V = {va, vb, vc} precise for θ and T , as depicted. In the counterexample-
guided control approach of [12], hyper-must transitions are not considered in the con-
struction of the abstract model, and the transitions between va and vb are lost: the only
transitions from va and vb lead to vc. Therefore, there is a spurious abstract counterex-
ample tree va → vc; ruling it out requires splitting va into its constituent states 1 and
2. Once this is done, there is another spurious abstract counterexample 2 → vb → vc;
ruling it out requires splitting vb in its constituent states. In contrast, in our approach
we have immediately WM

1 = {va, vb} and va, vb ∈ CpreV,M
1 ({va, vb}), so that no

abstraction refinement is required.

The above example illustrates that the counterexample-guided control approach of [12]
may require a finer abstraction than our three-valued refinement approach, to prove a
given property. On the other hand, it is easy to see that if an abstraction suffices to prove
a property in the counterexample-guided control approach, it also suffices in our three-
valued approach: the absence of abstract counterexamples translates directly in the fact
that the states of interest are must-winning.

4 Symbolic Implementation

We now present a concrete symbolic implementation of our abstraction scheme. We
chose a simple symbolic representation for two-player games; while the symbolic game
representations encountered in real verification systems (see, e.g.,[6,7]) are usually
more complex, the same principles apply.

84 L. de Alfaro and P. Roy

4.1 Symbolic Game Structures

To simplify the presentation, we assume that all variables are Boolean. For a set X of
Boolean variables, we denote by F(X) the set of propositional formulas constructed
from the variables in X , the constants true and false, and the propositional connec-
tives ¬,∧,∨,→. We denote with φ[ψ/x] the result of replacing all occurrences of the
variable x in φ with a formula ψ. For φ ∈ F(X) and x ∈ X , we write

{∀
∃
}
x.φ for

φ[true/x]
{∧
∨
}
φ[false/x]. We extend this notation to sets Y = {y1, y2, . . . , yn} of vari-

ables, writing ∀Y.φ for ∀y1.∀y2. · · · ∀yn.φ, and similarly for ∃Y.φ. For a set X of vari-
ables, we also denote by X ′ = {x′ | x ∈ X} the corresponding set of primed variables;
for φ ∈ F(X), we denote φ′ the formula obtained by replacing every x ∈ X with x′.

A state s over a set X of variables is a truth-assignment s : X �→ {T, F} for the
variables in X ; we denote with S[X] the set of all such truth assignments. Given φ ∈
F(X) and s ∈ S[X], we write s |= φ if φ holds when the variables in X are interpreted
as prescribed by s, and we let [[φ]]X = {s ∈ S[X] | s |= φ}. Given φ ∈ F(X ∪X ′) and
s, t ∈ S[X], we write (s, t) |= φ if φ holds when x ∈ X has value s(x), and x′ ∈ X ′

has value t(x). When X , and thus the state space S[X], are clear from the context, we
equate informally formulas and sets of states. These formulas, or sets of states, can be
manipulated with the help of symbolic representations such as BDDs [4]. A symbolic
game structure GS = 〈X,Λ1, Δ〉 consists of the following components:

– A set of Boolean variables X .
– A predicate Λ1 ∈ F(X) defining when it is player 1’s turn to play. We define
Λ2 = ¬Λ1.

– A transition function Δ ∈ F(X ∪ X ′), such that for all s ∈ S[X], there is some
t ∈ S[X] such that (s, t) |= Δ.

A symbolic game structure GS = 〈X,Λ1, Δ〉 induces a (concrete) game structure G =
〈S, λ, δ〉 via S = S[X], and for s, t ∈ S, λ(s) = 1 iff s |= Λ1, and t ∈ δ(s) iff
(s, t) |= Δ. Given a formula φ ∈ F(X), we have

Cpre1([[φ]]X) = [[
(
Λ1 ∧ ∃X ′.(Δ ∧ φ′)

)
∨
(
¬Λ1 ∧ ∀X ′.(Δ→ φ′)

)
]]X .

4.2 Symbolic Abstractions

We specify an abstraction for a symbolic game structure GS = 〈X,Λ1, Δ〉 via a subset
Xa ⊆ X of its variables: the idea is that the abstraction keeps track only of the values
of the variables in Xa; we denote by Xc = X \ Xa the concrete-only variables. We
assume that Λ1 ∈ F(Xa), so that in each abstract state, only one of the two players can
move (in other words, we consider turn-preserving abstractions [9]). With slight abuse
of notation, we identify the abstract state space V with S[Xa], where, for s ∈ S[X] and
v ∈ V , we let s ∈ v iff s(x) = v(x) for all x ∈ Xa. On this abstract state space, the
operators CpreV,m

1 and CpreV,M
1 can be computed symbolically via the corresponding

operators SCpreV,m
1 and SCpreV,M

1 , defined as follows. For φ ∈ F(Xa),

SCpreV,m
1 (φ) = ∃Xc.

((
Λ1 ∧ ∃X ′.(Δ ∧ φ′)

)
∨
(
Λ2 ∧ ∀X ′.(Δ→ φ′)

))
(5)

SCpreV,M
1 (φ) = ∀Xc.

((
Λ1 ∧ ∃X ′.(Δ ∧ φ′)

)
∨
(
Λ2 ∧ ∀X ′.(Δ→ φ′)

))
(6)

Solving Games Via Three-Valued Abstraction Refinement 85

The above operators correspond exactly to (2). Alternatively, we can abstract the tran-
sition formula Δ, defining:

Δm
Xa = ∃Xc.∃Xc′.Δ ΔM

Xa = ∀Xc.∃Xc′.Δ .

These abstract transition relations can be used to compute approximate versions
SCpreV,m+

1 and SCpreV,M−
1 of the controllable predecessor operators of (5), (6):

SCpreV,m+
1 (φ) =

((
Λ1 ∧ ∃Xa′.(Δm

Xa ∧ φ′)
)
∨
(
Λ2 ∧ ∀Xa′.(Δm

Xa → φ′)
))

SCpreV,M−
1 (φ) =

((
Λ1 ∧ ∃Xa′.(ΔM

Xa ∧ φ′)
)
∨
(
Λ2 ∧ ∀Xa′.(ΔM

Xa → φ′)
))

These operators, while approximate, satisfy the conditions (4), and can thus be used to
implement symbolically Algorithm 3.

4.3 Symbolic Abstraction Refinement

We replace the abstraction refinement step of Algorithms 1, 2, and 3 with a step that
adds a variable x ∈ Xc to the set Xa of variables present in the abstraction. The
challenge is to choose a variable x that increases the precision of the abstraction in a
useful way. To this end, we follow an approach inspired directly by [5].

Denote by v ∈ S[Xa] the abstract state that Algorithms 3 chooses for splitting at
Step 7, and let ψM−

1 ∈ F(Xa) be the formula defining the set WM−
1 in the same algo-

rithm. We choose x ∈ Xc so that there are at least two states s1, s2 ∈ v that differ only
for the value of x, and such that s1 |= SCpreV,m+

1 (ψM−
1) and s2
|= SCpreV,m+

1 (ψM−
1).

Thus, the symbolic abstraction refinement algorithm first searches for a variable x ∈ Xc

for which the following formula is true:

∃(Xc\x).
((
χv →

(
x ≡ SCpreV,m+

1 (ψM−
1)

))
∨
(
χv →

(
x
≡ SCpreV,m+

1 (ψM−
1)

)))
,

where χv is the characteristic formula of v:

χv =
∧{

x | x ∈ Xa.v(x) = T
}
∧

∧{
¬x | x ∈ Xa.v(x) = F

}
.

If no such variable can be found, due to the approximate computation of SCpreV,m+
1 and

SCpreV,M−
1 , then x ∈ Xc is chosen arbitrarily. The choice of variable for Algorithm 2

can be obtained by reasoning in dual fashion.

5 Abstraction Refinement for Parity Games

We now present a general abstraction-refinement algorithm to solve a n-color parity
game where the state-space S is partitioned into n disjoint subsets B0, B1, . . . , Bn.
Denoting the parity condition 〈B0, . . . , Bn〉 by ϕ, the winning states can be computed
as follows [11]:

〈1〉ϕ = ΥnYn. . . . νY0.
(
(B0 ∩ Cpre1(Y0)) ∪ . . . ∪ (Bn ∩ Cpre1(Yn))

)
,

86 L. de Alfaro and P. Roy

Algorithm 4. 3-valued Abstraction Refinement for Parity Games
Input: A concrete game structure G = 〈S,λ, δ〉, a set of initial states θ ⊆ S, a parity condition
ϕ = 〈B0, B1, . . . Bn〉, and an abstraction V ⊆ 22S\∅ that is precise for θ, B0, . . . , Bn.
Output: Yes if θ ∩ 〈1〉ϕ �= ∅, and No otherwise.

1. while true do
2. W M

1 := Win(CpreV,M
1 , ∅, n)

3. W m
1 := Win(CpreV,m

1 , ∅, n)
4. if W m

1 ∩ θ↑m
V = ∅ then return No

5. else if W M
1 ∩ θ↑M

V �= ∅ then return Yes
6. else
7. choose (v, v1, v2) from Split(V,W m

1 , W M
1 , n)

11. V = (V \ {v}) ∪ {v1, v2}
13. end if
14. end while

where Υi is ν when i is even, and is μ when i is odd, for i ∈ IN. Algorithm 4 describes
our 3-valued abstraction-refinement approach to solving parity games. The algorithm
starts with an abstraction V that is precise for B0, . . . , Bn. The algorithm computes the
sets Wm

1 and WM
1 using the following formula:

Win(Op, U, k) = ΥkYk. . . . νY0.

⎛
⎜⎝
U ∪

(
Bk↑MV ∩ Op(Yk)

)
∪ · · ·
∪

(
B0↑MV ∩ Op(Y0)

)

⎞
⎟⎠ .

In the formula, U ⊆ V is a set of abstract states that are already known to be must-
winning; in Algorithm 4 we use this formula with Op = CpreV,M

i to compute WM
1 ,

and with Op = CpreV,m
i to compute Wm

1 .
The refinement step relies on a recursive function Split (Algorithm 5) to obtain a

list of candidate splits (v, v1, v2): each of these suggests to split v into non-empty v1
and v2. The function Split is called with a partial parity condition B0, . . . , Bk, for 0 ≤
k ≤ n. The function first computes a candidate split in the color Bk: if k is even (resp.
odd), it proceeds as in Steps 7–8 of Algorithm 2 (resp. Algorithm 1). The function
then recursively computes the may-winning set of states in a game with k − 1 colors,
where the states in UM are already known to be must-winning, and computes additional
candidate splits in such k − 1 color game. We illustrate the function Split with the help
of an example.

Example 3. Figure 3 shows how function Split (Algorithm 5) computes the candidate
splits in a Co-Büchi game with colors B0, B1 (the objective of player 1 consists in
eventually forever staying in B0). The candidate splits in B1 are given by:

P1 = {(r, r1, r2) | r ∈ B1 ∩ (Wm
1 \ WM

1) ∩ CpreV,m
1 (WM

1),
r1 = r ∩ Cpre1(W

M
1), r2 = r \ r1}

To compute the candidate splits in B0, the algorithm considers a safety game with
goal �B0, with WM

1 as set of states that are already considered to be winning; the

Solving Games Via Three-Valued Abstraction Refinement 87

Algorithm 5. Split(V, Um, UM , k)
Input: An abstraction V , may winning set Um ⊆ V , must winning set UM ⊆ V , number of
colors k.
Output: A set of tuples (v, v1, v2) ∈ V × 2S × 2S .

1. if k odd:
2. then P = {(v, v1, v2) | v ∈ {Bk ∩ (Um \ UM) ∩ CpreV,m

1 (UM)},
v1 = v ∩ Cpre1(UM), v2 = v \ v1, v1 �= ∅, v2 �= ∅}

3. else P = {(v, v1, v2) | v ∈ {Bk ∩ (Um \ UM) ∩ CpreV,m
2 (V \ Um)},

v1 = v ∩ Cpre2(V \ Um), v2 = v \ v1, v1 �= ∅, v2 �= ∅}
4. end if
5. if k = 0 then return P
6. else
7. W m

1 := Win(CpreV,m
1 , UM , k − 1)

8. return P ∪ Split(V,W m
1 , UM , k − 1))

9. end if

S

B0

B1

W 1
m W 1

M

Vm

r

v

r1

r2

v1

v2

Fig. 3. Abstraction refinement for co-Büchi games

may-winning states in this game are Vm = νY0. (WM
1 ∪ (B0 ∩ CpreV,m

1 (Y0))). Thus,
the algorithm computes the following candidate splits in B0:

P0 = {(v, v1, v2) | v ∈ B0 ∩ (Vm \WM
1) ∩ CpreV,m

2 (V \ Vm),
v1 = v ∩ Cpre2(V \ Vm), v2 = v \ v1}.

The function Split returns P1 ∪ P0 as the set of candidate splits for the given co-Büchi
game.

Lemma 3. At Step 4 of Algorithm 4, we have WM
1 ↓ ⊆ 〈1〉ϕ ⊆Wm

1 ↓.

Theorem 5. If Algorithm 4 terminates, it returns the correct answer. Moreover, con-
sider a game G with a finite region algebra U . Assume that Algorithm 4 is called with
an initial abstractionV ⊆ U . Then, the algorithms terminates, and during its execution,
it produces abstract states that are all members of the algebra U .

88 L. de Alfaro and P. Roy

6 Conclusion and Future Work

We have presented a technique for the verification of game properties based on the
construction, three-valued analysis, and refinement of game abstractions. The approach
is suitable for symbolic implementation and, being based entirely on the evaluation of
predecessor operators, is simple both to present and to implement. We plan to imple-
ment the approach as part of the Ticc toolset of interface composition and analysis [1],
applying it both to the untimed interface composition problem (which requires solving
safety games), and to the timed interface composition problem (which requires solving
3-color parity games).

References

1. Adler, B., de Alfaro, L., Silva, L.D.D., Faella, M., Legay, A., Raman, V., Roy, P.: TICC: a
tool for interface compatibility and composition. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 59–62. Springer, Heidelberg (2006)

2. Alur, R., Itai, A., Kurshan, R.P., Yannakakis, M.: Timing verification by successive approxi-
mation. Inf. Comput. 118(1), 142–157 (1995)

3. Ball, T., Rajamani, S.: The SLAM project: Debugging system software via static analysis.
In: Proceedings of the 29th Annual Symposium on Principles of Programming Languages,
pp. 1–3. ACM Press, New York (2002)

4. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers C-35(8), 677–691 (1986)

5. Clarke, E., Grumberg, O., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, Springer, Heidelberg
(2000)

6. de Alfaro, L., Alur, R., Grosu, R., Henzinger, T., Kang, M., Majumdar, R., Mang, F., Meyer-
Kirsch, C., Wang, B.: Mocha: A model checking tool that exploits design structure. In: ICSE
01. Proceedings of the 23rd International Conference on Software Engineering, pp. 835–836
(2001)

7. de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Roy, P., Sorea, M.: Sociable interfaces. In:
Gramlich, B. (ed.) Frontiers of Combining Systems. LNCS (LNAI), vol. 3717, pp. 81–105.
Springer, Heidelberg (2005)

8. de Alfaro, L., Faella, M., Henzinger, T., Majumdar, R., Stoelinga, M.: The element of surprise
in timed games. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp.
144–158. Springer, Heidelberg (2003)

9. de Alfaro, L., Godefroid, P., Jagadeesan, R.: Three-valued abstractions of games: Uncer-
tainty, but with precision. In: Proc. 19th IEEE Symp. Logic in Comp. Sci., pp. 170–179.
IEEE Computer Society Press, Los Alamitos (2004)

10. de Alfaro, L., Henzinger, T., Majumdar, R.: Symbolic algorithms for infinite-state games.
In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, Springer, Heidelberg
(2001)

11. Emerson, E., Jutla, C.: Tree automata, mu-calculus and determinacy (extended abstract). In:
Proc. 32nd IEEE Symp. Found. of Comp. Sci., pp. 368–377. IEEE Computer Society Press,
Los Alamitos (1991)

12. Henzinger, T., Jhala, R., Majumdar, R.: Counterexample-guided control. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 886–902.
Springer, Heidelberg (2003)

Solving Games Via Three-Valued Abstraction Refinement 89

13. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems.
In: Mayr, E.W., Puech, C. (eds.) STACS 95. LNCS, vol. 900, pp. 229–242. Springer, Heidel-
berg (1995)

14. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specifica-
tion. Springer, New York (1991)

15. Martin, D.: An extension of Borel determinacy. Annals of Pure and Applied Logic 49, 279–
293 (1990)

16. Shoham, S.: A game-based framework for CTL counter-examples and 3-valued abstraction-
refinement. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 275–287.
Springer, Heidelberg (2003)

17. Shoham, S., Grumberg, O.: Monotonic abstraction-refinement for CTL. In: Jensen, K., Podel-
ski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 546–560. Springer, Heidelberg (2004)

18. Shoham, S., Grumberg, O.: 3-valued abstraction: More precision at less cost. In: Proc. 21st
IEEE Symp. Logic in Comp. Sci., pp. 399–410. IEEE Computer Society Press, Los Alamitos
(2006)

19. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science, vol. B, ch. 4, pp. 135–191. Elsevier Science Publishers,North-Holland,
Amsterdam (1990)

Linear Time Logics Around PSL: Complexity,
Expressiveness, and a Little Bit of Succinctness

Martin Lange

Department of Computer Science, University of Aarhus, Denmark

Abstract. We consider linear time temporal logic enriched with semi-
extended regular expressions through various operators that have been
proposed in the literature, in particular in Accelera’s Property Specifi-
cation Language. We obtain results about the expressive power of frag-
ments of this logic when restricted to certain operators only: basically,
all operators alone suffice for expressive completeness w.r.t. ω-regular
expressions, just the closure operator is too weak. We also obtain com-
plexity results. Again, almost all operators alone suffice for EXPSPACE-
completeness, just the closure operator needs some help.

1 Introduction

Pnueli has acquired the linear time temporal logic LTL from philosophy for the
specification of runs of reactive systems [7]. It has since been established as a
milestone in computer science, particularly in automatic program verification
through model checking. Its success and popularity as such is not matched by
its expressive power though which was shown to be rather limited: LTL is equi-
expressive to First-Order Logic on infinite words and, thus, can express exactly
the star-free ω-languages [5,11]. This is not enough for compositional verification
for instance.

Some early attempts have been made at extending LTL with the aim of captur-
ing all ω-regular languages. Wolper’s ETL incorporates non-deterministic Büchi
automata as connectives in the language [14]. QPTL extends LTL with quan-
tifications over atomic propositions in the style of Monadic Second-Order Logic
[10]. The linear time μ-calculus μTL allows arbitrary recursive definitions of
properties via fixpoint quantifiers in the logic [2,13].

None of these logics has seen an impact that would make it replace LTL as the
most popular specification language for linear time properties. This may be be-
cause of non-elementary complexity (QPTL), syntactical inconvenience (ETL),
and difficulty in understanding specifications (μTL), etc.

Nevertheless, the need for a convenient temporal specification formalism for
ω-regular properties is widely recognised. This is for example reflected in the def-
inition of Accelera’s Property Specification Language (PSL), designed to provide
a general-purpose interface to hardware verification problems [1]. At its temporal
layer it contains a logic that is capable of expressing all ω-regular properties. This
is mainly achieved through the introduction of operators in LTL that take semi-
extended regular expressions as arguments. Following common agreement in the

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 90–104, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Linear Time Logics Around PSL 91

temporal logic community we also use PSL to refer to this logic. To be more pre-
cise: PSL is often used to describe a temporal logic enhanced with semi-extended
regular expressions through various operators. This is because the original defi-
nition of Accelera’s PSL allows a multitude of operators of which some are just
syntactical sugar. For example, the intersection operator on regular expressions
that does not require the same length of its operands can easily be expressed
using the usual intersection operator: α&β ≡ (α;Σ∗)&&(β;Σ∗), etc.

Much effort has already been taken to design verification algorithms for PSL
properties, for example through automata-theoretic constructions [3]. Neverthe-
less, we are not aware of a rigorous analysis of its computational complexity, and
the expressive power of fragments obtained by restricting the use of temporal
operators in the logic. In order to make up for this, we consider linear time tem-
poral logic enriched with various operators that have occurred in the literature
so far, not only in PSL. For pragmatics and complexity-theoretic upper bounds
it is clearly desirable to consider the richest possible logic – not just in terms
of expressive power but mainly regarding its variety of temporal operators. We
include the commonly known until operator from LTL and fixpoint quantifiers
from μTL. We also allow a stengthened until operator Uα from Dynamic LTL
which – roughly speaking – asserts that the until must be satisfied at the end of
a word in L(α) [6]. We include an and-then operator %� which realises concate-
nation of a semi-extended regular expression with a temporal formula. It occurs
in PSL in a slightly different way where the regular expression and the temporal
formula are required to overlap in one state. This can, however, easily be defined
using an Uα, and in order to cover as many cases as possible we let it denote the
non-overlapping version here. Finally, inspired by the other PSL operator that
links regular expressions with formulas we also include a closure operator Cl(α).
It asserts that at no position does a word look like it is not going to belong to
L(α). In other words, all of its prefixes must be extendable to a finite word in
L(α). This is slightly more general than the original PSL closure operator, see
below for details.

Clearly, not all operators are needed in order to achieve expressive complete-
ness w.r.t. ω-regular properties. For example, it is known that the specialised
strengthened until operator Fα is sufficient [6]. Sect. 3 shows what happens w.r.t.
expressive power when certain operators are excluded from the logic. Because
of lack of space here we only scrape upon the issue of succinctness. Clearly,
since semi-extended regular expressions are only as expressive as ordinary ones
there is no gain in expressive power from using them instead. However, some
properties may be definable using shorter formulas. Note that Dynamic LTL for
example, known to be PSPACE-complete [6], allows ordinary regular expressions
only. Sect. 4 uses the expressiveness results to derive a general upper bound of
det. exponential space for the satisfiability problem of this logic via a reduction
to μTL. We also show that this is optimal obtaining the rule of thumb: regular
expressions leave temporal logic PSPACE-complete, semi-extended ones make it
EXPSPACE-complete.

92 M. Lange

2 Preliminaries

We start by recalling semi-extended regular expressions. Let P = {q, p, . . .} be
finite set of atomic propositions. Propositional Logic (PL) is the least set con-
taining P , the constants &,⊥, and being closed under the operators ∨,∧,→,
etc., as well as the complementation operator ·̄.

The satisfaction relation between symbols of the alphabet 2P and formulas of
PL is the usual one: a |= q iff q ∈ a; a |= b1 ∧ b2 iff a |= b1 and a |= b2; a |= b iff
a
|= b; etc.

We fix Σ := 2P as an alphabet for the remainder of the paper. For a word
w ∈ Σ∗ we use |w| to denote its length, ε to denote the empty word, and wi

to denote the i-th symbol of w for i ∈ {0, . . . , |w| − 1}. The set of all infinite
words is Σω. For a finite or infinite word w we write wi..j to denote the subword
wi . . . wj−1 of length j − i, and wi.. to denote its suffix starting with wi. We
write w ≺ v to denote that w is a proper prefix of v.

For two languages L,L′ with L ⊆ Σ∗ and L′ either a language of finite or of
infinite words, their composition LL′ denotes the concatenation of all words in
L and L′ in the usual way. The n-fold iteration (in the finite case) is denoted Ln

with L0 = {ε}. An important mapping from languages of finite words to those
of infinite ones is the closure, defined for all L ⊆ Σ∗ as Cl(L) := {w ∈ Σω | ∀k ∈
N ∃v ∈ Σ∗ s.t. w0..kv ∈ L}.

Semi-extended regular expressions (SERE) are now built upon formulas of PL
in the following way.

α ::= b | α ∪ α | α ∩ α | α;α | α∗

where b ∈ PL. Let |α| := |Sub(α)| measure the size of an SERE with Sub(α)
being the set of all subexpressions occurring in α where propositional formulas
are atomic. Another important measure is the number of intersections occurring
in α: is(α) := |{β ∈ Sub(α) | β is of the form β1 ∩ β2}.

SERE define languages of finite words in the usual way. L(b) := {w ∈ Σ∗ |
|w| = 1, w0 |= b}, L(α1 ∪ α2) := L(α1) ∪ L(α2), L(α1 ∩ α2) := L(α1) ∩ L(α2),
L(α1;α2) := L(α1)L(α2), and L(α∗) :=

⋃
n∈N(L(α))n.

The intersection operator ∩ allows us to define some usual ingredients of the
syntax of regular expressions as abbreviations: ∅ := (q) ∩ (q) for some q ∈ P ,
and ε := (q)∗ ∩ (q)∗. Equally, the symbolic encoding of symbols in PL enables a
constant representation of the universal regular expression: Σ∗ = (&)∗.

An ordinary regular expressions (RE) is an SERE α with is(α) = 0. We allow
ε and ∅ as primitives in RE though. An ω-regular expression (ω-RE) γ is of the
form

⋃n
i=1 αi;βω

i for some n ∈ N s.t. αi, βi are RE, and ε
∈ L(βi). Its language
L(γ) is defined in the usual way using union, concatenation and infinite iteration
of finite languages.

Next we consider linear time temporal logic. Take P from above. Let V =
{X,Y, . . .} be a countably infinite set of monadic second-order variables. Formu-
las of full Linear Time Temporal Logic with SERE (TLSERE) are given by the
following grammar.

ϕ ::= q | ϕ ∧ ϕ | ¬ϕ | X | ©ϕ | ϕ U ϕ | ϕ Uα ϕ | μX.ϕ | α %� ϕ | Cl(α)

Linear Time Logics Around PSL 93

where q ∈ P , X ∈ V , and α is an SERE over P . As usual, we require variables X
to only occur under the scope of an even number of negation symbols within ψ if
X is quantified by μX.ψ. If the α are restricted to ordinary regular expressions
we obtain the logic TLRE. We also use the usual abbreviated Boolean operators
like ∨, and the LTL-operators F and G as well as the strengthened version Fα ϕ :=
tt Uα ϕ.

The size of a formula is |ϕ| := |Sub(ϕ)| where Sub(ϕ) is the set of all sub-
formulas of ϕ including Sub(α) for any SERE α occurring in ϕ. The reason for
not counting them as atomic is the expressive power of the temporal operators,
c.f. next section below. It is possible to encode a lot of temporal property in
the SERE rather than the temporal operators themselves. Counting SERE as
atomic would therefore lead to unnaturally small formulas. The measure is(α)
can then be extended to formulas straight-forwardly: is(ϕ) := |{β ∈ Sub(ϕ) | β
is an SERE of the form β1 ∩ β2}.

TLSERE is interpreted over infinite words w ∈ Σω. The semantics assigns to
each formula ϕ a language Lρ(ϕ) ⊆ Σω relative to some environment ρ : V →
2Σω

which interprets free variables by languages of infinite words. We write
ρ[X �→ L] for the function that maps X to L and agrees with ρ on all other
arguments.

Lρ(q) := {w ∈ Σω | q ∈ w0}
Lρ(ϕ ∧ ψ) := Lρ(ϕ) ∩ Lρ(ψ)
Lρ(¬ϕ) := Σω \ Lρ(ϕ)
Lρ(X) := ρ(X)

Lρ(©ϕ) := {w ∈ Σω | w1.. ∈ Lρ(ϕ)}
Lρ(ϕ U ψ) := {w ∈ Σω | ∃k∈N s.t. wk..∈Lρ(ψ) and ∀j < k : wj.. ∈ Lρ(ϕ)}
Lρ(ϕ Uα ψ) := {w ∈ Σω | ∃k ∈ N s.t. w0..k+1 ∈ L(α) and wk.. ∈ Lρ(ψ)

and ∀j < k : wj.. ∈ Lρ(ϕ)}

Lρ(μX.ϕ) :=
⋂
{L ⊆ Σω | Lρ[X �→L](ϕ) ⊆ L}

Lρ(α %� ϕ) := L(α)Lρ(ϕ)
Lρ(Cl(α)) := Cl(L(α))

The formula μX.ψ defines the least fixpoint of the monotone function which
maps a language L of infinite words to the set of words that satisfy ψ under the
assumption thatX defines L. Due to negation closure and fixpoint duality we can
also define greatest fixpoints of such maps via νX.ψ := ¬μX.¬ψ[¬X/X], where
the latter denotes the simultaneous substitution of ¬X for every occurrence of
X in ψ.

As usual, we write ϕ ≡ ψ if for all environments ρ we have Lρ(ϕ) = Lρ(ψ). We
use the notation TL[..], listing certain operators, to denote syntactical fragments
of TLSERE, for instance TLSERE = TL[©, U, Uα, μ, %�, Cl]. We do not list variables
explicitly because variables without quantifiers or vice-versa are meaningless.
Also, we always assume that these fragments contain atomic propositions and the

94 M. Lange

Boolean operators. For example, LTL is TL[©, U], and it has genuine fragments
TL[©, F], TL[F], TL[©] [4]. The linear time μ-calculus μTL is TL[©, μ], and
PSL is TL[U, Fα, Cl]: the PSL formula consisting of an SERE α is equivalent to
the TLSERE formula (Fα tt) ∨ Cl(α), where tt := q ∨ ¬q for some q ∈ P . If we
restrict the use of semi-extended regular expressions in a fragment to ordinary
regular expressions only then we denote this by TLRE[..].

Some of the results regarding expressive power are obtained using automata
on finite words, Büchi automata, and translations from SERE into those. We
therefore quickly recall the automata-theoretic foundations. A nondeterministic
finite automaton (NFA) is a tuple A = (Q,P , q0, δ, F) with Q a finite set of
states, q0 ∈ Q a starting state, and F ⊆ Q a set of final states. Its alphabet
is Σ = 2P , and its transition relation δ is a finite subset of Q × PL × Q. We
define |A| := |δ| as the size of the NFA. Note that these NFA use symbolic
representations of symbols in their transitions in order to avoid unnecessary
exponential blow-ups in their sizes. A run of A on a finite word w ∈ Σ∗ is a
non-empty sequence q0, w0, q1, w

1, . . . , qn s.t. for all i = 0, . . . , n− 1 there is a b
s.t. wi |= b and (qi, b, qi+1) ∈ δ. It is accepting iff qn ∈ F .

Translating RE into NFA is a standard exercise. It is not hard to see that
the usual uniform translation applies to the case of symbolically represented
transition relations as well. It is also relatively easy to see that it can be extended
to SERE. The translation of the SERE α∩β simply uses the well-known product
construction on NFA. Clearly, the size of the product NFA is quadratic in the
original sizes, and iterating this leads to an exponential translation.

Proposition 1. For every SERE α there is an NFA Aα s.t. L(Aα) = L(α) and
|Aα| = O(2|α|·(is(α)+1)).

To see that an exponential blow-up can occur simply consider the recursively
defined RE αn with α0 := q and αn+1 := αn;¬q;αn; q.

A nondeterministic Büchi automaton (NBA) is syntactically defined like an
NFA. It runs on infinite words w ∈ Σω via q0, w0, q1, w

1, q2, . . . s.t. for all i ∈ N
there is a b ∈ PL s.t. wi |= b and (qi, b, qi+1) ∈ δ. It is accepting iff there are
infinitely many i s.t. qi ∈ F . We use NBA to model the closure of languages L
of finite words. This is particularly easy if L is given by an NFA.

Lemma 1. For every NFA A there is an NBA Acl s.t. L(Acl) = Cl(L(A)), and
|Acl | ≤ |A|.

Proof. Let A = (Q,P , q0, δ, F) and Q′ ⊆ Q consist of all states which are reach-
able from q0 and productive, i.e. from each of them a final state is reachable.
Then define Acl := (Q′,P , q0, δ, Q′). We have L(Acl) ⊆ Cl (L(A)) because runs
in Acl only visit states from with final states in A are reachable.

For the converse direction suppose w ∈ Cl(L(A)), i.e. for every k ∈ N there
is a v ∈ Σ∗ and an accepting run of A on w0..kv. Clearly, all these runs stay in
Q′. Furthermore, they can be arranged to form an infinite but finitely branching
tree, and König’s Lemma yields an accepting run of Acl on w. ()

Linear Time Logics Around PSL 95

3 Expressive Power and Succinctness

For two fragments L1 and L2 of TLSERE we write L1 ≤f(n,k) L2 if for every
ϕ ∈ L1 there is a ψ ∈ L2 s.t. ϕ ≡ ψ and |ψ| ≤ f(|ϕ|, is(ϕ)). This measures
relative expressive power and possible succinctness. We write L1 ≡f(n,k) L2 if
L1 ≤f(n,k) L2 and L2 ≤f(n,k) L1. In case the succinctness issue is unimportant
we simply denote expressive subsumption and equivalence using ≤ and ≡.

It is well-known that TL[©, μ], the linear time μ-calculus, has the same ex-
pressive power as Monadic Second-Order Logic on infinite words, or equivalently,
ω-RE. It is also known that TLRE[Fα] and, thus, TL[Fα] is of the same expres-
siveness [6]. We start by showing that the non-overlapping and-then operator
suffices for expressive completeness too.

Theorem 1. TL[Fα] ≤O(nk+1) TL[%�].

Proof. We use a function cut : SERE → 2SERE×PL that decomposes an SERE
via cut(α) = {(β1, b1), . . . , (βn, bn)} only if L(α) =

⋃n
i=1 L(βi)L(bi). This can be

recursively defined as

cut(b) := {(ε, b)}
cut(α1 ∪ α2) := cut(α1) ∪ cut(α2)
cut(α1 ∩ α2) := {(β1 ∩ β2, b1 ∧ b2) | (βi, bi) ∈ cut(αi) for i = 1, 2}

cut(α1;α2) := {(α1;β, b) | (β, b) ∈ cut(α2)} ∪
{

cut(α1) , if ε ∈ L(α2)
∅ , o.w.

cut(α∗) := {(α∗;β, b) | (β, b) ∈ cut(α)}

Note that |cut(α)| ≤ O(|α|is(α)+1). We can now use this decomposition to trans-
late a formula of the form Fα ϕ with an overlap between α and ϕ into a non-
overlapping one: Fα ϕ ≡

∨
(β,b)∈cut(α) β %� (b ∧ ϕ). ()

The same reduction can be carried out from TLRE[Fα] to TLRE[%�], and it would
be polynomial because we would have k = 0.

The expressive power of the closure operator is a natural concern. It turns
out to be weaker than Uα or %� for instance. We use an invariant technique
on automata structure to show this. An NBA A = (Q,P , q0, δ, F) is called ∃∀-
accepting if there is no q ∈ F from which a q′
∈ F is reachable. Runs of these
automata accept iff they eventually only visit final states. Note that this is not
the same as a co-Büchi automaton since it is a syntactical restriction, but it is a
special case of a weak NBA. An important observation is that the NBA Acl as
constructed in the proof of Lemma 1 are actually ∃∀-accepting.

Lemma 2. Every language definable in TL[Cl] can be recognised by an ∃∀-
accepting NBA.

Proof. Let ψ ∈ TL[Cl]. Clearly, ψ is a Boolean combination of formulas of the
form Cl(α). Using deMorgan laws it is possible to transform ψ into a positive
Boolean combination of formulas of the form Cl(α) and ¬Cl(β).

96 M. Lange

Now note that w
|= Cl(β) iff there is a v ≺ w s.t. for all v′ ∈ Σ∗: vv′
∈ L(β).
Let Aβ be the NFA that recognises exactly the models of β, c.f. Prop. 1. It
can be determinised and complemented into a DFA Aβ = (Q,P , q0, δ, F). Let
Q′ := {q ∈ Q | ∀q′ ∈ Q: if q′ is reachable from q then q′ ∈ F}. Note that Q′ ⊆ F .
Now consider the deterministic NBA A′

β
= (Q,P , q0, δ, Q′). It accepts a word w

iff the unique run on it exhibits a prefix v which takes the NBA from q0 to a
state q ∈ F . Hence, v
∈ L(β). Furthermore, vv′
∈ L(β) for any v′ because A′

β
is

deterministic and only states in F are reachable from q.
This shows that ψ is equivalent to a positive Boolean combination of languages

recognisable by ∃∀-accepting NBA. Given two ∃∀-accepting NBA recognising L1
and L2 it is easy to construct ∃∀-accepting NBA for the languages L1 ∪ L2 and
L1 ∩ L2 using the standard union and product constructions. Hence, L(ψ) can
be recognised by an ∃∀-accepting NBA. ()
Lemma 3. TL[©, Cl] ≡O(n) TL[Cl].

Proof. The ≥ part is of course trivial. For the ≤ part first note that because of
the equivalences ©¬ψ ≡ ¬©ψ and ©(ψ1 ∧ψ2) ≡ ©ψ1 ∧©ψ2 every TL[©, Cl]
formula ϕ can be transformed into a Boolean combination of atomic formulas
of the form ©kq or ©kCl(α) for some SERE α and some k ∈ N. Using the
equivalences q ≡ Cl(q;&∗) and ©Cl(α) ≡ Cl(&;α) it is then possible to elimi-
nate all occurrences of the © operators. The resulting formula is clearly of linear
size. ()
The following looks like an immediate consequence of this but it needs the ob-
servation that the © operator commutes with an U. The same holds for the F
operator.

Lemma 4. TL[©, U, Cl] ≡O(n) TL[U, Cl].

Proof. As the proof of Lemma 3 but also using the equivalence ©(ϕ U ψ) ≡
(©ϕ)U (©ψ) in order to push the © operators down to atomic propositions and
closure operators where they can be eliminated. ()
Corollary 1. TL[©, F, Cl] ≡O(n) TL[F, Cl].

Theorem 2. TL[Cl] is ≤-incomparable to both TL[©, U] and TL[F].

Proof. Since TL[F] ≤ TL[©, U] it suffices to show that there is a TL[Cl] property
which is not definable in TL[©, U], and a TL[F] property which is not definable
in TL[Cl].

It is well-known that TL[©, U], aka LTL, cannot express “q holds in every even
moment”. This, however, can easily be expressed by Cl((q;&)∗). For the converse
direction take the TL[F] formula G F q. According to Lemma 2 its language would
be recognisable by an ∃∀-accepting NBA A = (Q,P , q0, δ, F) if it was definable
in TL[Cl]. Let n := |Q|. Consider the word w := ({q}∅n+1)ω. Since w ∈ L(G F q)
there is an accepting run q0, w

0, q1, w
1, . . . of A on w. Since A is ∃∀-accepting

there is a k s.t. qi ∈ F for all i ≥ k. Then there will be j > i ≥ k s.t. qi = qj and
wh = ∅ for all h = i, . . . , j − 1. This gives us an accepting run on a word of the
form ({q}∅)∗∅ω which should not be accepted. ()

Linear Time Logics Around PSL 97

Corollary 2. TL[F, Cl]
≤ TL[©, U].

The converse direction is still open. It remains to be seen whether or not every
LTL-definable property can also be expressed in TL[F, Cl]. Note for example that,
for atomic propositions p and q, we have p U q ≡ F q ∧ Cl(p∗; q;&∗). However,
this does not extend easily to arbitrary formulas of the form ϕ U ψ.

Clearly, adding the operator %� or Fα to the closure operator yields expressive
completeness since these alone are sufficient for that. This poses the question of
what happens when the closure operator is combined with LTL operators which
are not enough to achieve ω-regular expressiveness. One answer is obtained easily
from Thm. 2: TL[©, U] is strictly less expressive than TL[U, Cl]. On the other
hand, we suspect that TL[U, Cl] is also strictly contained in TLSERE. In particular,
we believe that the property “q holds infinitely often in even moments” is not
expressible in TL[U, Cl].

It is known that each operator present in TLSERE does not exceed its expressive
power beyond ω-regularity. Therefore it is fair to assume that TLSERE is only as
expressive as μTL. We present a direct and conceptionally simple translation
from TLSERE to TL[©, μ] which forms the basis for the complexity analysis in
the next section. The following lemmas prepare for the not so straight-forward
cases in that translation.

Lemma 5. For every NBA A there is a closed TL[©, μ] formula ϕA s.t. L(ϕA)
= L(A) and |ϕA| = O(|A|).

Proof. Let A = (Q,P , q0, δ, F). W.l.o.g. we assume Q = {0, . . . , n} for some
n ∈ N, q0 = 0, and F = {0, . . . ,m} for some m ≤ n. Note that the starting state
can always be assumed to be final by adding a copy of the starting state which
is not reachable from any other state.

The construction of ϕA uses n monadic second-order variables Xi, i ∈ Q, each
Xi representing the moments of a run in which A is in state i. To understand
the construction best we introduce an auxiliary device of an NBA Aρ with a
partial function ρ : Q → 2Σω

acting as an oracle.1 Aρ immediately accepts the
language ρ(i) upon entrance of state i when ρ(i) is defined.

For every i ∈ Q in the order i = n, . . . , 0 we construct a formula ψi(X0, . . . ,
Xi−1) s.t. Lρ(ψi) = {w | Aρ′ accepts w starting in state i} where ρ′(j) := ρ(Xj)
for all j < i.

ψi := σiXi.
∨

(i,b,j)∈δ

b ∧©
{
ψj , if j > i

Xj , o.w.

where σi := μ if i > m and ν otherwise. The correctness claim above is straight-
forwardly verified by induction on i. Also note that ψi is well-defined, and ψ0 is
a closed formula. Its correctness claim refers to the oracle NBA Aρ′ starting in
the initial state 0 and not using the oracle at all. Hence, we have Lρ(ψ0) = L(A)
for any ρ, and therefore define ϕA := ψ0. Note that its size is linear in the size
of A. ()
1 Since oracles are for automata what environments are for the semantics function –

an interpreter of open parts – we use the same symbol ρ here.

98 M. Lange

Lemma 6. For every NFA A and every TL[©, μ] formula χ there is a TL[©, μ]
formula ϕA,χ s.t. for any environment ρ: Lρ(ϕA,χ) = L(A)Lρ(χ) and |ϕA,χ| =
O(|A| + |χ|).

Proof. Similar to the previous construction. Let A = (Q,P , q0, δ, F) with Q =
{0, . . . , n}. We construct for every i = n, . . . , 0 a TL[©, μ] formula ψi(X0, . . . ,
Xi−1) s.t. Lρ(ψi) = LiLρ(χ) where Li ⊆ Σ∗ consists of all words that are
accepted by A when starting in state i under the assumption that upon entering
state j < i, it immediately accepts the language ρ(Xj).

ψi := μXi.
∨

(i,b,j)∈δ

χi ∨ (b ∧©
{
ψj , if j > i

Xj , o.w.
)

where χi := χ if i ∈ F , and ff otherwise. Note that the language defined by an
NFA is given as the simultaneous least fixpoint of the languages recognised by
each state. Hence, only μ quantifiers are needed here as opposed to the NBA
case above where the language is given as a nested greatest/least fixpoint.

Again, define ϕA,χ as ψ0. The correctness of this construction w.r.t. to the
specification above can straight-forwardly be proved by induction on i. Also, the
claim on its size is easily checked to be true. ()

Lemma 7. For every TL[©, μ] formulas ϕ1, ϕ2 and every NFA A there is a
TL[©, μ] formula ϕA,ϕ1,ϕ2 s.t. |ϕA,ϕ1,ϕ2 | = O(|A + |ϕ1| + |ϕ2|) and for all
environments ρ: Lρ(ϕA,ϕ1,ϕ2) = {w ∈ Σω | ∃k ∈ N s.t. w0..k+1 ∈ L(A) and
wk.. ∈ Lρ(ϕ2) and ∀j < k : wj.. ∈ Lρ(ϕ1)}.

Proof. This is done in very much the same way as in the proof of Lemma 6.
There are only two minor differences. (1) Because of the overlap between the
part accepted by A and the part satisfying ϕ2 we need to assert ϕ2 not after
having been in a final state but before entering one. (2) In every step that A
does without entering a final state we need to require ϕ1 to hold.

Again, let A = (Q,P , q0, δ, F) with Q = {0, . . . , n}. Define for each i ∈ Q:

ψi := μXi.
∨

(i,b,j)∈δ

b ∧
(
χi ∨ (ϕ1 ∧©

{
ψj , if j > i
Xj , o.w.

}
)
)

where χi := ϕ2 if j ∈ F , and χi := ff otherwise. Note that the ability to prove ϕ2
is linked to the fact whether or not j belongs to F because of the aforementioned
overlap. Again, define ϕA,ϕ1,ϕ2 := ψ0 to finish the claim. ()

Theorem 3. TLSERE ≤O(2n·(k+1)) TL[©, μ].

Proof. By induction on the structure of the formula. The claim is trivially true
for atomic propositions and variables. Boolean operators, the temporal ©, and
fixpoint quantifiers μ are translated uniformly. An U operator can be replaced
by a least fixpoint formula. The remaining cases are the interesting ones.

Suppose ϕ = α %� ψ. By hypothesis, there is a ψ′ ∈ TL[©, μ] s.t. ψ′ ≡ ψ
and |ψ′| ≤ O(2|ψ|·(is(ψ)+1)). According to Prop. 1 there is an NFA Aα s.t.

Linear Time Logics Around PSL 99

L(Aα) = L(α) and |Aα| ≤ O(2|α|·(is(α)+1)). According to Lemma 6 there is
a TL[©, μ] formula ϕ′ s.t. Lρ(ϕ′) = L(Aα)Lρ(ψ′) under any ρ. Thus, Lρ(ϕ′) =
Lρ(ϕ). Furthermore, |ϕ′| ≤ O(2|ψ|·(is(ψ)+1) + 2|α|·(is(α)+1)) ≤ O(2|ϕ|·(is(ϕ)+1)).

The cases of ϕ = ψ1 Uα ψ2 and ϕ = Cl(α) are done in the same way but using
Lemmas 7, 1, and 5 instead. ()

4 The Complexity of TLSERE and Its Fragments

We can now easily obtain an upper bound on the complexity of the satisfiability
problem for TLSERE from Thm. 3. It composes the exponential reduction with
the known PSPACE upper bound for μTL, found many times in different ways.

Proposition 2. [9,13] Satisfiability in TL[©, μ] is PSPACE-complete.

Corollary 3. Satisfiability in (a) TLSERE is in EXPSPACE, and (b) TLRE is in
PSPACE.

Part (b) is not necessarily surprising. The satisfiability problem of all the logics
considered in the literature with some of the operators of TLRE can be decided
in PSPACE, c.f. Prop. 2 and [9,6,3]. There is no need to assume that the com-
bination of these operators should exceed the PSPACE bound.

Part (a) entails that PSL can be decided in deterministic exponential space.
There is a translation of PSL into NBA of doubly exponential size – but mea-
suring the size of regular expressions as their syntactical length – which goes via
weak alternating Büchi automata [3]. It does not mention SERE, however, this
can easily be incorporated, see above. Since the emptiness problem for NBA is
known to be in NLOGSPACE, part (a) follows for PSL also from that translation
and Savitch’s Theorem [8].

A surprising fact is part (a) in conjunction with the emptiness problem for
SERE. An immediate consequence of Prop. 1 is a PSPACE upper bound on
the emptiness problem (i.e. satisfiability) of semi-extended regular expressions.
However, combining that with the PSPACE decidable operators from temporal
logic raises the space complexity by one exponential. This is also optimal. We
will prove a lower complexity bound of deterministic exponential space by a
reduction from the following 2n-tiling problem, known to be EXPSPACE-hard
[12]. Given an n ∈ N and a finite set T = {1, . . . ,m} called tiles, and two binary
relations Mh,Mv ⊆ T ×T (for horizontal and vertical matching), decide whether
or not there is a function τ : {0, . . . , 2n − 1} × N → T s.t.

– ∀i ∈ {0, . . . , 2n − 2}, ∀j ∈ N : (τ(i, j), τ(i + 1, j)) ∈Mh

– ∀i ∈ {0, . . . , 2n − 1}, ∀j ∈ N : (τ(i, j), τ(i, j + 1)) ∈Mv

Note that such a function tiles the infinite corridor of width 2n s.t. adjacent tiles
match in the horizontal and vertical relations. In the following we will write iMx

for {j | (i, j) ∈Mx} where x ∈ {h, v}.

Theorem 4. Satisfiability in TL[©, F, Fα] is EXPSPACE-hard.

100 M. Lange

Proof. By a reduction from the 2n-tiling problem. Suppose n and a set T of tiles
are given. We can easily regard {0, . . . , 2n − 1}×N as an infinite word in which
the cell (i, j) is represented by the (j ·2n+ i)-th symbol in that word. We will use
atomic propositions t1, . . . , tm to model the tiles and c0, . . . , cn−1 to enumerate
the positions in the word modulo 2n.

First of all we need a counter formula that axiomatises the enumeration of the
symbols. It asserts that the cell at (i, j) is labeled with those propositions which
represent set bits in the binary encoding of i. We use the fact that in binary
increment a bit becomes set iff its current value correctly indicates whether the
bit below does not decrease its value.

ϕcount := χ0 ∧ G
(

(c0 ↔©¬c0) ∧
n−1∧
i=1

©ci ↔
(
ci ↔ (ci−1 →©ci−1)

))

where χ0 :=
∧n−1

i=0 ¬ci marks the beginning of each row. We also need to say
that each cell contains exactly one tile.

ϕtile := G
(m∨
i=1

ti ∧
∧
j �=i

¬tj
)

In order to compare vertically adjacent tiles we create an SERE αn s.t. L(αn) =
{w | |w| = 2n +1}. This is particularly easy on models which also satisfy ϕcount .
It suffices to require all counter bits to have the same value in the first and last
symbol of each word, and to contain at most one symbol which satisfies χ0 unless
this is what it starts with.2

αn := &; (¬χ0)∗;χ0; (¬χ0)∗ ∩
n−1⋂
i=0

(ci;&∗; ci) ∪ (¬ci;&∗;¬ci)

At last we need to axiomatise the two relations modelling the matching of tiles.

ϕh := G
(m∧

i=1

ti → ©(χ0 ∨
∨

j∈iMh

tj)
)

ϕv := G
(m∧

i=1

ti → Fαn(
∨

j∈iMv

tj)
)

Then the given tiling problem has a positive instance iff ϕ := ϕcount ∧ ϕtile ∧
ϕh ∧ϕv is satisfiable. Note that ϕ can be constructed in logarithmic space from
the tiling problem and n. ()

This is not optimal in terms of the operators that are being used. They are
just chosen to make the presentation easiest. Now note that the only temporal
2 Given our definition of size of an SERE we could also recursively define αn :=

αn−1; αn−1, etc. However, the definition we use here also shows EXPSPACE-
hardness when the size is measured as the syntactical length.

Linear Time Logics Around PSL 101

operators occurring in that formula are ©, G, and Fα. Hence, in order to reduce
the number of operators used, and to strengthen the hardness result we simply
need to express these operators in terms of others.

Corollary 4. Satisfiability in TL[Fα] is EXPSPACE-hard.

Proof. Because of ©ϕ ≡ F�;� ϕ and Gϕ ≡ ¬(F�
∗ ¬ϕ). ()

Unfortunately, Thm. 1 does not immediately yield a lower bound for the fragment
built upon the non-overlapping and-then operator as well. Remember that the
translation from TL[Fα] to TL[%�] is exponential in the number of intersection
operators. Nevertheless, the result can be restored.

Theorem 5. Satisfiability in TL[%�] is EXPSPACE-hard.

Proof. Consider the SERE

α′n :=
(
c∗n−1; (¬cn−1)∗; c∗n−1 ∪ (¬cn−1)∗; c∗n−1; (¬cn−1)∗

)

∩
(
χ0;&∗;

(n∧
i=0

ci
)
∪

n−1⋃
i=0

ci;&∗;¬ci ∩
(⋂
j>i

(cj ;&∗; cj) ∪ (¬cj ;&∗;¬cj)
)
∩
(⋂
j<i

¬cj ;&∗; cj
))

It asserts that there is a bit which is now 1 and 0 in the end, all higher bits have
the same value now and then, and all lower bits change from 0 to 1. There is the
special case of the counter being at value 0 now and at value 2n − 1 at the end.
Also, we make sure that the SERE is only fulfilled by minimal words. Here this
simply means that the highest bit changes its value at most twice. Then α′n is
fulfilled exactly by subwords of length 2n in the context of ϕcount from the proof
of Thm. 4. Hence, we can prove this claim in exactly the same way but using
α′n%�ψ instead of Fαn ψ. Furthermore,©ϕ ≡ &%�ϕ and Gϕ ≡ ¬(&∗%�¬ϕ). ()

One question arises naturally: does the closure operator alone suffice to gain
EXPSPACE-hardness? The proof of the following theorem reformulates the re-
duction in the proof of Thm. 4 using the closure operator. However, the vertical
matching relation in the tiling requires a single occurrence of a G. Without this
G operator we can only establish PSPACE-hardness. This does not follow from
PSPACE-hardness of LTL, c.f. Thm. 2 above.

Theorem 6. Satisfiability in TL[F, Cl] is EXPSPACE-hard.

Proof. We simply replace the definitions of the four conjuncts in the constructed
formula ϕ from the proof of Thm. 4. The first two are relatively easy to transform.

ϕcount := χ0 ∧ Cl((α′n)∗) ϕtile := Cl((
m∨
i=1

ti ∧
∧
j �=i

¬tj)∗)

where α′n is taken from the proof of Thm. 5 above.

102 M. Lange

Now consider the RE βh :=
⋃m

i=1 ti; (χ0∪
⋃

j∈iMh
tj). It describes all 2-symbol

words that match horizontally including the case of the right one belonging to
the next row already. Then β∗h describes all words s.t. between each even position
and its right neighbour there is a correct matching. Hence, we can specify the
correct horizontal tiling as follows.

ϕh := Cl(β∗h;& ∩&;β∗h)

The same trick cannot be used to axiomatise the tiling in vertical direction
because we would have to list conjuncts for each position in the first row, i.e.
exponentially many. This can easily be overcome using the G operator.

ϕv := G
(
Cl(β∗v)

)
where βv := αn ∩ (

m⋃
i=1

ti;&∗; (
⋃

j∈iMv

tj))

with αn from the proof of Thm. 4. This includes some redundancy since the
formula Cl(β∗v) – when interpreted in the cell (i, j) – checks for correct matchings
between (i, j) and (i, j+1), between (i+1 mod 2n, j+1) and (i+1 mod 2n, j+
2), etc. The latter matchings are also imposed by the G operator. ()

Theorem 7. Satisfiability in TLRE[Cl] is PSPACE-hard.

Proof. By reduction from the tiling problem for {0, . . . , n − 1} × N, otherwise
defined in the same way as the 2n-tiling problem above. First note that for the
corridor of width n no counter bits are needed because the vertical matching
relation only requires statements of the form “in n steps” rather than 2n. Here
we assume a single proposition 0 marking the left edge of the corridor.

ϕedge := Cl((0;¬0; . . . ;¬0︸ ︷︷ ︸
n−1 times

)∗)

Requiring every cell to carry a unique tile is done using ϕtile from the proof of
Thm. 6. The horizontal matching relation can be axiomatised using formula ϕh

from the proof of Thm. 6 with the proposition 0 instead of the formula χ0. The
vertical relation can be axiomatised as follows.

ϕv :=
n∧

i=0

©iCl(
(m⋃
i=1

ti;&n; (
⋃

j∈iMv

tj)
)∗)

Note, again, that the first conjunct ensures matchings between (0, 0) and (0, 1),
between (1, 1) and (1, 2), etc. The second conjunct ensures matchings between
(1, 0) and (1, 1), between (2, 1) and (2, 2), etc. Therefore, we need n+1 conjuncts
altogether to cover the entire corridor.

Let ϕ := ϕedge∧ϕtile ∧ϕh∧ϕv. Finally, Lemma 3 shows that the©-operators
can be eliminated from ϕ at no blow-up which finishes the proof. ()

Linear Time Logics Around PSL 103

TL[F] TL[©]

TL[©, F]TL[U]

TL[©, U]

TLSERE ≡ TL[%�] ≡ TL[Fα] ≡ TL[©, μ]

TL[©, Cl] ≡ TL[Cl]

TL[©, F, Cl] ≡ TL[F, Cl]

TL[©, U, Cl] ≡ TL[U, Cl]

∈ EXPSPACE

PSPACE-hardNP-complete

PSPACE-complete

EXPSPACE-complete

Fig. 1. Expressive power and complexity of fragments of TLSERE

5 Summary and Conclusion

Fig. 1 shows the relationship between fragments of TLSERE w.r.t. relative ex-
pressive power. Note that TLSERE and the alike are equi-expressive to Monadic
Second-Order Logic, resp. NBA or ω-regular expressions. LTL, i.e. TL[©, U], is
equi-expressive to First-Order Logic or ω-star-free expressions.

Strict inclusions are marked using dashed lines. The strictness of these has
been shown in [4] for the part below TL[©, U], and in Thm. 2 and Cor. 2 for the
others. Strictness of the two remaining inclusions is still open.

Fig. 1 also gives an overview of the complexity of these fragments’ satisfiability
problems. Again, for the part below TL[©, U] this has been shown in [9] already.
The other results summarise the findings of the theorems and corollaries in the
previous section. The exact complexity of TL[Cl] is still open. However, if the
size of a (semi-extended) regular expression is measured as its syntactical length,
then the problem becomes PSPACE-complete. Note that then the translation
from TL[Cl] formulas to ∃∀-accepting NBA as shown in Lemma 2 produces NBA
of at most exponential size whose emptiness can be checked in PSPACE again.

As for all linear time temporal logics, the satisfiability complexity results im-
mediately carry over to the model checking problem for finite transition systems
and the implicit “for all paths” semantics. The complexities are the same for
all the fragments since the complexity classes mentioned there are determinis-
tic – apart from the fragments TL[F] and TL[©]. It is known that their model
checking problems are co-NP-complete [9].

Apart from the open questions concerning the strictness of two inclusions, the
work presented herein gives rise to some other questions regarding the expres-
sive power and complexity of temporal logics with extended regular expressions,
i.e. with a complementation operator included. It is known that its emptiness
problem is non-elementary but it remains to be seen whether the presence of the
temporal operators also lifts the satisfiability problem up the exponential space
hierarchy by one level.

104 M. Lange

Note that in this setting the syntax of formulas contains a clear hierarchi-
cal structure: regular expressions can occur within temporal formulas but not
vice-versa. It remains to be seen what the corresponding complexity and expres-
siveness results are when both kinds are allowed to be mixed in a straight-forward
way: a temporal formula ϕ can be seen as an atomic proposition that holds in
finite words of length exactly 1. Let TL∗[..] denote the resulting fragments. With
this mixture, it is easy to answer one of the open questions regarding expressive
power: we have TL[©, U] ≤ TL∗[F, Cl] because of ϕUψ ≡ Fψ∧Cl((ϕ)∗; (ψ);&∗).

Finally, a more thorough treatment of succinctness issues between these logics
may be desirable.

References

1. Inc. Accellera Organization: Formal semantics of Accellera property specification
language (2004) In Appendix B of http://www.eda.org/vfv/docs/PSL-v1.1.pdf

2. Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its
temporal logic. In: POPL’86. Conf. Record of the 13th Annual ACM Symp. on
Principles of Programming Languages, pp. 173–183. ACM, New York (1986)

3. Bustan, D., Fisman, D., Havlicek, J.: Automata constructions for PSL. Technical
Report MCS05-04, The Weizmann Institute of Science (2005)

4. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. Journal of Computer and System Sciences 30, 1–24
(1985)

5. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: The temporal analysis of fairness. In:
POPL’80. Proc. 7th Symp. on Principles of Programming Languages, pp. 163–173.
ACM Press, New York (1980)

6. Henriksen, J.G., Thiagarajan, P.S.: Dynamic linear time temporal logic. Annals of
Pure and Applied Logic 96(1–3), 187–207 (1999)

7. Pnueli, A.: The temporal logic of programs. In: FOCS’77. Proc. 18th Symp. on
Foundations of Computer Science, Providence, RI, USA, pp. 46–57. IEEE Com-
puter Society Press, Los Alamitos (1977)

8. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences 4, 177–192 (1970)

9. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
Journal of the Association for Computing Machinery 32(3), 733–749 (1985)

10. Sistla, A.P., Vardi, M.Y., Wolper, P.: Reasoning about infinite computation paths.
In: FOCS’83. Proc. 24th Symp. on Foundations of Computer Science, pp. 185–194.
IEEE Computer Society Press, Los Alamitos, CA, USA (1983)

11. Thomas, W.: Star-free regular sets of ω-sequences. Information and Control 42(2),
148–156 (1979)

12. van Emde Boas, P.: The convenience of tilings. In: Sorbi, A. (ed.) Complexity,
Logic, and Recursion Theory. Lecture notes in pure and applied mathematics,
vol. 187, pp. 331–363. Marcel Dekker, Inc. (1997)

13. Vardi, M.Y.: A temporal fixpoint calculus. In: ACM (ed.) POPL’88. Proc. Conf. on
Principles of Programming Languages, pp. 250–259. ACM Press, NY, USA (1988)

14. Wolper, P.: Temporal logic can be more expressive. Information and Control 56,
72–99 (1983)

http://www.eda.org/vfv/docs/PSL-v1.1.pdf

�� ����� �	
�	�	�� ��� ������	���

��� �� ���	
�� ���� ������ ��� �����
� ��	��	��

���������� 	
 �	������ ������� ����	�� ����������� �������
�����������	
��	�������

����

��������� ���	�� �� ����� �
��� ��� 	������� �	������	�� �� ������� ����
����
���������� �����	� ��	�� �	��� ��������	� �������! "����� ��
���	������� ��� ���	���������� 	
 ��� �������� �	��� ��#������ ���
��� � �	������$����� ��� �	 %&����! �������� ��� ��#������� �	������
���� ������� �	 ��� �������� �	��	�� 	
 ������������	�� �� ��	�� �	 ��
�	�������	����� ���� '�	�() ����*! ��	��� �� �	������
	��
	��� 	

�	��������� '�$������� 	
 ������������	��*
	� �	��� �����#����	��! +�
����������,� ���� 	������	������ ������ ���	������
	� ��������� ���
	�
��������,��� ������������	��� �	������ ���� ����� �	����$�����!

� �������	
� �
� ������

����� ����	����� 	�	�
�	 ����	� ��
 �
�
���������� �! ��"
�
� ����	����� 	�	#
�
�	 ����	�� ��������� �� ���	 ����� ����	����� 	�	�
�	 $	
 ��"
�
� ����	�����	
"
��

� 	���
	 �� ���
� "
%�&���	� ����
 ���	� �%
� ��	��� $�	% �����
� ���
�
'$��
� "
%�&���	 ��&
�# ��� $��
�#�((��)�������	�� �%�*% ���
	 �%
� � 	$��#
�"�
 	
�����* ���
� !�� �"	���*���� �� (�� ��� �����	�	 ��� &
��+*������

���	� ��� ������ ������$*
� "� ���	
� ��� �%��	
� ����	� ,- �
��	 � � ./0�
%�&
 	��*
 "

� �((��
� �� (�� ��� �����	�	 .,�10� ���
� *%
*��� .2�30� &
��+#
*����� .4�50�
'$����� 	��&�� .60� ���
�!�*
 �%
���
	 .70� 	�!����
 (���$*� ���
	
.7�/-0 ��� ���
� �
� �� .//�/,0� 8�$��������� ���� �� ����� ����	����� 	�	#
�
�	 ��*�$�
�
)�
�	���	 �� ����� %�"��� 	�	�
�	 ./10� ���
� ����� 	(
�+�#
����	 ./2�/3�/40 ��� &������	 �! ��	�$�*��&
 ���	 .6�/5�/60� �$�(��	�� �� �%�$ %�
	
&
��� !$����
���� '$
	����	 �"�$� �%
 �%
��� �! ���	 %�&
 �
&
� "

� ��#
��
		
��

9
+�
�
�� �
������	 !�� ����� ����	����� 	�	�
�	 ��
 �
+�
� *�����&���������
:! S �
+�
	 T �%
� ��� �����
� "
%�&���	 �! S �

� �� "
 �����
� �� T � �%��
 ���
�
'$��
� "
%�&���	 �! T �

� ��	� "
 �
'$��
� "� S� �� ������������	� �	 ��
��� �%�� %�	 "

� *��(�
�
�� 	(
*�+
�� ��
� ��� ��	 �����
� "
%�&��� �	 ��	� �
#
'$��
�� �
�&�� �� !$��%
� *%��*
 !�� �
+�
�
��� ;�
 !$����
���� �		$
 !�� �
����� �
+�
�
�� �	 �� 	

 �%
�%
� �� *%���*�
���
	 �%
 ��*�$	��� �! ��(�
�
���#
���� 	
�	 �%���$ %��< *�� ��
 !�� �� ��� S �
+��� �� ��� T ��(�� �%�� ���
��(�
�
�������	 �! S ��
 ��	� ��(�
�
�������	 �! T = ��� &�*
#&
�	�=

�������� ����� �
+�
�
�� �	 	�$��� "$� ��� *��(�
�
 �� �%�	 	
�	
� �
����
�%�� %
�

)�	� ���	 !�� �%�*% ��(�
�
������� ��*�$	��� %���	� "$� �%�*% �� ���
�
+�

�*% ��%
�� �
 	%�� �%�� �
*���� ��� 	�$�� ��� *��(�
�
 �
+�
�
���
(�
	
�&�� �%
 	
� �! ��(�
�
�������	 �! 	������� ����� �
+�
�
�� �� �
��

�� ������ �	
 ���� ����	���� ��
���� ������ ����� ���� ����� ��� �!" #� �����
� ����	$��%�����$ &����	 '��
��(��$ ����

-�. /!0! 1������ �! (����� ��� �! +2�	����

����� �
+�
�
�� �	 *�#�> %���� �
 *���
*�$�
 �%
 	��
 !�� ���#�
�� �����
�
+�
�
�� .70 ��� "���*%�� �
+�
�
�� ./-0�

����� ����	����� 	�	�
�	 �! ./0 ��

������������ �	�
�
����� �
���� �%�� ���
�
'$��
� ����	����� �$	� ��	� "
 �����
�� �%�	
?
*��&
�� ��	�����	 �
�	����
�"�$� ��*��	�	�
�*�
	� �%�*% �	 �
*
		��� !�� (��(
� ��
���
�� �! �� �*�� *���
*#
��&
	 �� �%
 *���
)� �! ����� ����	����� 	�	�
�	 �!��
)��(�
 ��
 ��$�� ���
 ��
"
 �"�
 ��
)(�
		 � ����� ����	����� 	�	�
�
)(�
		�� � *���$�*���� �! ���
��%
� ���	 �%�� �
(�
	
�� *�������*���� 	(
�+�����	�� ;� �%
 ��%
� %���� ��
.70� �
 %�&
 �"	
�&
� �%�� ��%
�� ���
 "
%�&������ ������	 �! *��	�	�
�*� �� %�
"
 $	
!$�� �
 %�&
 	%��� �%�� 	�	�
�	 �%�� ��
 	
������	����� �	�
�
���� ���%
�
	(
*� �� 	��
 	
� �! %���
� �*����	� *�� "
 �
*��(�	
� $	�� (�����
� �
*��#
(�	������ �
 $	
� �%�	 �"	
�&����� �� "$��� � (���$*� ���
 �%
��� �� �%�*% �����
����	����� 	�	�
�	 (��� �%
 ���
 �! "
%�&����� &����"����� ���
�	�

�
 "
��
&
 �%�� *��	�	�
�*� 	%�$�� "
 �
*�$(�
� !��� �%
 "�	�* �
+������ �!
� ����� ����	����� 	�	�
�� :� �$� �(����� $��
�	������ � ������ �! *��	�	�
�*�
�
'$��
	 �
����� �� �� � ������ �! 	���	+�"������ �	 ��(�*���� ���
 �� �� �*	� 8��

)��(�
< � (��(�	������� !���$�� �	 *��	�	�
�� �! �%
�

)�	�	 � ��$�% �		� ��
��
�� �%�*% �%
 !���$��
&��$��
	 �� ��$
� :� �$� *���
)�� ����� ����	����� 	�	#
�
�	 (��� �%
 ���
 �! !���$�@� ��$�% �		� ��
��	 ��
 ���
�
 ��(�
�
�������	�
��� � �
+�
�
�� (�
���
� �	 �$� 	���	!�*���� �
������� A��	
'$
����� ��	�
�� �!
(��(�	�� �� %�* �������� !�� *��	�	�
�*�� �
 �
+�
 *��	�	�
�*� �! � 	(
�+�����

����������� �	
)�	�
�*
 �! � *��*�
�
 ��(�
�
������� �
+��� ���

����
�%
� �
 ��	*$!�$� ����� �
+�
�
��	 ��� �%
�� ���$*
� *��	�	�
�*�
	�
8��
�*% �! �%
	
 �
 �
+�
 *��	�	�
�*� 	
�����*���� ��� +�� � *��($��"�

*���
���� �� *��	�	�
�*� �
������� !�� �
*���� ��� �%
� �
 	�$�� �%
 *��(�
)���
�! *��	�	�
�*� ��� �%
 *���
����� �%
 �
	$��	 ��
 	$������
� �� ��"�
 /�

;$� *%��*
 �! �
+�
�
��	 ��� *��	�	�
�*�
	 !�� �%�	 	�$�� �	 ���&
� "�
)�	�#
�� ����� �
 *%��	
 ��
 ����� *��	�	�
�*� �	����*��* *��	�	�
�*�� �%�� %�&

��� "

� *%���*�
���
� $	�� � �
+�
�
��� ��� �%�

 ����� �
+�
�
��	 �	���� �
���#�
�� ��� �
�� ����� �
+�
�
��� !�� �%�*% �%
 �
���
� ������	 �! *��	�	#
�
�*� %�� �
&
� "

� !���$���
�� B��
&
�� �
 "
��
&
 �%�� *��	�	�
�*� �	 ���
���� �! �%
��
��*�� ���
�
	�� :�*��	�	�
�*�
	 �� 	(
�+�����	 ��(�*���� ����*��

���
���
����	 ��� �%$	 (��*
�$�
	 !�� �
�
*��� �%
� +�� $	
 �� ����	�

�%
 *���
��	 �! �%�	 (�(
� ��
< �%
 �
+������ �! ����� ����	����� 	�	�
�	
��� �%
�� �
+�
�
�� ��
*���� ,�� *��(�
)��� �����	�	 �! *��(�
�
�
		 �! �%�	
�
+�
�
�� ��
*���� 1�� � ��	*$		��� �! *��	�	�
�*� ������	 ���$*
� "� !�$�
����� �
+�
�
��	 ��
*����	 2C5�� � 	$����� ��� � ��	� �! �(
� (��"�
�	
��
*���� 6��

	��
� �� ������ 	
 �	����������������� �������

����� ���	�
�	� ��	���	�� ����� ���	� ����� ���	� ������	

�)	*�*� �)	*�*� �	���*�) + , ��	��� *�-� ��	��� *�-� �

�*��	$ + , �*��	$ �	���*�) �.%/��
 �0��	�	*��� *�-� !

1��2 + #, 1��2 �	���*�) �.%/��
 �0��	�	*��� *�-� 3

-�)%1��2 +#, -�)%1��2 �	���*�) �.%/��
 �0��	�	*��� *�-� �

3� 4	��� 5�#������ ��� �	��������� -�6

� ����� ���
�����
 �������

�
 ������$*
 �%
 "�	�*	 !������� ���	
� ��� �%��	
� ./0� �		$�
 � ��"�� 	
�
�! �*����	 ��� ��� ����
 ��� τ !�� ��� ∪ {τ}� �%
�
 τ �	 � ��	���*� ���
���� �*�����
	$*% �%�� τ /∈ ���� � ����� ����	����� 	�	�
� �	 � ���(�
 S = (
����
S ,−−→S , ���S)�
�%
�

����
S �	 � 	
� �! 	���
	� ��	� ����� �	 	(
�+�����	 ./0 �� (��*
		
	�
�%
� −−→S ⊆
����
S × ��� τ ×
����
S �	 � �$	�#����	����� �
������ �
(�
	
����
�
'$��
� ����	�����	� ��� ���S ⊆
����
S × ��� τ ×
����
S �	 � ���#����	�����
�
������ �
(�
	
���� �����
� ����	�����	�

:�
�
��� �%
 	
�	 �! 	���
	 ��� ����	�����	 ��� "
 ��+���
� "$� �
 �
	���*�
�$�	
�&
	 �� +���
 	���
 	�	�
�	 ���% +���
 	
�	 �! �*����	 �� �%�	 (�(
�� 8��
	��(��*��� �
 ����
 s a−→Ss′ �? (s, a, s′) ∈ −−→S � ��� s a���Ss′ �? (s, a, s′) ∈ ���S �

���	
� ��� �%��	
� ��� ������ �
	� �
� ����� ����	����� 	�	�
�	 �� "
 	��#
��*��*���� *��	�	�
�� �
���� �%�� ��� �
'$��
� ����	�����	 ��
 ��	� �����
�< −−→S

⊆ ���S � ���
��� �� ./20 ���	
� ��!�	 �%�	 �
	���*����� ���% �%
 �� $�
�� �%�� ���
	$D*�
����
)(�
		�&
 	(
�+����� ��� $�
 �

�	 �� "
 �"�
 �� 	(
�!� ����#
	�	�
�� 	(
�+�����	� �%�	 �
��	 �%�� �$� ����	����� 	�	�
�	 ��
 &
�� �$*% ���

��)
� ����	����� 	�	�
�	 �! E��	 .,-0� :� �
*���� 1 �
 !����� �%
 	����*��* *��#
	�	�
�*� �
'$��
�
��� �%��
 �
 �
��) �� �� ���
� 	
*����	�
�
������� �%
 ������
�! *��	�	�
�*� �� 	���� ��� �
�� "
%�&����� (�
���
�	� 9
 ����
		 �%
�%
� �%

*��	�	�
�*� �		$�(���� �	 �� (��*
 �� ���� �
 �����	 	
(����
 �%
 ��� ����	�����
�
������	
)(��*���� �� �&��� *��!$	���� � 	���� ����� �
(�
	
��	 �$	� � �$	� ����#
	������ ���%�$� �%
 (�		�"�
 �
���
� ��� ����	������ �
 ���� "��% �����	 �%
�
������ �"�$� � 	����*��*���� *��	�	�
�� �$	� ����	������

� ����� ����	����� 	�	�
� I �	 �� ������������	� �%
� �%
 ��� ����	�����
�
������	 *���*��
� −−→I = ���I � �
 $	
 *�(���� I �� �
���
 ��(�
�
�������	 ���
�����	 	���

)(��*���� �%
�
&
� � ����� ����	����� 	�	�
� �	 �� ��(�
�
��������

�%
 !������� �	 �%
 	������� ������ �! 	���� �
+�
�
�� !�� ����� ����	�����
	�	�
�	 ������$*
� �� ./0 ���
�
����� �**
(�
�
&
� 	��*
<

��������� � 	
��� ����������� �	� � ���� 	� �	��� ����
���	�
�
���

S ��� T � ����� ������	� R ⊆
����
S ×
����
T �
 � �	��� ��������� ������

����
 	� S ��� T �� �	� ��� (s, t) ∈ R ��� ��� ����	�
 a �� �	��
 �����

�	� ��� t′ ∈
����
T
��� ���� t a−→T t′

����� ���
�
 �� s′ ∈
����
S
��� ���� s a−→Ss′ ��� (s′, t′) ∈ R�
�	� ��� s′ ∈
����
S
��� ���� s a���Ss′

����� ���
�
 � t′ ∈
����
T
��� ���� t a���T t′ ��� (s′, t′) ∈ R�

��
�� ���� �
���� s ∈
����
S �����
 �
���� t ∈
����
T � ������� s ≤- t� ��

����� ���
�
 � �	��� ��������� �	�������� (s, t)�

:! −−→T = ∅ �%
� �%�	 �
+�
�
�� *����(
	 �� �
 $��� 	��$������ .,/�,,0� �%��
 ��
�����
	 ���% "�	��$������
'$�&��
�*
 .,1�,20 �! S ��� T ��
 ��(�
�
�������	�

� ��
������	��
��� �� ����� ��
���
�

���
��� �� �%

� %��
	 �%
�
 %�&
 "

� �$���	 �! ����� �
+�
�
�� "
�� ��#
*��(�
�
� B��
&
� �
 �
�
 $��"�
 �� +�� � ($"��	%
� �**�$�� �! �%�	 !�*�� 	� �

-�7 /!0! 1������ �! (����� ��� �! +2�	����

�
*��
� �� ��*�$�
 �� %
�
� �
 	%��� ��� �
+�
 �%�� �
 �
�� "� *��(�
�
�
		�
(��*

��� �� � *�$��
�
)��(�
 ����
		�� �%
 ��*��(�
�
�
		 �! ����� �
+�
#
�
��� �!�
� �%�	 "��
! ������$*���� �
 ��&
 �� �%
 +�	� *�����"$���� �! �%
 (�(
�<
� ��	*$		��� �! �%
 *��(�
)��� *��		 �! � %�(��%
��*�� *��(�
�
 �
+�
�
���

8�� � 	���
 s ∈
����
S �
� �S, s� �
���

S
s a b

T
t a b

b

a

��� �� �S, s� ⊆ �T, t� ��� s �≤� t

�%
 	
� �! ��� ��	 ��(�
�
�������	 	$*% �%��
�S, s� = {(I, i) | i ≤- s ��� −−→I = ���I}�
����� �
+�
�
�� �	 ����� �� "
 	�$���
���% �
	(
*� �� ��(�
�
������� ��*�$	���<
!�� s ∈
����
S∧t ∈
����
T � �! s ≤- t �%
�
��	� �S, s� ⊆ �T, t�� �%�*% !�����	 ���
*���

!��� ����	���&��� �! ≤-� B��
&
� ≤- �	 ��� *��(�
�
 �� �%�	 	
�	
< �%
�

)�	�
	(
�+�����	 S ��� T � ���% 	���
	 s� t� 	$*% �%�� �S, s� ⊆ �T, t� "$� s
≤- t�
�%�	 (��(
��� �! ����� �
+�
�
�� �	 	��
���
	 ����� �	 ���#�%���$ %�
		 .,30�
8� $�
 / (�
	
��	 � *�$��
�
)��(�
 ��� ������ �� �%
 �%
	�	 �! BF��
� .,4� (� 1,0�
��	� !�$�� �� �%
 �%
	�	 �! G��)�� .,5� (� 650 ��� �� ./60� ��"
�� ��	 $�	
� �� �%

*���
)� �! ��	�$�*��&
 ����� ����	����� 	�	�
�	 .60 � :� *������	 ��� 	(
�+�����	
S� T � :� �	 � 	��(�

)
�*�	
 �� 	

 �%�� �S, s� = �T, t�� �%��
 s
≤- t�

��� � �������� ��������� �� ����� ����

E
	(��
 �%
 ���#�%���$ %�
		 ���*��(�
�
�
		� �! ����� �
+�
�
�� ��	 $	
!$�#
�
		 %�	 �
&
� "

� '$
	����
�� �%�	 �	 (��"�"�� "
*�$	
 ����� �
+�
�
�� �	 �
���$���
�
���������� �! "��% 	��$������ ��� "�	��$������ ��� "
*�$	
 �� *�� "

	��"��	%
�
D*�
���� ��� ���
 (��������� �� �%
 	��
 �! �%
 ����	����� 	�	�
�	��
H� 	%���� �%�� ��� *��(�
�
 �
+�
�
�� (�
	
�&�� (�
*�	
�� �%
 	��
 	
� �!
��(�
�
�������	 �	 ≤- *����� "
 �
*��
� �� (��������� ���
 �$��
		 >I�>��
�
 �&
 �
� ����%
� �� $�
�� �� !�&�� �! ≤-�

�
 	%�� *�#�> %����
		 "� �
�$*�� ���������	
�
� �� *%
*��� � 	�$��
��� *��(�
�
 ����� �
+�
�
�� �� �%
 �"�&
 	
�	
� A��	��
� � (��(�	������� !��#
�$�� ϕ �&
� n &����"�
	 x1, . . . , xn� :� �	 *�
�� �%�� ϕ �	 � ��$���� � �? ���� ⇒ ϕ
�	 � ��$���� �� �
 ���� 	%�� %�� �� *��	��$*�� �� (��������� ���
� � �����
����	����� 	�	�
�	 Tϕ ��
(�
	
���� � ��$���� � �&
� x1 . . . xn� ��� Sϕ ��
(�
#
	
���� ϕ�� 	� �%�� ���� ⇒ ϕ �	 � ��$���� � �? �Tϕ, ����� ⊆ �Sϕ, ϕ�� !�� 	
�
*�
�
������� 	���
	 ���� ��� ϕ �! Tϕ ��� Sϕ �
	(
*��&
��� 8�� 	��(��*��� �
 ���� �		$�

�%�� ��� *��$	
	 �! ϕ ��
 	���	+�"�
� ����	+�"����� �! � *��$	
 *��	�	��� �! �%�

���$�����	 *�� "
 �
*��
� �� *��	���� ���
� �	���	+�"�
 *��$	
	 *�� �%$	 "

�
��&
� !��� ϕ �� (��������� ���
� "
!��
 �
 ��	��$� Tϕ ��� Sϕ� �
 *%��	

�%
 !������� 	���
	 ��� �*����	 !�� Sϕ<

����
Sϕ = {ϕ, c1, . . . , cm, } {a, x1, . . . , xn} ⊆ ��� , �/�

�%
�
 ci ��
 *��$	
	 �! ϕ� �%��
 ��� a ��
 !�
	% ���
	�
8��	� �

)(���� %�� � 	�� �
 ���
��� *�� "
 �
(�
	
��
� �	 � 	���
 ���% �� ��	�

n + 1 �$� ��� ����	�����	� 8�� � (�	���&
 ���
��� xi �
 ������$*
 � 	���
 xi ���%
� �
'$��
� ����	����� xi

xi−−→ ��� �����
� ����	�����	 xi
xk��� !�� ��� k = 1 . . n�

� +� ����� 4������ %���� %����� "������ %���	 ������ ��� 	�� 	
 ��� ����	���	��
���������
	� ������� �	 ����� �	�� ��� 	������!

3� 4	��� 5�#������ ��� �	��������� -�8

'�* xi 0
xi

x1

x2

xn
...

'�* ¬xi 0
x1

xi−1

xi+1

xn

...

...

'�*

ϕ

c1

c2

cm−1

cm

a

a

a

a

...

'�*

true t
0

a
a

x1

x2

xn−1

xn

...

��� �� 5����������� '�* � �	������ �������� '�* � �������� �������� '�* � 9��("
	�����
ϕ = c1 ∨ · · · ∨ cm ��� '�* � ����	�	�� 	��� ��������� x1 . . . xn

8�� � �
 ���&
 ���
��� ¬xi �
 ����� �� �$� ��� �$	� ����	�����	 ��� *�
��
 ���
����	�����	 (¬xi) xk��� !�� ��� k
= i� >�	���&
 �		� ��
��	 ��
 �
(�
	
��
� "� �$	�
����	�����	� ��� �
 ���&
 �		� ��
��	 ��
 �
(�
	
��
� "� ��*� �! ��� ����	�����	�
�		� ��
��	 ���% ��
?
� �� 	���	!����� �! �%
 !���$�� ��
 ���
�
� "� ���
����	�����	 ���% �� *���
	(����� �$	� ����	�����	� �

 8� $�
 ,�"�

���
�
�����
 �%�	 �� *���$�*��&
 *��$	
	 �! � 1#E�8 !���$��� � *��$	
 l1 ∧
l2 ∧ l3 �	 ����	���
� ���� � 	���
 ��"
�
� l1 ∧ l2 ∧ l3 ���% �%
 !������� ����	�����	<

1◦ (l1 ∧ l2 ∧ l3) xi−−→Sϕ �? lk = xi !�� 	��
 k = 1 . . 3�
2◦ (l1 ∧ l2 ∧ l3) xi���Sϕ �? lk
= ¬xi !�� ��� k = 1 . . 3�

���*
 �
 ���� *��	��
� 	���	+�"�
 *��$	
	� ����� ����	����� 	�	�
�	 *�
��
� �%�	
��� ��
 	����*��*���� *��	�	�
�� ���� �
'$��
� ����	�����	 ��
 �����
��� � 	���	!�#
�� ��$�% �		� ��
�� �� l1 ∧ l2 ∧ l3 *�� "

)���*�
� !��� ��� ��(�
�
������� I
�
+��� �%
 	���
 ���% �%
 	��
 ��"
�J�$	� 	
� xi �� ���� �? I xi−−→ ��� 	
� xi ��
���
� ��%
���	
� ��������� �
 *�� *��	��$*� �� ��(�
�
������� �
+��� l1∧ l2∧ l3
 �&
� ��� 	���	!��� �		� ��
�� �� �%�	 *��$	
�

� 1#E�8 !���$�� ϕ = c1 ∨ . . .∨ cm �	

ϕ
0

x1 ∧ ¬x2 ∧ ¬x3

¬x1∧x2∧x3

x1 ∧ ¬x2 ∧ x3

a

a

a

x1

x1

x2

x2

x3

x3
x1

x1
x3

x3

��� �� 5������	�
	� ϕ = (x1 ∧ ¬x2 ∧
x3) ∨ (¬x1 ∧ x2 ∧ x3)∨ (x1 ∧ ¬x2 ∧ ¬x3)

�
(�
	
��
� $	�� � 	���
 ��"
�
� ϕ ���
��� ����	�����	 �� ��	 *��$	
	< ϕ a���Sϕci

!�� i = 1 . .m� �� �$	� ����	�����	 ��

�
���
�� �

 8� $�
 ,* ��� 1� ����
	
��"
�
� ci �
(�
	
�� (��*
		
	 �
	$����
!��� ����	������ �! �%
 ����&��$��
*��$	
	 �	 (�
	
��
� �"�&
�

;"	
�&
 �%��
�*% 	���	!��� �		� �#
�
�� �� !���$�� ϕ %�	 � *���
	(���#
�� �
�
�����	��* ��(�
�
������� �! Sϕ�

��	�
�*% ��(�
�
������� �! Sϕ
�"
�	 �� ��	� ��
 	���	!��� �		� ��
�� ��
ϕ
)���*�
� $	�� �%
 	��
 �$�
	 �	 ��	*$		
� !�� *��$	
	 ���
 (
�
�*% ����
#
�
�����	��* *%��*
 �� �%
 ������� 	���
 �! �%
 ��(�
�
��������� A�
���� Sϕ *�� "

��	��$�
� �� ���
 (��������� �� �%
 	��
 �! ϕ�

�
 ��� *��	��
� *��	��$*���� �! Tϕ� 8��	� �
�
����
Tϕ = {����, tϕ, }� �
 ��	�
*�
��
 �%
 !������� ����	�����	< ���� a−→Tϕtϕ� ���� a���Tϕtϕ� ��� tϕ

xi���Tϕ !�� ���
&����"�
	 xi �! ϕ ��

 8� � ,��� A�
���� Tϕ *�� "
 ��	��$�
� �� ���
 �� ��	�
(��������� �� 	��
 �! ϕ�

--� /!0! 1������ �! (����� ��� �! +2�	����

�%
 !������� �
��� 	���
	 �%
 *���
*��
		 �! �$� �
�$*�����

!���� "� � � !"� �	����� ϕ ���� ���
���
���� ����
�
 �
 � ����	�	�� ��

�Tϕ, ����� ⊆ �Sϕ, ϕ��

#�		�� �
 +�	� *��	��
� �%
 ���
*���� �� %� �� �
!�� ��
� �		$�
 �%�� �Tϕ, ����� ⊆
�Sϕ, ϕ� ��� ���
 ��� ��$�% �		� ��
�� � �� &����"�
	 xi �! ϕ� �
 ��	��$� �
�
�
�����	��* ��(�
�
������� I� �� �%
 !������� ���<
����
I� = {t, �, }� �%
�

�%
�
 ��
 ��� ����	����� !��� t �� �< t a−→� ∧ t a���� ��� !�� ��� xi 	$*% �%��
�(xi) = ����< � xi−−→ ∧ � xi��� � E$
 �� �%
 ��	��$���� �! �$� �
�$*���� �%�	
�
��	 �%�� � 	���	+
	 ϕ� ���*
 !�� ��� �		� ��
�� � �
 *�� *��*�$�
 �%�� ϕ
%���	� ϕ �	 � ��$���� ��

��� *��	��
� �%
 *���� �! �%
 �
��� !��� �
!� �� �� %�� �
 ����
		 ��	 *��#
���(�	���&
� �		$�
 �%�� �%
�

)�	�	 �� ��(�
�
������� I ��� ��	 	���
 t 	$*%
�%�� t ≤- ����� "$� t
≤- ϕ� �
 ���� �� 	%�� �%�� ϕ �	 ��� � ��$���� �� ;"	
�&

�%�� 	��*
 t
≤- ϕ �%
�
 �$	�
)�	� � 	���
 s ∈
����
I 	$*% �%�� t a−→s ��� !��
��� *��$	
 	���
	 ci �! Sϕ �� �	 �%
 *�	
 �%�� s
≤- ci� H$� �%�	 �
��	 �%�� �%

�		� ��
�� �
(�
	
��
� "� s �(�
	
�� xi#����	�����	 �&
 ��	
 �� xi = ����� �"	
��
�� xi = ���
�� !��	�+
	 ϕ �
���� �%�� ϕ �	 ��� � ��$���� �� ()

������� �� $�� ��	��� 	� �������� �T, t� ⊆ �S, s� �	�
����
 t ��� s 	� ���

����� �	��� ����
���	�
�
���
 T ��� S ��
��������� �
 �	 "# �����

A�#�> %����
		 !�����	 !��� �%
 �"�&
 �
�$*���� ��� *�#�> %����
		 �! ��
�������	
�
�� �%
 	��
 �
�$*���� *�� "
 $	
� �� 	%�� �%�� �%
 �%���$ %
�
+�
�
�� ���$*
� "� �
�� ����� �
+�
�
�� ��
*���� 4� �	 ��	� *�#�> %��� ��
�
*��
� �
 ���� �%�� (���! �	 �%
 �� $�
�� �	 ���%
� 	������ �� �%
 �"�&
�

! ��
������ "�
�����
�� �
� ��
������ ��
���
�

8��� ��� �� �
 �
��) �%
 	����*��* *��	�	�
�*� �
'$��
�
�� (�
	
��
� �� �
*#
���� ,� ��� ����� �
�	���� �"�$� 	�	�
�	 !�� �%�*%−−→
⊆ ���� �
 ���� ������$*

� 	����*��* �
+�
�
�� ⊆m ���% ��	 ���$*
� ������ �! *��	�	�
�*� ��� (��&
 �%��
�� �	 �����	�� (�
*�	
�� *%���*�
���
� "� �%
 	����*��* *��	�	�
�*�� �%
	
 �
	$��	
��
 &
�� 	��(�
� "$� �
 ��*�$�
 �%
� !�� �%�

 �
�	��	� 8��	�� �
 *����� �&��� ��	#
*$		�� �%
 ��	� �
�� ����� ������ �! *��	�	�
�*� !�� ����� ����	����� 	�	�
�	
�� ������ �%�� %�� �
&
� "

� *%���*�
���
� $	�� � �
+�
�
�� �
�������� �
*����
�
 *�� 	%�� � �
+�
�
�� ���$*�� �%�	 *��	�	�
�*� �� �
+�
�
�� �%�� %�� �
&
�
"

�
)(��*���� ����
� �� ��� *��	�	�
�*� �������� �%���� �
 ���� �� (�
	
�� ���
�� �
��
��	 �! � *��	�	�
�*� 	�$�� $	�� � 	��(�

)��(�
< � �
+�
�
��� ��	 ��#
�$*
� *��	�	�
�*�� �(
�������� *%���*�
�������� �� !��� �! � *��	�	�
�*� �
�������
��� � *���*��
�*
 (���!� ���
� 	
*����	 ���� !�����
)�*��� �%
 	��
 (���
���

��������� # 	$%���&��& ����������� �	� ��	 �	��� ����
���	�
�
���
 S
��� T �
�������� ��������� R �
 � ������� ��%������ ������	� 	�
����
S ���	

����
T
��� ���� �	� ��� ����
 (s, t)� t = R(s)� ��� ��� ����	�
 a �� �	��
 ����

3� 4	��� 5�#������ ��� �	��������� ---

�	� ��� t′ ∈
����
T
��� ���� t a−→T t′

����� ���
�
 �� s′ ∈
����
S
��� ���� s a−→Ss′ ��� t′ = R(s′)�
�	� ��� s′ ∈
����
S
��� ���� s a���Ss′

����� ���
�
 � t′ ∈
����
T
��� ���� t a���T t′ ��� t′ = R(s′)�

�
���� s �

��� �	 � �
�������� ��������� 	� �
���� t� ������� s ⊆m t� �� �����

���
�
 �
�������� ��������� ������	� R
��� ���� t = R(s)�

:��$���&
�� �%�	 �
+�
�
��
	��"��	%
	 �%�� �%
 ���#����	����� ��(% �! S �	 �
	$" ��(% �! �%
 ���#����	����� ��(% �! T ��� �%�� �%
 �$	�#����	����� ��(%
�! T �	 � 	$" ��(% �! �%
 �$	�#����	����� ��(% �! S�

��������� ' 	$%���&��& ���������&%�� �
���� s ∈
����
S �

������������

�	�
�
���� �� ����� ���
�
 �� ������������	� I ��� ��

���� sI
��� ���� sI ⊆m s�

�
 *���� �%�� �%�	 ������ �! 	
�����* *��	�	�
�*� �����	�� *���*��
	 ���% �%

��
 (�
	
��
� �� �
*���� ,� 8�� �%
 	��
 �! $��!������ �
� $	 �
!���$���
 �%��
�
+������ $	�� ��
)(��*�� ������ �! *��	�	�
�*� �
������<

��������� ($%���&��& ���������&% ��������� &���� � �	��� ����
���	�

�
��� S� � ����� ������	� S ⊆
����
S ×
����
S �
 �
�������� �	�
�
�����

������	� 	�
����
 	� S �� �	� ����
���� s �� (s, s) ∈ S ��� ���� ����	� a ∈ ��� ��

�	��
 ���� �������� s a−→s′ �	�
	�� s′ ∈
����
S ���� ��
	 s a���s′ ��� (s′, s′) ∈ S�

8�� � 	����*��* *��	�	�
�*� �
������ S ��� � 	���
 s ∈
����
S 	$*% �%�� (s, s) ∈ S�
�
 	���%
	��
 �� ��(�
�
������� IS ���% � 	���
 sI 	$*% �%�� sI ⊆m s� ���

	���
	 �! IS �� "
 *��	�	�
�� 	���
	 �! S<
����
IS = {p ∈
����
S | (p, p) ∈ S}
��� sI = s� �%
 ����	����� �
������ �! IS �	 �%
 �$	� ����	����� �
������ �! S
(���
*�
� �� 	���
	 �! IS < −−→IS = ���IS = −−→S ∩ (
����
IS × ��� τ ×
����
IS)�

�������) 	$���������� '� ����� ���
�
 �
�������� �	�
�
����� ������	� �	�

������� �
���� s 	� S ���� s �
 �
������������ �	�
�
����
���� �� ���
��
� 	�

!������	� (�)	��	��� ��� ������������	� IS �	�
������� �	�� �
 	�� 	� ��

���������
� sI ≤- s�

:� �$��	 �$� �%�� 	����*��* *��	�	�
�*� �
������	 *%���*�
���
 	����*��* *��	�	#
�
�*� �� �%
 	
�	
 �! E
+������ 3 �� � *��(�
�
 ����
�� ��&
� � 	����*��* ��#
(�
�
������� I �! � ����� ����	����� 	�	�
� S �I ⊆m S) �
 *�� *��	��$*� �
	����*��* *��	�	�
�*� �
������ �� �%
 !������� ���<

SI = {(q, q) ∈
����
S |
)�	�	 p ∈
����
I ∧ p ⊆m q} �,�

������� * 	���+��������� *�� s � �
���� 	� � �	��� ����
���	�
�
��� S
��� sI � �
���� 	� �� ������������	� I
��� ���� sI ⊆m s� $��� ����� ���
�

�
�������� �	�
�
����� ������	� �	� S �	�������� (s, s)� ��� SI �
 	�� 	�
����

���*

	��"��	%�� *��	�	�
�*� �! ���
�	 �	 � $	
!$� !
��$�
 �� ���
��� ����	�
�
 �
���� �%�� �%
 *�	� �! �
*����
)�	�
�*
 �! 	����*��* ��(�
�
�������	 �&��
*��	�	�
�*� �
������	� !�� � 	���
 s ∈
����
S �	 �� ��	� ���� �� �
�	�� ���
�� ��

--� /!0! 1������ �! (����� ��� �! +2�	����

�%
 	��
 �! S� �%
 �� ����%� *���
	(���	 �� � ���&
�	�� �! �%
 �$	�#����	�����
 ��(% 	������ �� s� ��� *%
*��� �%
 *��	�	�
�*� �
'$��
�
�� ��
�*% 	���
�

�����*��* *��	�	�
�*� �
������	 *%���*�
���
 	����*��* *��	�	�
�*� �� �%
 	
�	

�! ./0 ���	
� (�
*�	
��� :� !�*� �%
 ��� ������	 *���*��
 �! ��� 	���
	 �! S ��

�
�*%�"�
 !��� s &�� �$	� ����	�����	� ;�%
���	
 E
+������	 3 ��� 4 ����� ��#
*��	�	�
�*�
	 �� $��
�*%�"�
 (���	� �%�*% %�	 ��� "

� ���
� ���� �**�$�� �� ./0�

����
� ����� ��
���
� �
� ����
� "�
�����
��

:� �
*���� , �
 %�&
 �
*���
� �%
 ������ �! �	���� � ����� �
+�
�
��� ��� �

������$*
 ��	 ���$*
� ������ �! *��	�	�
�*� ��� *%���*�
���
 �� �(
�����������

��������� , 	$����� ���������&%�� �
���� s 	� � �	��� ����
���	�
�
���

S �

��	���� �	�
�
���� �� ����� ���
�
 �� ������������	� I ��� ��

���� sI
���

���� sI ≤- s�

:� ���
� �� �&
 �� �(
�������� *%���*�
�������� �! 	���� *��	�	�
�*� �
 �

�
�� ��!� �%
 ����	����� �
������	 �� 	
�	 �! 	���
	� 8�� 	
�	 σ, σ′ ⊆
����
S �
 ����
<

σ a−→�S�σ′ �? ∃s∈σ. ∃s′∈σ′. s a−→Ss′ , �1�

σ a����S�σ′ �? ∀s∈σ. ∃s′∈σ′. s a���Ss′ . �2�

��������� � 	$����� ���������&% ��������� &���� � �	��� ����
���	�

�
��� S� � ������	� B ⊆ P(
����
S) �
 �
��	�� �	�
�
����� ������	� 	�
����
S

�� �	� ��� ����	�
 a ∈ ��� ��� ��� σ ∈ B ��� �	��	���� �	�����	� �

���
����

�������� s a−→Ss′ �	�
	�� s∈σ ���
	�� s′∈
����
S

���� ��
	 σ a−→�S�σ′ ��� σ a����S�σ′ �	�
	�� σ′∈B �	�������� s′�

+������
 	� B ��� ������ �	�
�
����� ���

�
� B �
 �
��	�� �	�
�
����� ������	�

�	� �
���� s ∈
����
S �� �� �	�����
 � �	�
�
����� ���

 σs
��� ���� s ∈ σs�

��&
� � *��	�	�
�*� �
������ B !�� � 	���
 s ∈
����
S �
 *�� 	���%
	��
 ��
��(�
�
������� IB ���% � 	���
 sI ∈
����
IB � 	$*% �%�� sI ≤- s� ���
 �%

*��	�	�
�*� *��		
	 �! B� �� "
 �%
 	���
	 �! IB<
����
IB = B ��� sI "
 �%
 *��		
σs *�������� s� H��% ����	����� �
������	 �! IB
'$�� �%
 ���
�	
*���� �! ��
�

��� ��� ����	����� �
������	 �! S ��!�
� �� *��	�	�
�*� *��		
	 �! B<

σ a−→IBσ′ ��� σ a���IBσ′ �? σ a−→�S�σ′ ��� σ a����S�σ′ . �3�

������� �� 	$���������� '� ����� ���
�
 � �	�
�
����� ������	� B �	� � �	���

����
���	�
�
��� S ���� S �

��	���� �	�
�
���� �� ���
��
� 	� !������	� ,�

)	��	��� IB �	�
������� �
 �	�� �
 	�� 	� ��
 ���������
� sI ≤- S�

����� *��	�	�
�*� �
������	 *%���*�
���
 	���� *��	�	�
�*� �� � 	�$�� ��� *��#
(�
�
 ����
�� ��&
� � 	���
 sI �! �� ��(�
�
������� I �
+��� � 	���
 s ∈
����
S

�sI ≤- s� �
 *�� *��	��$*� � *��	�	�
�*� �
������ BI !�� S !������� �4�<

BI = {σp ⊆
����
S | p ∈
����
I ��� σp
= ∅ ��� ∀q ∈ σp. p ≤- q} �4�

;"	
�&
 �%�� �%
 σp 	
�	 �"�&
 ��
 ��� �
*
		����� ��)�����

3� 4	��� 5�#������ ��� �	��������� --9

'�*

c3

x1
∨ ¬

x2
∨ ¬

x3

x1

¬x2

¬x3

1

a a a

a
a

a

a

'�*

c3

x1 ∨ ¬x2 ∨ ¬x3

1

x1

¬x2

¬x3

c2

¬x1 ∨ x2 ∨ x3

¬x1

x2

x3
c1

x1 ∨ ¬x2 ∨ x3

��� �� 5����������� '�* � ���:������� ������ ��� '�* � ���������	�
	� ϕ

������� �" 	���+��������� *�� s ∈
����
S ��� ��� I � �� ����������

��	�� ��� sI ∈
����
I ��� sI ≤- s� $��� ����� ���
�
 � �	�
�
����� ������	� �	�

���
���� s� ��
	 ������	� BI ������ �	�� �
 	�� 	�
��� ������	�
�

E
+������ /- *�� "
 ���
�(�
�
� �(
���������� �&�� � 	��(�

)(��
����� +)#
(���� �� ����%�< 	���� ���% � 	�� �
��� *��		 *�������� s ��� �((�� �%
 �$�

�
����� *��		
	 $���� � +)(���� �	 �
�*%
��

�
 �
���	����
 �%�� �%
 (��"�
� �! �
*���� 	���� *��	�	�
�*� �	 �� !�*�
�>#%��� $	�� � �
�$*���� !��� ��������	� �
� ϕ = c1 ∧ . . . ∧ cm "
 � 1#
A�8 !���$�� �&
� &����"�
	 x1, . . . , xn� A��	��$*� � ����� ����	����� 	�	�
�
Sϕ 	$*% �%�� ��	 	���
 ��"
�
� cm �	 *��	�	�
�� �? ϕ �	 	���	+�"�
� �%
 	���
	
�! Sϕ ��
 ���
���	 �! ϕ� � 	���
� � � 	���
 �� 	���
 ������� ��� "
%�&���<
� xi���Sϕ� !�� ��� i = 1 . . n ��� � a���Sϕ��� (�$	 � (��������� �$�"
� �! �$)������
	���
	� �
 	%��� $	
 �� �*���� (
�
�*% &����"�
 xi ��� ��
 �$)������ �*����
a�

���
���	 �� ϕ ��
 ����	���
� �� 	���
	 $	�� �%
 (���*�(�
 	%��� �� 8� $�
 ,�"� �
��	�$�*���� �! �%�

 ���
���	 l1∨l2∨l3 �	 �
(�
	
��
� "� � 	���
 ��"
�
� (l1∨l2∨l3)
	$*% �%�� (l1 ∨ l2 ∨ l3) a−→Sϕ� ��� (l1 ∨ l2 ∨ l3) a���Sϕ lk !�� ��� k = 1 . . 3� ���
�*%
*��$	
 ci �	 �
(�
	
��
� "� � 	���
 ��"
�
� ci !�����
� "� � 	
'$
�*
 �!
)�*���
i ��� a#����	�����	 �
���� �� �%
 	���
 �
(�
	
���� �%
 ��	�$�*����� 8�� �
 #
$������ �
 �		$�
 �%�� �%
�
 �	 � 	(
*��� ���� *��$	
 c0� �%�� �
 ����	���
 ��
�� 8� $�
 2� 	%��	 �%
 �
	$�� �! ����	����� � *��$	
 c3 = x1 ∨ ¬x2 ∨ ¬x3�
9
*��� �%�� 	���
	 ��"
�
� ���% ���
���	 ��
 �*�$���� �
	$��	 �! ����	������ �!
8� $�
 ,�"�

��� �%
 ��(#�
&
� *���$�*���� �	 ����	���
� ���$*��&
��� 8��	� �
(�
	
�������	
�! c1, . . . , cm ��
 *�
��
� �	 �"�&
� �%
� �%
� ��
 *������
� $	�� �$	� ����	�����	�
�%
 i�% *��$	
 �	 *������
� "� � �$	� ����	����� !��� ci �� ci−1< ci

a−→Sϕci−1�
���
 �%�� �
 ��� �� ��	� � '$������* �$�"
� �! �$)������ 	���
	 �%�	 ��� ����
� 	������ �$�"
� �! ����	�����	�� �!�
� *�������� cm �
 �"���� � �
(�
	
�������
�! �%
 �%��
 !���$��� 8� $�
 2" (�
	
��	 � *��(�
�
 ����	������ !�� � !���$��
ϕ = (x1∨¬x2∨x3)∧(¬x1∨x2∨x3)∧(x1∨¬x2∨¬x3)� ��� $���"
�
� ����	�����	
	%�$�� �*�$���� "
 ��"
�
� "� a ��
��&
� �� �
*�
�	
 *�$��
���

:� �	 ��� %��� �� 	

 �%�� �! �%
 cm 	���
 %�	 �� ��(�
�
������� �%
� ��
�*�$���� %�	 � 	���
 �%�� 	���	+
	 �%
 �
'$��
�
��	 �! ��� �%
 	���
	 �
(�
	
����
��	�$�*����	� ��� �%$	 �� ���$*
	 � 	���	+�"�
 �		� ��
�� �� ϕ�

--; /!0! 1������ �! (����� ��� �! +2�	����

$ %��� ��
���
� �
� %��� "�
�����
��

�
 	%��� ��� ��	*$		 �%�� �	 *��	��
�
� � *��		�* !��� �! � �
�� ����� �
+�
�
��
��"����
� "� ����	!����� ����� �
+�
�
�� �� �%
 	��
 ��� �	 "�	��$������ �	
����	!���
� �� ���
� �� �"���� ��	 �
�� !���K �� �%
 "
	� �! �$� �����
�
 +�	�
($"��	%
� "� BF��
� ��� ���	
� �� ./70�� �%
 �
+������ $	
	 � ������ �! �
��
����	����� �
������	 �%�� �
 ������$*
 +�	�� �
 	%��� ����
<

s a−−→∗
Ss′ �? s (τ−→S)∗ a−→S (τ−→S)∗ s′ �5�

s a���∗Ss′ �? s (τ���S)∗ a���S (τ���S)∗ s′ , �6�

�%
�
 R∗ �
���
	 �
�� �� ���
 ����	���&
 �((��*�����	 �! � "����� �
������ R�
8������ �
 ����
 s â−−→∗

Ss′ �%
�
&
� s a−−→∗
Ss′ ��� a
= τ � �� �%
�
&
� s (τ−−→S)∗ s′

��� a = τ � ��������� !�� �%
 ��� ����	����� �
�������

��������� �� 	-��.
��� ����������� *�� S� T � �	��� ����
���	�

�
���
� � ����� ������	� R ⊆
����
S ×
����
T �
 � ���- �	��� ��������� ��

�	� ���� ���� (s, t) ∈ R ��� ���� ����	� a ∈ ��� τ �� �	��
 �����

�	� ��� t′ ∈
����
T
��� ���� t a−→T t′

����� ���
�
 s′ ∈
����
S
��� ���� s â−−→∗
Ss′ ��� (s′, t′) ∈ R�

�	� ��� s′ ∈
����
S
��� ���� s a���Ss′

����� ���
�
 t′ ∈
����
T
��� ���� t â���∗T t′ ��� (s′, t′) ∈ R�

��
�� ���� �
���� s ∈
����
S ���-�� �����
 �
���� t ∈
����
T � ������� s ≤∗- t
�� ����� ���
�
 � ���- �	��� ��������� �	�������� (s, t)�

��������� �# 	-��. ���������&%�� �
���� s 	� � �	��� ����
���	�
�
���

S �
 ���-�� �	�
�
���� �� ����� ���
�
 �� ������������	� I ��� ��

���� sI
���

���� sI ≤∗- s�

�
 %����
���
 �
�� *��	�	�
�*� $	�� *��	�	�
�*� �
������	 �	 "
!��
� :� ���
�
�� �� �%�	 �
 �

� �� ��!� �
�� ����	����� �
������	 ���∗ ��� −→∗ �� 	
�	 �! 	���
	�
8�� ��� 	
�	 �! 	���
	 σ, σ′ ⊆
����
S ����
<

σ â−−→∗
�S�σ′ �? ∃s∈σ. ∃s′∈σ′. s â−−→∗

Ss′ , �7�

σ â���∗�S�σ′ �? ∀s∈σ. ∃s′∈σ′. s â���∗Ss′ . �/-�

��������� �' 	-��. ���������&% ��������� *�� S � � �	��� ����
���	�

�
���� � ������	� O ⊆ P(
����
S) �
 � ���- �	�
�
����� ������	� 	�
����
S ��

�	� ���
�� σ ∈ O� �	� ���
���� s ∈ σ� ��� �	� ��� ����	� a ∈ ��� τ �� �	��
 �����

�������� s a−→Ss′ �	�
	�� s′ ∈
����
S

���� ��
	 σ â−−→∗
�S�σ′ ��� σ â���∗�S�σ′ �	�
	�� σ′ ∈ O �	�������� s′�

O �
 � ���- �	�
�
����� ������	� �	� �
���� s ∈
����
S �� �� �	�����
 � �	�
�

����� ���

 σs
��� ����
����s ∈ σs�

3� 4	��� 5�#������ ��� �	��������� --<

�	 "
!��
� �
 *���� �%�� �
�� *��	�	�
�*� �
������	 �E
+������ /3� 	�$���� *%��#
�*�
���
 �
�� *��	�	�
�*� �E
+������ /2�< !�� � 	���
 s ∈
����
S ���% � �����
�
�� *��	�	�
�*� �
������ O� ��
 *�� *��	��$*� � �
�� ��(�
�
������� IO *��#
������ � 	���
 sI 	$*% �%�� sI ≤∗- s� ���
 	���
	 �! IO �� "
 *��	�	�
�*� *��		
	
�! O �
����
IO = O�� ��� sI "
 � *��		 σs *�������� s� �%
 ����	����� �
������	 �!
IO ��
 �%
 ���
�	
*���� �! �%
 �
�� ����	����� �
������	 �! S ��!�
� �� *��	�	�
�*�
*��		
	 �! O� 8�� ��� �*����	 a ∈ ��� τ <

σ a−→IO σ′ ��� σ a���IO σ′ �? σ â−−→∗
�S�σ′ ��� σ â���∗�S�σ′ . �//�

������� �($���������� *�� S � � �	��� ����
���	�
�
���� s ∈
����
S�

��� O � � ���- �	�
�
����� ������	� �	� s� $��� s �
 ���-�� �	�
�
���� ���

sI ∈
����
IO �
 	�� 	� ��
 ������������	�
� sI ≤∗- s�

A��	�	�
�*� �
������	 *%���*�
���
 �
�� *��	�	�
�*� (�
*�	
��� �		$�
 �%�� �
	���
 s ∈
����
S �	 �
+�
� "� � 	���
 sI �! �� ��(�
�
������� I �I ≤∗- S�� �%
�
��
 *�� $	
 �%�	 ��(�
�
������� �� *��	��$*� �%
 *��	�	�
�*� �
������ OI <

OI = {σp ⊆
����
S | p ∈
����
I ��� σp
= ∅ ��� ∀q ∈ σp.p ≤∗- q} �/,�

������� �) 	���+��������� *�� S � � �	��� ����
���	�
�
���� I � ��

������������	�� ��� ��� sI ≤∗- s �	�
	�� sI ∈
����
I ��� s ∈
����
S� $���

����� ���
� ���- �	�
�
����� ������	�
 �	� s� ��� OI �
 	�� 	� �����

E
+������ /3 *�� "
 ���
�(�
�
� �(
����������

T

0

τ
τ

τ
τ

a

a

b
b

��� �� ��� ������������	��
	
 T ���� τ ���������	��

 �&�� ��	
 �� ��
)(��
����� �� ����%� !�� *��#
	��$*��� � *��	�	�
�*� �
������ ��� �
*���� �
��
*��	�	�
�*�� �
�� *��	�	�
�*� *����(
	 �� 	����
*��	�	�
�*� !�� 	�	�
�	 ���%�$� ����	�����	 ��"
�
�
���% τ � A��	
'$
���� �%
 (��"�
� �! �
*���� ��
�	 �� �
�	� �>#%���� "� �
�$*���� !��� ��������	

(�
	
��
� �� �
*���� 3�
�
 ���$�
 �%�	 	
*���� ���% � *���
�� �� 	���%
	�	 �! � �
�� ��(�
�
���#

���� IO !��� � *��	�	�
�*� �
������ O� �%
 ��(�
�
������� 	���%
	��
� "� �%

�� ����%� (�
	
��
� �"�&
 ���� *������ ���
���� ����	�����	� �! �%
 	(
�+�����
*������
� �%
�� :� !�*� �%�	 �	 ��� �����	 �
*
		���J�%
�
 �
+���
��
)�	� 	(
*#
�+*�����	 ���% ���
���� ����	�����	 �%�� *�� "
 �
����
� ���%�$� %���
� "
%�&����
B��
&
�� %���
� ����	�����	 ��
 $��&����"�
 !�� 	��
 	(
�+�����	� 8� $�
 3
	%��	 	$*% � 	(
�+����� ��� !�*�
&
� � 	����*��*���� *��	�	�
�� ��
��

& ����%��� ����� ��
���
� �
� '�� "�
�����
��

:� .70 �
 %�&
 (��(�	
� ����%
� �
��
��� �! ����� �
+�
�
���
�
�������
���
������ 	��$������ .,60 !�� ��� (���
�	 �	 $	
� �� ���
�!�*
 �$������ .,70�
�
 *��� �� ��� ���- %
�
� �	 �� (�
	
�&
	 	���� "
%�&��� �� �$	� ����	�����	�
���� ������� �
�� ���*%�� �� ��� ����	�����	� :� %�	 "

� �
���	����
� �%��

--. /!0! 1������ �! (����� ��� �! +2�	����

���#�
�� ����� �
+�
�
�� �	 � 	�$�� "�	�	 !�� �		$�
L $�����

 �
�	���� < ��
(�
	
�&
	 �"	
�*
 �! �
����*�	 �� $�����

� "
%�&���	 ��
����	 �� .70��

H
!��
 �
 *�� �
+�
 �%
 ���#�
�� �
+�
�
��� �
� $	 �
+�
 �%
 ���#�
��
����	����� �
������ �	 $	
� �� �%�	 �
+�
�
��� �
 	%��� ����

s a����
Ss′ �? s(τ���S)∗s′′ a���Ss′ �/1�

��������� �	 "
!��
 �
 ����
 s â����
Ss′ �
���� s a����

Ss′ �! a ∈ ��� ��� s(τ���S)∗s′

�! a = τ � �
 $	
 �%
 �
 $��� �	���� � �$	�#����	����� �
������ ��!�
� �� 	
�	 �!
	���
	 �	 �� �
*���� 3� �
 ��	� ��!� �$� �
� ���#�
�� ����	����� �
������<

σ â����
�S�σ′ �? ∀s ∈ σ.∃s′ ∈ σ′. s â����

Ss′ . �/2�

�
� $	 ��� �
+�
 ���#�
�� ����� �
+�
�
�� .70 $	�� ���#�
�� ����	�����	<

��������� �* 	
�%�/��.
��� ����������� � ����� ������	� R ⊆

����
S ×
����
T �
 � ��� ���- ��������� ������
����
 	� ��	 �	��� ����

���	�
�
���
 S ��� T �� �	� ���� ���� 	�
����
 (s, t) ∈ R �� �	��
 �����

�	� ��� a ∈ ��� ��� �	� ��� t′ ∈
����
T
��� ���� t a−→T t′

����� ���
�
 s′ ∈
����
S
��� ���� s a−→Ss′ ��� (s′, t′) ∈ R�

�	� ��� a ∈ ��� τ ��� �	� ��� s′ ∈
����
S s a���Ss′

����� ���
�
 t′ ∈
����
T ′
��� ���� t â����
T t′ ��� (s′, t′) ∈ R�

�
���� s ∈
����
S ��� ���-�� �����
 �
���� t ∈
����
T � ������� s ≤�
- t ��

����� ���
�
 � ��� ���- �	��� ��������� �	�������� (s, t)�

��������� �, 	
�%�/��. ���������&%�� �
���� s 	� � �	��� ����
���	�

�
��� S �
 ��� ���- �	�
�
���� �� ����� ���
�
 �� ������������	� I ��� ��

���� sI
��� ���� sI ≤�
- s�

��������� " 	
�%�/��. ���������&% ��������� *�� S � � �	��� ����

���	�
�
���� � ������	� U ⊆ P(
����
S) �
 � ��� ���- �	�
�
����� ������	� 	�

����
S �� �	� ���
�� 	�
����
 σ ∈ U � �	� ���
���� s ∈ σ� ��� �	� ��� ����	�

a ∈ ��� ��� �	��	���� �	��
�

�������� s a−→Ss′ �	�
	�� s′ ∈
����
S

���� ��
	 σ a−→�S�σ′ ��� σ a����
�S�σ′ �	�
	�� σ′ ∈ U �	�������� s′�

U �
 � ��� ���- �	�
�
����� ������	� �	� �
���� s ∈
����
S �� �� �	�����
 �

�	�
�
����� ���

 σs ∈ U
��� ���� s ∈ σs�

��&
� � *��	�	�
�*� �
������ U !�� � 	���
 s �! � ����� ����	����� 	�	�
� �� �

*�� 	���%
	��
 �� ��(�
�
������� IU ���% � 	���
 sI �
+��� s� �%
 	���
	 �!
IU ��
 �%
 *��	�	�
�*� *��		
	 �! U <
����
IU = U ��� sI �	 �%
 *��	�	�
�*� *��		
*�������� s� ����	����� �
������	 �! IU
'$�� ���
�	
*���� �! ��
� ��� ���#�
��
����	����� �
������	 �! S ��!�
� �� *��	�	�
�*� *��		
	 �� U �!�� a
= τ�<

σ a−→IU σ′ ��� σ a���IU σ′ �? σ a−→�S�σ′ ��� σ a����
�S�σ′ , �/3�

3� 4	��� 5�#������ ��� �	��������� --6

������� "� 	$���������� *�� s ∈
����
S� '� U �
 � ��� ���- �	�
�
�����

������	� �	� s ���� s �
 ��� ���-�� �	�
�
���� ��� sI ∈
����
IU �	�
������� �

�	�� �
 	�� 	� ��
 ������������	�
� sI ≤�
- s�

8�� �%
 *��(�
�
�
		 �! *%���*�
�������� *��	��
� �� ��(�
�
������� I� � 	���

sI ∈
����
I 	$*% �%�� sI ≤�

- s� �%
�
 s ∈
����
S � �
 ��	��$� � *��	�	�
�*�
�
������ UI !�� s �� �%
 !������� ���<

UI = {σp ⊆
����
S | p ∈
����
I ��� σp
= ∅ ��� ∀q ∈ σp. p ≤�
- q} . �/4�

������� "" 	���+��������� *�� S � � �	��� ����
���	�
�
���� s ∈
����
S

��� ��� I � �� ������������	�
��� ���� sI ≤�
- s �	�
	�� sI ∈
����
I � $��� �����

���
� � ��� ���- �	�
�
����� ������	� �	� s� ��� UI �
 	��
��� ������	��

M)�	�
�*
 �! � ���#�
�� *��	�	�
�*� �
������ !�� � �&
� 	���
 s *�� "
 �
*��
� ��

)(��
����� ���
� $	�� �� �� ����%� �%�� �	
�	� ��
)���*� !��� E
+������ ,-�
�	 (�
&��$	�� �%�	 (��"�
� �	 ��	� �>#%���� �	 ���#�
�� *��	�	�
�*� *����(
	
�� 	���� *��	�	�
�*� !�� 	(
�+�����	 ���%�$� τ ����	�����	�

� �
�����"�
 (��(
��� �! ���#�
�� ����� �
+�
�
��� �%�*% �
 %�&
 ���
�
����
� �%
� ������ .70� �	 �%�� � ���#�
�� *��	�	�
�� 	�	�
� �����	 %�	 ��#
(�
�
�������	 �%�� *������ �� %���
� �*����	 �IU �"�&
 �	 �*�$���� *��	��$*�
�
���%�$� ������$*�� ���
���� ����	�����	�� �%�	 �	 "
*�$	
 �%�	 �
+�
�
�� *�(#
�$�
	 � ���� �! ��"	
�&������ �
�
�����	� �! �
'$��
� "
%�&���	 �� 	(
�+�����	�
�
 +�� �%�	 (��(
��� �((
���� !�� �((��*�����	 � ���< �� �
	*��"
	 � *��		 �!
	(
�+�����	 �%�*% ����� ��(�
�
�������	 �%�� ��
 (�
��*��"�
 �(��&��
� �%��
�%
� ��
 �
�
�����	��*�� �	 (�
��*��"����� �	 �� ��(������ (��(
��� �! 	�!����

	�	�
�	� �%
 �"�&
 �
�	��� (��
�$�
 �	 ���
�� �� (��&
 $	
!$� �� (��*��*
�

("�
��	���
 �
� �)�
 *��+����

�
 %�&
 ����
		
� 	
&
��� "�	�* '$
	����	 �� �%
 �%
��� �! ����� ����	����� 	�	#
�
�	� �
 %�&
 	%��� �%�� �
*���� ��� �
+�
�
�� �%�� *�(�$�
	� �� � (�
*�	

���� �%
 	��
 	
� �! *��*�
�
 ��(�
�
�������	 �	 �%
 	������� ����� �
+�
#
�
�� ��� �
�� ����� �
+�
�
��� �	 *�#�> %���� �%�	 ���
� "�$�� �	 ��� �� %��
�� $((
� "�$�� �! MG>�:�M �	
�	���
	��"��	%
� "� *�	��� �%
 (��"�
� �	
*%
��� 	���	+�"����� �! ��(������� "
��

� ��� *%���*�
��	��* !���$��	� �� �%

����� μ#*��*$�$	� 8����� � �� %� "�$�� �
����	 �� �(
� (��"�
� �%�� �
 	%���
����
		 	%������ �
 ��	� %�(
 �� 	�$�� %����
		 �! �%���$ % �
+�
�
��	 ���$*
�
"� ���#�
�� ����� �
+�
�
�� ��� "���*%�� ����� �
+�
�
�� ./-0�

8$��%
����
 �
 %�&
 *�����"$�
� �� �%
 $��
�	������ �! �%
 �
������ "
��

�
�
+�
�
��	 ��� *��	�	�
�*�
	 	�$���� ������	 �! *��	�	�
�*� !�� ����� ����	�����
	�	�
�	 ���$*
�"� !�$���?
�
�� �
+�
�
�� �
������	< 	����*��* *��	�	�
�*� ./0 ���#
�$*
� "� � ��(% ��*�$	��� �
+�
�
���� 	���� *��	�	�
�*� ����$*
� "� � �
 $���
����� �
+�
�
�� ./0�� �
�� *��	�	�
�*� ����$*
� "� �
�� ����� �
+�
�
�� ./70�
��� ���#�
�� *��	�	�
�*� ����$*
� "� ���#�
�� ����� �
+�
�
�� .70�� 8��
�*%

--7 /!0! 1������ �! (����� ��� �! +2�	����

�! �%
	
 �
 %�&
 �&
� � 	�$�� ��� *��(�
�
 �(
�������� *%���*�
����������%
 $(#
(
� "�$�� ��
	��"��	%�� �%
 ��	� �%�

 �! �%
	
 *��	�	�
�*�
	 �	
)(��
������ ���
�%
� ��
 �>#%���� �����*��* *��	�	�
�*� *�� "

	��"��	%
� �� ���
�� ���
�

�%
�
 �	 � ���
 �! �(
� (��"�
�	 �
���
� �� �%
	
 �
	$��	� 8��	�� �� �	 ��
���
�
	��� '$
	���� �%
�%
� �%
�

)�	�	 � $	
!$� ���
�����&
 �� ����� �
+�
�
��
�%�� *��(�
�
�� *%���*�
���
	 ��	 ��� ��	 �((�	
� �� �%
 *$��
���� �**
(�
��
	
� �! ��(�
�
�������	 ��� �%�� *�� "
 �
*��
� �� (��������� ���
� �%
 ����
*%���
�
 %
�
 �	 �� �� $
 �%�� �%
 	
� �! ��(�
�
�������	 *��	��
�
� �	 ���
�
	���
!��� � (��*��*�� (���� �! &�
�� ���
�����&
��� �	 	$
	�
� �� $	 "� ��*%�
� B$�%�
��
 *�� ��� �� *%���*�
���
 "���� *��		
	 �! ����� ����	����� 	�	�
�	 !�� �%�*%
�%
 *$��
���� $	
� �
+�
�
�� �	 *��(�
�
�

8����� � $��!��� !���$������ !�� !�$� *��	�	�
�*� 	�$��
	 �	 (�
	
��
� ��
�%�	 (�(
� ��	 � ���%
� *%���
� �� "$� �
������ ��	�� ��&
� �%�� �%
� *�� "

�
	*��"
� 	� 	�������� ��
 *�$�� ��� �� ���
 �%�	 ����� � !$��%
� ��� �
	� � �
���
 �"	���*� �
��#*��	�	�
�*� �%
���� (����
�
���
� ���� "� � �
+�
�
���

8$��%
����
 �� �	 ���
�
	��� �� 	�$�� �%
 �
������ "
��

� *��	�	�
�*� ���
(�����
� �
*��(�	������ �
 %�&
 ���
 	��
 (�
�������� ���� �� �%�� ��(�* �� .70�
�%�$ % �� � ���%
� �
	���*�
� 	
���� � �
 ���
�� ��
�
�����
 �"	
�&������� *��#
	�	�
�*� �! .70� ��� �� $��
�	���� ��	 	
�����*	 "$����� �� �%
 �
	$��	 �! �%

(�
	
�� (�(
�K $������
��
�(����� �� �� � ���
� 	�$�� �! �
*��(�	������

������
���

-! 1������ /!0!� =�	����� >!? � �	��� ��	���� �	���! @�? 1@�� @AAA �	������
	�����)����� 1	� ������	� '-877*

�! %���� 4!� B���������� 5!� ������� �!? 4	��� ��������	� �������? �
	������	�
	�
������������ ��	���� ��������! @�? ����� �! '��!* A3) ���- ��� A=�) ���-!
1(�� �	�! ���7� �������� %��������� '���-*

9! ������� �!? "�	� ����� ���� �	 �	������������	� ������� �� �������� ��������
������������	� '���-*

;! 0	��
�	���)!� %���� 4!� B���������� 5!? ���������	������� �	��� �������� �����
�	��� ��������	� �������! @�? 1������ /!0!� (������� 4! '���!* �3(��5 ���-!
1(�� �	�! �-<;� �! ;�.! �������� %��������� '���-*

<! >C�:���	�� �!� 1������ /!0!� �	�� �!? 0��������� �� ������ ��� �	��	����	���
����#����	� ����� ���! @�? "35=A D8�)�	��������� =�� (����������� ��! ;;8E;.;!
(����%	�����)��������� �	!� ��������� '-889*

.! 1������ /!0!� ��F��� >!� +����� �!? � �	�������� 	������� ��		
 ����	�	�	�� �����
	� �	��� ��������	� �������! @�? =		�� ��� ���	������
	� �	��������	� ��� �����
���� 	
 ������� ��! -6E;� '-88<*

6! >����� 0!? �� ���������� ���������	� 	
 �	��� ��	���� �	���! ��! �	����!)�	�
����! �8'-��*� 9E�� '-886*

7! 1������ /!0!� G��$��� 1!? A ����	� �	����� ����� �	��� ��������	� �������! @�?
1@�! "�
�� ������ @AAA ���	���� 	� 1	���� �� �	������ �������)��������
�����)�� ��� ;E6 B��� -88�� ��! -�7E--6! @AAA �	������ 	�����)����� 1	�
������	� '-88�*

8! 1������ /!0!� (����� �!� +2�	����� �!? 4	��� �H	 ���	����
	� �����
��� ���
��	���� ���� ���	����! @�? (��	��� 5!�! '��!* A3) ���6!)�	�������� 1��������
��� ������! 1(�� �	�! ;;�-� ��! .;E68! �������� %��������� '���6*

3� 4	��� 5�#������ ��� �	��������� --8

-�! "��������� �!� �������� !� >��������� I!? �
	������	�
	� ������	���� �	�
	��
����� �� �	
����� ��	���� ���� �������������! @�? 53�=A� D�.)�	��������� ��!
98E;7! ��4)����� (�� J	��� (J� �� '���.*

--! �������� !� �������� 4!? 4������ ������� ������	���� �	����! @�? =���	�� 5!(!�
������ 4!>! '���!* @03"= "A� ��! ;9E<�! ��4)����� (�� J	�� '���;*

-�! >������ 0!� �������� 4!� �������� !?)�	������� 	
 ������	���� �	��� �������! @�?
4����� B!� (���	�� =!� ���������� A! '���!* "4 ���.! 1(�� �	�! ;�7<� ��! 87E--;!
�������� %��������� '���.*

-9! +����� �!� 1��,���� �!? +��� ��#������
	� �	��� ������ �������! @�? 4����� 3!
'��!* %�5= -886! 1(�� �	�! -��-� ��! 9-.E99�! �������� %��������� '-886*

-;! 1������ /!0!? 4	��� �����#����	��! @�? �
����� B! '��!* ���	����� I���#����	�
4���	��
	� "����� ���� ������! 1(�� �	�! ;�6� ��! �9�E�;.! �������� %���
������� '-88�*

-<! ������� /!� 0	�������� B!�!� 1������ /!0!? =���� �	��� �����#����	� � ���	�� ���
�		��! @�? �	���	������� �! '��!* ��I -889! 1(�� �	�! .86� ��! �<9E�.6! ��������
%��������� '-889*

-.! 1������ /!0!� ��F��� >!� +����� �!? "������D� ��	�	�	� ���������? � ������ ��		

����� �	��� �	���������! @�? ����� 5!� 	����� A!�!� %��,������ =!�! '���!* %�����
������ @@@! 1(�� �	�! -�..� ��! .�;E.-<! �������� %��������� '-88.*

-6! "������ %!� %���� 4!? 5����� ��������� ���������	�
	� ��������� ����? �	��
����� ������������ ��� �������! @�? 0��
� !� K����� +! '���!* �=I� ���.! 1(��
�	�! ;�-7� ��! 9��E99.! �������� %��������� '���.*

-7! ������� %!� "������ %!? �	������� ���:������� �	��� ��������	� ������� ���� �
	������������ ������� '���������
	� ���������	�* '���6*

-8! %&����� %!� 1������ /!0!? =�� ��� 	
 ������ �	�������� �� � �	��� ��	���� �	���!
@�? 1"�! =�� -�� @��������	��� ���	���� 	� 1	����� "	������	�� 	
 �	������
������ '-878*

��! ����� �!? �������� @�����������	� ���)������	� 5�#������
	� 4	��� ��������!
)�� ������� A����	��� ���������� 	
 =����	�	�� 'B��� -88.*

�-! %������� 4!� 4������ 5!? ��������� ����
	� �	������������ ��� �	���������! B	���
��� 	
 ��� ��4� -96E-.- '-87<*

��! 1������ /!0!? � �	���$� ��������� ����������	� ������� ��	������! =��	�������
�	������ ������ ;8 '-876*

�9!)���� �!? �	��������� ��� ���	���� 	� ��#���� �� ������! @�?)�	�������� 	
 <��
0@ �	�
������� �	�! -�; '-87-*

�;! 4������ 5!? �������
	� ������	�� ��� �������	��! =��	������� �	������ ������ �<
'-879*

�<! 0	��
�	���)!� B���������� 5!? ���	����� ���������	� ����� ��������,�� �	���
��������! @�? >�������� A!� 1������ /!0! '���!* ��I ����! 1(�� �	�! �;�;� ��!
-96E-<�! �������� %��������� '����*

�.! %&����� %!? 3������	��� ��� ���	����	��� ��	������� 	
 �	��� ��	���� �	���! 4���
���D� ������� �	������ ������ ����������! ����	�� ���������� '-877*

�6! G��$��� 1!? ����#����	� ��� ���	��	����	� �� �	���������!)�� ������� �������
���� 	
 4���������� ��� �	������� ������� ����	�� ���������� '����� -88�*

�7! ����� 5!� %��,������ =!�!� /��
������ 3!� I����� 4!? ����������� ��#������ ���
����	��! @�? ����	���� �!� �� ��	��� 5! '���!* �3(��5 -887! 1(�� �	�! -;..�
��! -.9E-67! �������� %��������� '-887*

�8! ��
��	� 1!� %��,������ =!�!? @����
��� ���	����! @�? "A!)�	�������� 	
 ��� (����
������ ���	���� 	� "	������	�� 	
 	
����� A����������� I������ �������� ��!
-�8E-�� '��������� ���-*

Equivalence Checking for Infinite Systems Using
Parameterized Boolean Equation Systems

Taolue Chen1,�, Bas Ploeger2,��, Jaco van de Pol1,2, and Tim A.C. Willemse2,� � �

1 CWI, Department of Software Engineering,
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

2 Eindhoven University of Technology, Design and Analysis of Systems Group,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. In this paper, we provide a transformation from the branching bisim-
ulation problem for infinite, concurrent, data-intensive systems in linear process
format, into solving Parameterized Boolean Equation Systems. We prove cor-
rectness, and illustrate the approach with an unbounded queue example. We also
provide some adaptations to obtain similar transformations for weak bisimulation
and simulation equivalence.

1 Introduction

A standard approach for verifying the correctness of a computer system or a communi-
cation protocol is the equivalence-based methodology. This framework was introduced
by Milner [23] and has been intensively explored in process algebra. One proceeds by
establishing two descriptions (models) for one system: a specification and an implemen-
tation. The former describes the desired high-level behavior, while the latter provides
lower-level details indicating how this behavior is to be achieved. Then an implemen-
tation is said to be correct, if it behaves “the same as” its specification. Similarly, one
could check whether the implementation has “at most” the behavior allowed by the
specification. Several behavioral equivalences and preorders have been introduced to
relate specifications and implementations, supporting different notions of observability.
These include strong, weak [24], and branching bisimulation [11,4].

Equivalence Checking for Finite Systems. Checking strong bisimulation of finite sys-
tems can be done very efficiently. The basic algorithm is the well-known partition
refinement algorithm [26]. For weak bisimulation checking, one could compute the
transitive closure of τ -transitions, and thus lift the algorithms for strong bisimulation to
the weak one. This is viable but costly, since it might incur a quadratic blow-up w.r.t.

� This author is partially supported by Dutch Bsik project BRICKS, 973 Program of China
(2002CB312002), NSF of China (60233010, 60273034, 60403014), 863 Program of China
(2005AA113160, 2004AA112090).

�� This author is partially supported by the Netherlands Organisation for Scientific Research
(NWO) under VoLTS grant number 612.065.410.

� � � This author is partially supported by the Netherlands Organisation for Scientific Research
(NWO) under BRICKS/FOCUS grant number 642.000.602.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 120–135, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Equivalence Checking for Infinite Systems 121

the original LTSs. Instead, one could employ the more efficient solution by [15] for
checking branching bisimulation, as branching and weak bisimulation often coincide.

Alternatively, one can transform several bisimulation relations into Boolean Equa-
tion Systems (BES). Various encodings have been proposed in the literature [2,8,22],
leading to efficient tools. In [2] it is shown that the BESs obtained from equivalence re-
lations have a special format; the encodings of [22] even yield alternation free BESs (cf.
definition of alternation depth in [21]) for up to five different behavioral equivalences.
Solving alternation free BESs can be done very efficiently. However, finiteness of the
graphs is crucial for the encodings yielding alternation free BESs.

It is interesting to note that the µ-calculus model checking problem for finite systems
can also be transformed to the problem of solving a BES [2,21]. Hence, a BES solver,
e.g. [22], provides a uniform engine for verification by model checking and equivalence
checking for finite systems.

Our Contribution. In this paper, we focus on equivalence checking for infinite systems.
Generally for concurrent systems with data, the induced labeled transition system (LTS)
is no longer finite, and the traditional algorithms fail for infinite transition graphs. The
symbolic approach needed for infinite systems depends on the specification format. We
use Linear Process Equations (LPEs), which originate from µCRL [14], a process alge-
bra with abstract data types, and describe the system by a finite set of guarded, nondeter-
ministic transitions. LPEs are Turing complete, and many formalisms can be compiled
to LPEs without considerable blow-up. Therefore, our methods essentially also apply
to LOTOS [5], timed automata [1], I/O-automata [20], finite control π-calculus [25],
UNITY [6], etc.

The solution we propose in this paper is inspired by [12], where the question whether
an LPE satisfies a first-order µ-calculus formula is transformed into a Parameterized
Boolean Equation System (PBES). PBESs extend boolean equation systems with data
parameters and quantifiers. Heuristics, techniques [17], and tool support [16] have been
developed for solving PBESs. This is still subject to ongoing research. Also in [28] such
equation systems are used for model checking systems with data and time. In general,
solving PBESs cannot be completely automated.

We propose to check branching bisimilarity of infinite systems by solving recursive
equations. In particular, we show how to generate a PBES from two LPEs. The resulting
PBES has alternation depth two. We prove that the PBES has a positive solution if and
only if the two (infinite) systems are branching bisimilar. Moreover, we illustrate the
technique by an example on unbounded queues, and show similar transformations for
Milner’s weak bisimulation [24] and branching simulation equivalence [10].

There are good reasons to translate branching bisimulation for infinite systems to
solving PBESs, even though both problems are undecidable. The main reason is that
solving PBESs is a more fundamental problem, as it boils down to solving equations
between predicates. The other reason is that model checking mu-calculus with data has
already been mapped to PBESs. Hence all efforts in solving PBESs (like [17]) can now
be freely applied to the bisimulation problem as well.

Related Work. We already mentioned related work on finite systems, especially [2,22].
There are several approaches on which we want to comment in more detail.

122 T. Chen et al.

The cones and foci method [9] rephrases the question whether two LPEs are bisimilar
in terms of proof obligations on data objects. Basically, the user must first identify in-
variants, a focus condition, and a state mapping. In contrast, generating a PBES requires
no human ingenuity, although solving the PBES still may. Furthermore, our solution is
considerably more general, because it lifts two severe limitations of the cones and foci
method. The first limitation is that the cones and foci method only works in case the
branching bisimulation is functional (this means that a state in the implementation can
only be related to a unique state in the specification). Another severe limitation of the
cones and foci method is that it cannot handle specifications with τ -transitions. In some
protocols (e.g. the bounded retransmission protocol [13]) this condition is not met and
thus the cones and foci method fails. In our example on unbounded queues, both sys-
tems perform τ steps, and their bisimulation is not functional.

Our work can be seen as the generalization of [19] to weak and branching equiva-
lences. In [19], Lin proposes Symbolic Transition Graphs with Assignments (STGA)
as a new model for message-passing processes. An algorithm is also presented which
computes bisimulation formulae for finite state STGAs, in terms of the greatest solu-
tions of a predicate equation system. This corresponds to an alternation free PBES, and
thus it can only deal with strong bisimulation.

The extension of Lin’s work for strong bisimulation to weak and branching equiva-
lences is not straightforward. This is testified by the encoding of weak bisimulation in
predicate systems by Kwak et al. [18]. However, their encoding is not generally correct
for STGA, as they use a conjunction over the complete τ -closure of a state. This only
works in case that the τ -closure of every state is finite, which is generally not the case
for STGA, also not for our LPEs. Alternation depth 2 seems unavoidable but does not
occur in [18]. Note that for finite LTS a conjunction over the τ -closure is possible [22],
but leads to a quadratic blow-up of the BES in the worst case.

Structure of the Paper. The paper is organized as follows. In Section 2, we provide back-
ground knowledge on linear process equations, labeled transition systems and bisimu-
lation equivalences. We assume familiarity with standard fixpoint theory. In Section 3,
PBESs are reviewed. Section 4 is devoted to the presentation of the translation and the
justification of its correctness. In Section 5, we provide an example to illustrate the use
of our algorithm. In Section 6, we demonstrate how to adapt the translation for branch-
ing bisimulation to weak bisimulations and simulation equivalence. The translation for
strong bisimulation and an additional example are presented in [7]. The paper is con-
cluded in Section 7.

2 Preliminaries

Linear process equations have been proposed as a symbolic representation of general
(infinite) labeled transition systems. In an LPE, the behavior of a process is denoted as
a state vector of typed variables, accompanied by a set of condition-action-effect rules.
LPEs are widely used in µCRL [14], a language for specifying concurrent systems and
protocols in an algebraic style. We mention that µCRL has complete automatic tool
support to generate LPEs from µCRL specifications.

Equivalence Checking for Infinite Systems 123

Definition 1 (Linear Process Equation). A linear process equation is a parameterized
equation taking the form

M(d : D) =
∑

a∈Act

∑
ea:Ea

ha(d, ea) =⇒ a(fa(d, ea)) ·M(ga(d, ea))

where fa : D×Ea → Da, ga : D×Ea → D and ha : D×Ea → B for each a ∈ Act.
Note that here D, Da and Ea are general data types and B is the boolean type.

In the above definition, the LPE M specifies that if in the current state d the condition
ha(d, ea) holds for any ea of sortEa, then an action a carrying data parameter fa(d, ea)
is possible and the effect of executing this action is the new state ga(d, ea). The values
of the condition, action parameter and new state may depend on the current state and a
summation variable ea.

For simplicity and without loss of generality, we restrict ourselves to a single vari-
able at the left-hand side in all our theoretical considerations and to the use of non-
terminating processes. That is, we do not consider processes that, apart from executing
an infinite number of actions, also have the possibility to perform a finite number of
actions and then terminate successfully. Including multiple variables and termination in
our theory does not pose any theoretical challenges, but is omitted from our exposition
for brevity. The operational semantics of LPEs is defined in terms of labeled transition
systems.

Definition 2 (Labeled Transition System). The labeled transition system of an LPE
(as defined in Definition 1) is a quadrupleM = 〈S, Σ,→, s0〉, where

– S = {d | d ∈ D} is the (possibly infinite) set of states;
– Σ = {a(d) | a ∈ Act ∧ d ∈ Da} is the (possibly infinite) set of labels;
– →= {(d, a(d′), d′′) | a∈Act∧∃ea∈Ea.ha(d, ea)∧d′=fa(d, ea)∧d′′=ga(d, ea)}

is the transition relation;
– s0 = d0 ∈ S, for a given d0 ∈ D, is the initial state.

For an LPE M , we usually write d
a(d′)−−−→M d′′ to denote the fact that (d, a(d′), d′′) is in

the transition relation of the LTS of M . We will omit the subscript M when it is clear
from the context. Following Milner [24], the derived transition relation⇒ is defined as

the reflexive, transitive closure of
τ→ (i.e. (τ−→)∗), and

α⇒,
α̂⇒ and

ᾱ−→ are defined in the
standard way as follows:

α⇒ def= ⇒ α→⇒ α̂⇒ def=
{
⇒ if α = τ
α⇒ otherwise.

ᾱ−→ def=
{ τ−→ ∪ Id if α = τ

α→ otherwise.

2.1 Bisimulation Equivalences

We now introduce several well-known equivalences. The definitions below are with
respect to an arbitrary, given labeled transition systemM = 〈S,Σ,→, s0〉.

Definition 3 (Branching (Bi)simulations). A binary relation R ⊆ S × S is a semi-
branching simulation, iff whenever sRt then for all α ∈ Σ and s′ ∈ S, if s

α−→ s′, then

t⇒ t′
ᾱ−→ t′′ for some t′, t′′ ∈ S such that sRt′ and s′Rt′′. We say that:

124 T. Chen et al.

– R is a semi-branching bisimulation, if bothR andR−1 are semi-branching simu-
lations.

– s is branching bisimilar to t, denoted by s ↔b t, iff there exists a semi-branching
bisimulationR, such that sRt.

– s is branching simulation equivalent to t, iff there existR andQ, such that sRt and
tQs and bothR and Q are semi-branching simulations.

Note that although a semi-branching simulation is not necessarily a branching simu-
lation, it is shown in [4] that this definition of branching bisimilarity coincides with
the original definition in [11]. Therefore, in the sequel we take the liberty to use semi-
branching and branching interchangeably. In the theoretical considerations in this pa-
per, semi-branching relations are more convenient as they allow for shorter and clearer
proofs of our theorems.

Definition 4 (Weak Bisimulation). A binary relation R ⊆ S × S is an (early) weak
bisimulation, iff it is symmetric and whenever sRt then for all α ∈ Σ and s′ ∈ S, if

s
α−→ s′, then t

α̂⇒ t′ for some t′ ∈ S such that s′Rt′.
Weak bisimilarity, denoted by↔w, is the largest weak bisimulation.

3 Parameterized Boolean Equation Systems

A Parameterized Boolean Equation System (PBES) is a sequence of equations of the
form

σX(d : D) = φ

σ denotes either the minimal (μ) or the maximal (ν) fixpoint. X is a predicate variable
(from a set P of predicate variables) that binds a data variable d (from a set D of data
variables) that may occur freely in the predicate formula φ. Apart from data variable d,
φ can contain data terms, boolean connectives, quantifiers over (possibly infinite) data
domains, and predicate variables. Predicate formulae φ are formally defined as follows:

Definition 5 (Predicate Formula). A predicate formula is a formula φ in positive form,
defined by the following grammar:

φ ::= b | φ1 ∧ φ2 | φ1 ∨ φ2 | ∀d : D.φ | ∃d : D.φ | X(e)

where b is a data term of sort B, possibly containing data variables d ∈ D. Further-
more, X ∈ P is a (parameterized) predicate variable and e is a data term.

Note that negation does not occur in predicate formulae, except as an operator in data
terms. We use b =⇒ φ as a shorthand for ¬b ∨ φ for terms b of sort B.

The semantics of predicates is dependent on the semantics of data terms. For a closed
term e, we assume an interpretation function �e� that maps e to the data element it
represents. For open terms, we use a data environment ε that maps each variable from
D to a data value of the right sort. The interpretation of an open term e is denoted as
�e�ε in the standard way.

Equivalence Checking for Infinite Systems 125

Definition 6 (Semantics). Let θ : P → ℘(D) be a predicate environment and ε : D →
D be a data environment. The interpretation of a predicate formula φ in the context
of environment θ and ε, written as �φ�θε, is either true or false, determined by the
following induction:

�b�θε = �b�ε
�φ1 ∧ φ2�θε = �φ1�θε and �φ2�θε
�φ1 ∨ φ2�θε = �φ1�θε or �φ2�θε
�∀d : D.φ�θε = for all v ∈ D, �φ�θ(ε[v/d])
�∃d : D.φ�θε = there exists v ∈ D, �φ�θ(ε[v/d])
�X(e)�θε = true if �e�ε ∈ θ(X) and false otherwise

Definition 7 (Parameterized Boolean Equation System). A parameterized boolean
equation system is a finite sequence of equations of the form σX(d : D) = φ where φ
is a predicate formula in which at most d may occur as a free data variable. The empty
equation system is denoted by ε.

In the remainder of this paper, we abbreviate parameterized boolean equation system to
equation system. We say an equation system is closed whenever every predicate variable
occurring at the right-hand side of some equation occurs at the left-hand side of some
equation. The solution to an equation system is defined in the context of a predicate
environment, as follows.

Definition 8 (Solution to an Equation System). Given a predicate environment θ and
an equation system E , the solution �E�θ to E is an environment that is defined as follows,
where σ is the greatest or least fixpoint, defined over the complete lattice ℘(D).

�ε�θ = θ

�(σX(d : D) = φ)E�θ = �E�(θ
[
σX∈℘(D).λv∈D.�φ�(�E�θ[X/X])[v/d]/X

]
)

For closed equation systems, the solution for the binding predicate variables does not
depend on the given environment θ. In such cases, we refrain from writing the environ-
ment explicitly.

4 Translation for Branching Bisimulation

We define a translation that encodes the problem of finding the largest branching bisim-
ulation in the problem of solving an equation system.

Definition 9. Let M and S be LPEs of the following form:

M(d : DM) =
∑

a∈Act

∑
ea:EM

a

hM
a (d, ea) =⇒ a(fM

a (d, ea)).M(gM
a (d, ea))

S(d : DS) =
∑

a∈Act

∑
ea:ES

a

hS
a(d, ea) =⇒ a(fS

a (d, ea)).S(gS
a(d, ea))

Given initial states d : DM and d′ : DS, the equation system that corresponds to the
branching bisimulation between LPEs M(d) and S(d′) is constructed by the function
brbisim (see Algorithm 1).

126 T. Chen et al.

The main function brbisim returns an equation system in the form νE2μE1 where the
bound predicate variables in E2 are denoted by X and that in E1 are denoted by Y .
Intuitively, E2 is used to characterize the (branching) bisimulation while E1 is used to
absorb the τ actions. The equation system’s predicate formulae are constructed from the
syntactic ingredients from LPEs M and S. Note that although we talk about the model
(M) and the specification (S), the two systems are treated completely symmetrically.
As we will show in Theorem 2, the solution for XM,S in the resulting equation system
gives the largest branching bisimulation relation between M and S as a predicate on
DM ×DS.

Algorithm 1. Generation of a PBES for Branching Bisimulation

brbisim= νE2μE1, where
E2 := {XM,S(d : DM, d′ : DS) = matchM,S(d, d′) ∧matchS,M(d′, d) ,

XS,M(d′ : DS, d : DM) = XM,S(d, d′) }
E1 := {Y p,q

a (d : Dp, d′ : Dq, e : Ep
a) = closep,q

a (d, d′, e)
| a ∈ Act ∧ (p, q) ∈ {(M, S), (S,M)}}

Where we use the following abbreviations, for all a ∈ Act ∧ (p, q) ∈ {(M, S), (S, M)}:

matchp,q(d : Dp, d′ : Dq) =
�

a∈Act ∀e : Ep
a. (hp

a(d, e) =⇒ Y p,q
a (d, d′, e));

closep,q
a (d : Dp, d′ : Dq, e : Ep

a) = ∃e′ : Eq
τ . (hq

τ (d′, e′) ∧ Y p,q
a (d, gq

τ (d′, e′), e))
∨(Xp,q(d, d′) ∧ stepp,q

a (d, d′, e));

stepp,q
a (d : Dp, d′ : Dq, e : Ep

a) = (a = τ ∧Xp,q(gp
τ (d, e), d′))∨

∃e′ : Eq
a. hq

a(d′, e′) ∧ (fp
a(d, e) = fq

a(d′, e′)) ∧Xp,q(gp
a(d, e), gq

a(d′, e′));

4.1 Correctness of Transformation

In this section we confirm the relation between the branching bisimulation problem and
the problem of solving an equation system. Before establishing the correctness of the
transformation presented above, we first provide a fixpoint characterization for (semi-)
branching bisimilarity, which we exploit in the correctness proof of our algorithm. For
brevity, given any LPEs M and S, and any binary relation B over DM ×DS, we define
a functional F as

F(B) = {(d, d′) | ∀a ∈ Act, ea ∈ EM
a .h

M
a (d, ea) =⇒

∃d′2, d′3.d′ ⇒S d
′
2 ∧ d′2

a(fM
a (d,ea))−−−−−−−→S d

′
3 ∧ (d, d′2) ∈ B ∧ (gM

a (d, ea), d′3) ∈ B,
and ∀a ∈ Act, e′a ∈ ES

a .h
S
a(d

′, e′a) =⇒

∃d2, d3.d⇒M d2 ∧ d2
a(fS

a(d′,e′
a))−−−−−−−−→M d3 ∧ (d2, d

′) ∈ B ∧ (d3, g
S
a(d

′, e′a)) ∈ B}

It is not difficult to see that F is monotonic. We claim that branching bisimilarity is the
maximal fixpoint of functionalF (i.e. νB.F(B)).

Equivalence Checking for Infinite Systems 127

Lemma 1. ↔b = νB.F(B).

Proof. We prove set inclusion both ways using the definition of F and fixpoint theo-
rems. The full proof is included in [7]. ()

For proving the correctness of our translation, we first solve μE1 given an arbitrary
solution for X .

Theorem 1. For any LPEs M and S, let μE1 be generated by Algorithm 1, let η be an
arbitrary predicate environment, and let θ = �μE1�η. Then for any action a, and any
d, d′ and e, we have (d, d′, e) ∈ θ(Y M,S

a) if and only if

∃d2, d3. d
′ ⇒S d2∧d2

a(fM
a (d,e))−−−−−−−→S d3∧(d, d2) ∈ η(XM,S)∧(gM

a (d, e), d3) ∈ η(XM,S)

Proof. We drop the superscripts M, S when no confusion arises. We define sets
Ra,d,e

i ⊆ DS, for any a ∈ Act, d, e, i ≥ 0, and depending on η(X), as follows:

{
Ra,d,e

0 = {d′ | ∃d3. d
′ a(fM

a (d,e))−−−−−−−→S d3 ∧ (d, d′) ∈ η(X) ∧ (gM
a (d, e), d3) ∈ η(X)}

Ra,d,e
i+1 = {d′ | ∃d2. d

′ τ−→S d2 ∧ d2 ∈ Ra,d,e
i }

And letRa,d,e =
⋃

i≥0R
a,d,e
i . Obviously, by definition of⇒, we have

Ra,d,e = {d′ | ∃d2, d3. d
′ ⇒S d2 ∧ d2

a(fM
a (d,e))−−−−−−−→S d3 ∧ (d, d2) ∈ η(X)

∧ (gM
a (d, e), d3) ∈ η(X)}

We will prove, using an approximation method, that this coincides with the minimal
solution of Y M,S

a . More precisely, we claim:

((d, d′, e) ∈ θ(Y M,S
a)) = (d′ ∈ Ra,d,e)

Recall that according to the algorithm, Ya is of the form

Ya(d, d′, e) = (X(d, d′) ∧Ξ) ∨ ∃e′τ .(hS
τ (d′, e′τ) ∧ Ya(d, gS

τ (d′, e′τ), e)) (1)

where Ξ (generated by function step) is of the form

(a = τ ∧X(gM
τ (d, e), d′)) ∨

∃e′a.hS
a(d

′, e′a) ∧ (fM
a (d, e) = fS

a (d′, e′a)) ∧X(gM
a (d, e), gS

a(d
′, e′a))

Note that, using the operational semantics for LPE S,

�X(d, d′) ∧Ξ�η = ∃d′′. (d, d′) ∈ η(X) ∧ (gM
a (d, e), d′′) ∈ η(X) ∧ d′ a(fM

a (d,e))−−−−−−−→S d
′′

Hence,
�X(d, d′) ∧Ξ�η = (d′ ∈ Ra,d,e

0) (2)

128 T. Chen et al.

We next show by induction on n, that the finite approximationsY n
a (d, d′, e) of equa-

tion (1) can be characterized by the following equation:

Y n
a (d, d′, e) = (d′ ∈

⋃
0≤i<n

Ra,d,e
i)

The basis is trivial (Ya = ∅). For the induction step, it suffices to note that

{d′ | Y n+1
a (d, d′, e)}

∗= {d′ | ((d, d′)∈η(X) ∧ �Ξ�η) ∨ ∃e′τ .(hS
τ (d′, e′τ) ∧ gS

τ (d
′, e′τ) ∈

⋃
0≤i<n

Ra,d,e
i)}

= {d′ | (d, d′)∈η(X) ∧ �Ξ�η} ∪
⋃

0≤i<n

{d′ | ∃e′τ .(hS
τ (d′, e′τ) ∧ gS

τ (d′, e′τ) ∈ R
a,d,e
i)}

�
= Ra,d,e

0 ∪
⋃

0≤i<n

Ra,d,e
i+1

=
⋃

0≤i<n+1

Ra,d,e
i ,

where the step (∗) uses the induction hypothesis, and the step (�) uses equation (2)
above, and the definition ofRa,d,e

i .
Next we compute the first infinitary approximation Y ω

a of equation (1):

{d′ | Y ω
a (d, d′, e)} =

⋃
n≥0

{d′ | Y n
a (d, d′, e)}

=
⋃
n≥0

⋃
0≤i<n

Ra,d,e
i

=
⋃
i≥0

Ra,d,e
i

It remains to show that the solution is stable, i.e. Y ω is a solution of equation (1).
This can be readily checked as follows:

{d′ | ((d, d′) ∈ η(X) ∧ �Ξ�η) ∨ ∃e′τ .(hS
τ (d′, e′τ) ∧ gM

τ (d′, e′τ) ∈ Ra,d,e)}
= R0 ∪

⋃
i≥1

Ra,d,e
i

= Ra,d,e

Hence we have found the correct minimal solution of μE1. ()

Finally, the correctness of the algorithm follows from the following theorem.

Theorem 2. Let νE2μE1 be the equation system generated by Algorithm 1 on M and
S and θ = �νE2μE1�. Then for all d and d′ we have M(d) ↔b S(d′) if and only if
(d, d′) ∈ θ(XM,S).

Equivalence Checking for Infinite Systems 129

Proof. Recall that according to the algorithm,XM,S is of the form

XM,S(d, d′) =
∧

a∈Act

∀ea.(hM
a (d, ea) =⇒ Y M,S

a (d, d′, ea))

∧
∧

a∈Act

∀e′a.(hS
a(d

′, e′a) =⇒ Y S,M
a (d′, d, e′a))

By symmetry, w.l.o.g. we only consider
∧

a∈Act ∀ea.(hM
a (d, ea) =⇒ Y M,S

a (d, d′, ea)).
We define G : DM ×DS → DM ×DS as

G(B) = {(d, d′) |
∧

a∈Act

∀ea.(hM
a (d, ea) =⇒ (d, d′, ea) ∈ η(Y M,S

a))}

where η = �μE1�[B/XM,S].
Note that by [17, Lemma 5],G is monotonic, and thus the maximal fixpoint ofG ex-

ists which is denoted by νB.G(B). According to the semantics of PBES (cf. Definition
8), we have

νB.G(B) = {(d, d′) | (d, d′) ∈ θ(XM,S)}
Recall that the functional F is defined as

F(B) = {(d, d′) | ∀a ∈ Act, ea ∈ Ea.h
M
a (d, ea) =⇒

∃d2, d3.d
′ ⇒ d2 ∧ d2

a(fM
a (d,ea))−−−−−−−→S d3 ∧ (d, d2) ∈ B ∧ (gM

a (d, ea), d3) ∈ B}

We claim that for any B,
F(B) = G(B)

To see this, first let us note that by Theorem 1

η(Y M,S
a) = {d′ | ∃d2, d3. d

′ ⇒ d2 ∧ d2
a(fM

a (d,e))−−−−−−−→S d3 ∧ B(d, d2) ∧ B(gM
a (d, e), d3)}

It follows that

G(B)

= {(d, d′) |
∧

a∈Act

∀ea.(ha(d, ea) =⇒ (d, d′, ea) ∈ η(Y M,S
a)}

= {(d, d′) |
∧

a∈Act

∀ea.(ha(d, ea) =⇒ ∃d2, d3. d
′ ⇒S d2 ∧ d2

a(fM
a (d,e))−−−−−−−→S d3 ∧

B(d, d2) ∧ B(gM
a (d, e), d3)}

= F(B)

It follows from Lemma 1 that

↔b = νF = νB.G(B) = {(d, d′) | (d, d′) ∈ θ(XM,S)}

from which it is not difficult to see that (d, d′) ∈ θ(X) if and only if M(d) ↔b S(d′).
()

130 T. Chen et al.

5 Example: Unbounded Queues

In this section we demonstrate the potential of the technique outlined in the previous
section by applying it to an example of unbounded queues. The capacity of a bounded
queue is doubled by connecting a queue of the same capacity. This means that a com-
position of bounded queues is behaviorally different from the constituent queues. In
contrast, a composition of queues with infinite capacity does not change the behavior,
as this again yields an unbounded queue.

Let D be an arbitrary data sort (possibly infinite sized) which is equipped with an
equality relation, and letQ denote the data sort of queues of infinite capacity. We denote
the empty queue by [] and for any d ∈ D we denote the queue containing only d by
[d]. Operations on queues include q++q′, denoting the natural concatenation of queues
q and q′, and functions hd : Q → D and tl : Q → Q which yield the head and tail of a
queue q, respectively.

The processes S and T defined below model the composition of two unbounded
queues and three unbounded queues, respectively. Remark that we obtained LPEs S
and T as a result of an automated linearization of the parallel composition of two (resp.
three) queues of infinite capacity. These original specifications have been omitted for
brevity. Processes S and T can communicate with their environments via parameterized
actions r(d) (read d from the environment) and w(d) (write d to the environment). The
τ actions represent the internal communication of data from one queue to the next.

S(s0, s1 : Q) =�

v:D
r(v) · S([v]++s0, s1)

+s1 �= [] =⇒ w(hd(s1)) · S(s0, tl(s1))
+s0 �= [] =⇒ τ · S(tl(s0), [hd(s0)]++s1)

T (t0, t1, t2 : Q) =�

u:D
r(u) · T ([u]++t0, t1, t2)

+t2 �= [] =⇒ w(hd(t2)) · T (t0, t1, tl(t2))
+t0 �= [] =⇒ τ · T (tl(t0), [hd(t0)]++t1, t2)
+t1 �= [] =⇒ τ · T (t0, tl(t1), [hd(t1)]++t2)

Applying Algorithm 1 for processes S and T , we obtain a PBES consisting of 8
equations. For lack of space, only the two most interesting fragments of the PBES are
shown below.

�
νXS,T (s0, s1, t0, t1, t2 : Q) = . . . ∧ (s1 �= [] =⇒ Y S,T

w (s0, s1, t0, t1, t2)) ∧ . . .
�

...�
μY S,T

w (s0, s1, t0, t1, t2 : Q) = (t0 �= []∧Y S,T
w (s0, s1, tl(t0), [hd(t0)]++t1, t2))∨

(t1 �= []∧Y S,T
w (s0, s1, t0, tl(t1), [hd(t1)]++t2)) ∨ (t2 �= []∧hd(t2) = hd(s1)∧

XS,T (s0, s1, t0, t1, t2)∧XS,T (s0, tl(s1), t0, t1, tl(t2)))
�

...

In the remainder of this section, we strongly rely on techniques for solving and ma-
nipulating PBESs like adding invariants, symbolic approximations and strengthening
equations. Some of these techniques have already been automated (e.g. symbolic ap-
proximation, see [16]). For a detailed account of all techniques, we refer to [16,17].

Consider the equation for Y S,T
w . It represents the case where process T has to sim-

ulate a w(hd(s1)) action of process S by possibly executing a finite number of τ -steps
before executing action w(hd(t2)). Inspired by the scenario that captures the minimal
amount of τ -steps that are needed (two steps when t1 = t2 = [], one when t2 = []
= t1
and none otherwise), we strengthen the equation for Y S,T

w as follows:

Equivalence Checking for Infinite Systems 131

μY S,T
w (s0, s1, t0, t1, t2 : Q) =

(t0 �= []∧t1 = t2 = []∧Y S,T
w (s0, s1, tl(t0), [hd(t0)]++t1, t2)) ∨

(t1 �= []∧t2 = []∧Y S,T
w (s0, s1, t0, tl(t1), [hd(t1)]++t2)) ∨

(t2 �= []∧hd(t2) = hd(s1)∧XS,T (s0, s1, t0, t1, t2)∧XS,T (s0, tl(s1), t0, t1, tl(t2)))

The solution to Y S,T
w can be found by a straightforward symbolic approximation.

This stabilizes at the fourth approximation, and can — depending on the rewriting tech-
nology that is used — be found automatically. The resulting solution is:

μY S,T
w (s0, s1, t0, t1, t2 : Q) =

(t0 �= []∧t1 = t2 = []∧hd(t0) = hd(s1)

∧XS,T (s0, s1, tl(t0), [], [hd(t0)])∧X(s0, tl(s1), tl(t0), [], [])) ∨
(t1 �= []∧t2 = []∧hd(t1) = hd(s1)∧XS,T (s0, s1, t0, tl(t1), [hd(t1)])

∧XS,T (s0, tl(s1), t0, tl(t1), [])) ∨
(t2 �= []∧hd(t2) = hd(s1)∧XS,T (s0, s1, t0, t1, t2)∧XS,T (s0, tl(s1), t0, t1, tl(t2)))

The solution to the (omitted) equation Y T,S
w can be obtained analogously. Likewise,

we can strengthen and subsequently solve the equations for the Yτ ’s and the Yr’s. The
resulting solutions can be substituted in the equation for XS,T yielding the following
closed equation for XS,T .

νXS,T (s0, s1, t0, t1, t2 : Q) =

XS,T (s0, s1, t0, t1, t2) ∧ (∀v : D . XS,T ([v]++s0, s1, [v]++t0, t1, t2))

∧ (s1 �= [] =⇒ ((t0 �= [] ∧ t1 = [] ∧ t2 = [] ∧ hd(t0) = hd(s1) ∧
XS,T (s0, s1, tl(t0), [], [hd(t0)]) ∧XS,T (s0, tl(s1), tl(t0), [], []))

∨(t1 �= [] ∧ t2 = [] ∧ hd(t1) = hd(s1) ∧
XS,T (s0, s1, t0, tl(t1), [hd(t1)]) ∧XS,T (s0, tl(s1), t0, tl(t1), []))

∨(t2 �= [] ∧ hd(t2) = hd(s1) ∧XS,T (s0, s1, t0, t1, t2) ∧
XS,T (s0, tl(s1), t0, t1, tl(t2)))))

∧ (s0 �= [] =⇒ (XS,T (s0, s1, t0, t1, t2) ∧ (XS,T (tl(s0), [hd(s0)]++s1, t0, t1, t2)

∨ (t0 �= [] ∧XS,T (tl(s0), [hd(s0)]++s1, tl(t0), [hd(t0)]++t1, t2))

∨ (t1 �= [] ∧XS,T (tl(s0), [hd(s0)]++s1, t0, tl(t1), [hd(t1)]++t2)))))

∧ (t2 �= [] =⇒ ((s0 �= [] ∧ s1 = [] ∧ hd(s0) = hd(t2) ∧
XS,T (tl(s0), [hd(s0)], t0, t1, t2) ∧XS,T (tl(s0), [], t0, t1, tl(t2)))

∨(s1 �= [] ∧ hd(s1) = hd(t2) ∧XS,T (s0, s1, t0, t1, t2) ∧
XS,T (s0, tl(s1), t0, t1, tl(t2)))))

∧ ((t0 �= [] ∨ t1 �= []) =⇒ (XS,T (s0, s1, t0, t1, t2)∧
(XS,T (s0, s1, tl(t0), [hd(t0)]++t1, t2)∨XS,T (s0, s1, t0, tl(t1), [hd(t1)]++t2)∨
XS,T (tl(s0), [hd(s0)]++s1, t0, tl(t1), [hd(t1)]++t2)∨
(s0 �= []∧(XS,T (tl(s0), [hd(s0)]++s1, tl(t0), [hd(t0)]++t1, t2))))))

132 T. Chen et al.

Utilizing the fact that s0++s1 = t0++t1++t2 is an invariant of the closed equation
XS,T , the symbolic approximation of XS,T stabilizes at the third approximation, yield-
ing the solution s0++s1 = t0++t1++t2 1. Evaluating the solution to XS,T for the initial
values s0 = s1 = t0 = t1 = t2 = [] tells us that S([], []) and T ([], [], []) are branch-
ing bisimilar. In fact, all processes S(s0, s1) and T (t0, t1, t2) satisfying the condition
s0++s1 = t0++t1++t2 are branching bisimilar.

6 Transformation for Other Equivalences

In this section, we demonstrate how we can adapt the algorithm presented in Section 4
to other variants of bisimulation. The strong case is simple and somehow known in
[19] modulo different formalisms. The algorithm is included in [7]. As discussed in the
introduction, our encoding for weak bisimulation (see Algorithm 2) fixes the generally
incorrect encoding found in [18]. The case for (branching) simulation equivalence (see
Algorithm 3) is novel. The correctness proofs are similar to the case for branching
bisimulation.

Algorithm 2. Generation of a PBES for Weak Bisimulation
wbisim = νE2μE1, where

E2 := {XM,S(d : DM, d′ : DS) = matchM,S(d, d′) ∧matchS,M(d′, d) ,
XS,M(d′ : DS, d : DM) = XM,S(d, d′) }

E1 := {Y p,q
1,a (d : Dp, d′ : Dq, e : Ep

a) = closep,q
1,a(d, d′, e),

Y p,q
2,a (d : Dp, d′ : Dq) = closep,q

2,a(d, d′),
| a ∈ Act ∧ (p, q) ∈ {(M, S), (S, M)}}

Where we use the following abbreviations, for all a ∈ Act ∧ (p,q) ∈ {(M, S), (S,M)}:

matchp,q(d : Dp, d′ : Dq) =
�

a∈Act ∀e : Ep
a.(hp

a(d, e) =⇒ Y p,q
1,a (d, d′, e));

closep,q
1,a(d : Dp, d′ : Dq, e : Ep

a) = ∃e′ : Eq
τ .(hq

τ (d′, e′) ∧ Y p,q
1,a (d, gq

τ (d′, e′), e))
∨stepp,q

a (d, d′, e);

stepp,q
a (d : Dp, d′ : Dq, e : Ep

a) = (a = τ ∧ closep,q
2,a(gp

a(d, e), d′))∨
∃e′ : Eq

a.hq
a(d′, e′) ∧ (fp

a(d, e) = fq
a(d′, e′)) ∧ closep,q

2,a(gp
a(d, e), gq

a(d′, e′)) ;

closep,q
2,a(d : Dp, d′ : Dq) = Xp,q(d, d′) ∨ ∃e′ : Eq

τ .hq
τ (d′, e′) ∧ Y p,q

2,a (d, gq
τ (d′, e′));

7 Conclusion

We have shown how to transform the weak and branching (bi)simulation equivalence
checking problems for infinite systems to solving Parameterized Boolean Equation
Systems. We demonstrated our method on a small example, showing that the concate-
nation of two unbounded queues is branching bisimilar to the concatenation of three

1 Remark that the fact that the solution and the invariant match is coincidental: it is clear that
e.g. the trivial invariant true (�) does not exhibit this phenomenon.

Equivalence Checking for Infinite Systems 133

Algorithm 3. Generation of a PBES for (Branching) Simulation Equivalence
brsim(m, n)= νE2μE1, where

E2 := {X(d : DM, d′ : DS) = XM,S(d, d′) ∧XS,M(d′, d),
XM,S(d : DM, d′ : DS) = matchM,S(d, d′),
XS,M(d′ : DS, d : DM) = matchS,M(d′, d)}

E1 := {Y p,q
a (m, n, e) = closep,q

a (d, d′, e) | a ∈ Act}

Where we use the following abbreviations, for all a ∈ Act ∧ (p,q) ∈ {(M, S), (S,M)}:

matchp,q(d : Dp, d′ : Dq) =
�

a∈Act ∀e : Ep
a. (hp

a(d, e) =⇒ Y p,q
a (d, d′, e));

closep,q
a (d : Dp, d′ : Dq, e : Ep

a) = ∃e′ : Eq
τ . (hq

τ (d′, e′) ∧ Y p,q
a (d, gq

τ (d′, e′), e))
∨(Xp,q(d, d′) ∧ stepp,q

a (d, d′, e));

stepp,q
a (d : Dp, d′ : Dq, e : Ep

a) = (a = τ ∧Xp,q(gp
τ (d, e), d′))∨

∃e′ : Eq
a. hq

a(d′, e′) ∧ (fp
a(d, e) = fq

a(d′, e′)) ∧Xp,q(gp
a(d, e), gq

a(d′, e′));

unbounded queues. This example could not be solved directly with the cones and foci
method (without introducing a third process), because these systems are not function-
ally branching bisimilar, and moreover, both systems perform τ -steps.

Our solution is a symbolic verification algorithm. Compared with the previously
known algorithms, it has the advantage that the solution of the PBES indicates exactly
which states of the implementation and specification are bisimilar. This provides some
positive feedback in case the initial states of the two systems are not bisimilar. Note
that we have introduced a generic scheme that can be applied to other weak equiva-
lences and preorders in branching time spectrum [10], and also to other formalisms of
concurrency.

We conjecture that for infinite systems, it is essential that the PBES has alternation
depth two, as opposed to the finite case. We leave it for future work to apply our method
to various equivalences for mobile processes, in particular π-calculus [25], such as weak
early, late and open bisimulation. Orthogonal to this, we shall continue our work on
improving tool support for solving PBESs, and the application of our techniques to
larger specifications of infinite systems.

Acknowledgments. We are grateful to Wan Fokkink and Jan Friso Groote for stimulating
discussions.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

2. Andersen, H.R.: Model checking and boolean graphs. Theoretical Computer Science 126(1),
3–30 (1994)

3. Andersen, H.R., Vergauwen, B.: Efficient checking of behavioural relations and modal as-
sertions using fixed-point inversion. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp.
142–154. Springer, Heidelberg (1995)

134 T. Chen et al.

4. Basten, T.: Branching bisimilarity is an equivalence indeed! Information Processing Let-
ters 58, 141–147 (1996)

5. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS. Com-
puter Networks 14, 25–59 (1987)

6. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley, Reading
(1988)

7. Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence checking for infinite
systems using parameterized boolean equation systems. CS-Report 07-14, Technische Uni-
versiteit Eindhoven (2007)

8. Cleaveland, R., Steffen, B.: Computing behavioural relations, logically. In: Leach Albert, J.,
Monien, B., Rodrı́guez-Artalejo, M. (eds.) Automata, Languages and Programming. LNCS,
vol. 510, pp. 127–138. Springer, Heidelberg (1991)

9. Fokkink, W., Pang, J., van de Pol, J.: Cones and foci: A mechanical framework for protocol
verification. Formal Methods in System Design 29(1), 1–31 (2006)

10. van Glabbeek, R.: The Linear Time - Branching Time Spectrum II. In: Best, E. (ed.) CON-
CUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

11. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation seman-
tics. Journal of the ACM 43, 555–600 (1996)

12. Groote, J.F., Mateescu, R.: Verification of temporal properties of processes in a setting with
data. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp. 74–90. Springer, Heidel-
berg (1998)

13. Groote, J.F., van de Pol, J.: A bounded retransmission protocol for large data packets. In:
Nivat, M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 536–550. Springer, Hei-
delberg (1996)

14. Groote, J.F., Reniers, M.: Algebraic process verification. In: Bergstra, J.A., Ponse, A.,
Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 1151–1208. Elsevier, Amsterdam
(2001)

15. Groote, J.F., Vaandrager, F.W.: An efficient algorithm for branching bisimulation and stut-
tering equivalence. In: Paterson, M.S. (ed.) Automata, Languages and Programming. LNCS,
vol. 443, pp. 626–638. Springer, Heidelberg (1990)

16. Groote, J.F., Willemse, T.A.C.: Model-checking processes with data. Science of Computer
Programming 56(3), 251–273 (2005)

17. Groote, J.F., Willemse, T.A.C.: Parameterised boolean equation systems. Theoretical Com-
puter Science 343(3), 332–369 (2005)

18. Kwak, H., Choi, J., Lee, I., Philippou, A.: Symbolic weak bisimulation for value-passing cal-
culi. Technical Report, MS-CIS-98-22, Department of Computer and Information Science,
University of Pennsylvania (1998)

19. Lin, H.: Symbolic transition graph with assignment. In: Sassone, V., Montanari, U. (eds.)
CONCUR 1996. LNCS, vol. 1119, pp. 50–65. Springer, Heidelberg (1996)

20. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI Quarterly 2(3), 219–
246 (1989)

21. Mader, A.: Verification of modal properties using boolean equation systems. PhD Thesis,
VERSAL 8, Bertz Verlag, Berlin (1997)

22. Mateescu, R.: A generic on-the-fly solver for alternation-free boolean equation systems. In:
Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, pp. 81–96.
Springer, Heidelberg (2003)

23. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980)
24. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

Equivalence Checking for Infinite Systems 135

25. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (Part I/II). Information and
Computation 100(1), 1–77 (1992)

26. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal of Comput-
ing 16(6), 973–989 (1987)

27. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Math-
ematics 5(2), 285–309 (1955)

28. Zhang, D., Cleaveland, R.: Fast generic model-checking for data-based systems. In: Wang,
F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 83–97. Springer, Heidelberg (2005)

Decidability Results for Well-Structured
Transition Systems with Auxiliary Storage

R. Chadha� and M. Viswanathan��

Dept. of Computer Science, University of Illinois at Urbana-Champaign

Abstract. We consider the problem of verifying the safety of well-
structured transition systems (WSTS) with auxiliary storage. WSTSs
with storage are automata that have (possibly) infinitely many control
states along with an auxiliary store, but which have a well-quasi-ordering
on the set of control states. The set of reachable configurations of the au-
tomaton may themselves not be well-quasi-ordered because of the pres-
ence of the extra store. We consider the coverability problem for such
systems, which asks if it is possible to reach a control state (with some
store value) that covers some given control state. Our main result shows
that if control state reachability is decidable for automata with some
store and finitely many control states then the coverability problem can
be decided for WSTSs (with infinitely many control states) and the same
store, provided the ordering on the control states has some special prop-
erty. The special property we require is defined in terms of the existence
of a ranking function compatible with the transition relation. We then
show that there are several classes of infinite state systems that can be
viewed as WSTSs with an auxiliary storage. These observations can then
be used to both reestablish old decidability results, as well as discover
new ones.

1 Introduction

Algorithmic verification of infinite state systems has received considerable at-
tention from the research community in the past decade because the semantics
of many systems can be naturally described using an unbounded state space.
Examples of such systems include recursive software (sequential or concurrent,
with or without dynamic allocation), asynchronous distributed systems, real-
time systems, hybrid systems, and stochastic systems. Since the general prob-
lem of model checking such systems is known to be undecidable, a variety of
solutions have been proposed. These include semi-decision procedures to verify
a system [5,3,25] or to find bugs [23,6], as well as identifying special classes of
infinite state systems (and properties) for which model checking can be shown
to be decidable [22,21,4,11,7,10,24].

� Supported by DARPA/AFOSR MURI award F49620-02-1-0325 and NSF CCF
0429639.

�� Supported by NSF CCF 0448178 and NSF CCF 0509321.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 136–150, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Decidability Results for WSTS with Auxiliary Storage 137

While specialized approaches have been used to prove positive decidability
results in many cases, a few general and broad techniques have emerged. One
important technique is the use of well-quasi-orders (wqo) [17] (or stronger no-
tions like better-quasi-orders [4]). The idea here is to identify a simulation relation
(or some variant, like weak simulation, or stuttering simulation) on the (infinite
state) transition system which is also a wqo. Then using the observation that
any increasing sequence (with respect to subset ordering) of upward closed sets
(with respect to a wqo) eventually stabilizes, a variety of problems, like back-
ward reachability and simulation by finite state processes, can be shown to be
decidable [1,11]. Transition systems with a wqo simulation relation are called
well-structured transition systems (WSTS). Examples of WSTSs can be found
in [1,11].

In this paper, we ask when the approach of using w.q.o.s can be combined with
other techniques to prove general decidability results. We consider the problem
of verifying safety properties of well-structured transition systems (WSTS) with
an auxiliary store. WSTSs with auxiliary storage, which we call w.q.o.automata,
are automata with (possibly infinitely many) control states that can store and
retrieve information from an auxiliary data structure. Formally a data store
is a domain of possible values, along with a set of predicates and operations to
transform the store. The transitions of a w.q.o. automaton are guarded by a (pre-
defined) predicate to test the value of the store, and transform the store using an
allowed operation, in addition to changing the control state. Such automata are
called w.q.o. automata because the control states are required to be ordered by a
well-quasi-ordering that is compatible with the transition relation — a state q can
be simulated by all control states greater (with respect to the ordering on states)
than q. The semantics of such an automaton can be defined using a transition
system, where the configurations are pairs (q, d), of a control state q, and a data
value d. Notice the natural ordering on configurations — (q1, d1) (q2, d2) iff
q1 q2 and d1 = d2 — is not in general a w.q.o., and moreover, there maybe no
w.q.o. on configurations compatible with the transitions. Therefore, techniques
from the theory of WSTSs cannot be used directly to solve the model checking
problem of wqo automata.

Our main theorem proves the decidability of the coverability problem for
certain special w.q.o. automata. Recall that in the coverability problem we are
given a control state q, and asked whether there is an execution, starting from
the initial configuration, that can reach some control state q′ + q. The conditions
required to prove decidability are as follows. First we require that the control
state reachability problem be decidable for automata with finitely many control
states and the same data store. Second, we require a ranking function on states
compatible with the w.q.o. on states such that the number of states with a
bounded rank (for any bound k) is finite. Finally, we require that transitions
of the wqo automata that decrease the rank of the control state, are enabled
only at a fixed data store and do not change the data store. We show that if a
wqo automata satisfies these conditions then a backward reachability algorithm
terminates, and can be used to solve the coverability problem; the termination

138 R. Chadha and M. Viswanathan

of the algorithm relies on the properties of well-quasi orders. It is important to
note that we have no requirements on the algorithm solving the control state
reachability problem for the finite control state case (first condition above), and
so it could rely on any of the techniques that have been discovered in the past.

We then show that there are many natural classes of systems that can be
viewed as w.q.o. automata, for which our decidability result applies. Our main
result can then be used to rediscover old results (but with a new proof), and
establish many new decidability results. We present herein two applications of
the result, while some others may be found in [8]. First we consider asynchronous
programs [15,12,14,18,19], which are recursive programs that make both conven-
tional synchronous function calls, where a caller waits until the callee completes
computation, and asynchronous procedure calls, which are not immediately exe-
cuted but are rather stored and “dispatched” by an external scheduler at a later
point. Such systems can be abstracted (using standard techniques like predicate
abstraction [13]) into automata with a multi-set (to store pending asynchronous
calls) and a stack (for recursive calls), but which remove elements from the
multi-set only when the stack is empty. The control state reachability problem
for such recursive multi-set automata has been previously shown to be decid-
able [24,16], and our main theorem provides a new proof of this fact. Moreover,
because our main theorem is a generalization of these results, it can also be used
to establish new decidability results. In particular we can prove the decidability
of the control state reachability problem for automata with both a multi-set and
a higher-order stack [7]. Such automata can be used to model asynchronous pro-
grams, where asynchronous procedures can be more generally (safe) higher-order
recursive programs, rather than (first-order) recursive procedures.

Asynchronous programming as an idiom is being widely used in a variety of
contexts. One particular context is that of networked embedded systems [12,14],
where asynchronous procedure calls form the basis of event-driven programming
languages. Such embedded systems often need to meet real-time constraints, and
so the dispatcher is required to schedule pending asynchronous calls based on
the time when they were invoked. We show that such programs with boolean
variables 1, can be modeled by automata with a stack, and multi-set of clocks.
Then using our main theorem we prove the decidability of the control state
reachability problem for such systems.

Paper Outline. The rest of the paper is organized as follows. First we discuss
closely related work. Then in Section 2, we present basic definitions and prop-
erties of well-quasi orders and ranking functions. We formally define w.q.o. au-
tomata in Section 3. Our main decidability result is presented next (Section 4).
Section 5, gives examples of w.q.o. automata, and discusses the consequences of
our main decidability result. Finally we conclude (Section 6) with some observa-
tions and future work. For lack of space reasons, we shall omit the proofs which
may be found in an accompanying technical report [8].

1 A general program can always be abstracted using techniques such as predicate
abstraction [13] to obtain such restricted programs.

Decidability Results for WSTS with Auxiliary Storage 139

1.1 Related Work

There is a large body of work on infinite state verification, and we cannot hope
to justice to them in such a paper; therefore this section limits itself to work
that is very close in spirit to this paper. Our work continues a line of work
started in [24], where we considered automata with multi-sets and stacks to
model asynchronous programs. The decidability of the control state reachability
problem was proved using w.q.o. theory and Parikh’s theorem. In [16], Jhala
and Majumdar, simplified the proof, removing its reliance on Parikh’s theorem.
However both these proofs use features that are very specific to multi-sets and
stacks, and cannot be easily generalized to obtain verification algorithms for the
models considered in this paper. In particular, our original motivation was to
look at the problem of verifying networked embedded systems [12,14], which
are real-time asynchronous programs, and the proof techniques in [24,16] do
not generalize to such a model. We discuss the differences between our proof
approach and then one in [16] in more detail, when we present the main theorem.

Another very closely related work is the paper by Emmi and Majumdar [9].
One of the main observations concerns w.q.o. pushdown automata, which are
pushdown automata with infinitely many control states that have a well-quasi
ordering on control states. They show the decidability of the control state sub-
covering problem for such automata. Unfortunately, the proof presented in the
paper is incorrect [20]. The authors conjecture that the decidability result for
w.q.o. pushdown automata is true. Even if the conjecture is successfully proved
there are some differences with our main theorem. First, the Emmi-Majumdar
result considers downward compatibility of the ordering with the transitions and
the sub-covering problem, whereas we consider upward compatibility and the
coverability problem. Next, their result specifically applies to automata with
stacks, and not to other data structures like higher-order stacks that we consider
here. On the flip side, their conjecture does not impose any conditions on the
wqo on states itself (like ranking functions) that we require for our result. So if
the Emmi-Majumdar conjecture is successfully proved then the main theorem
here apply to incomparable classes of systems.

2 Preliminaries

Well-quasi-orders. A binary relation on a set Q is said to be a pre-order
if is reflexive and transitive. Please note that a pre-order need not satisfy
anti-symmetry, i.e., it may be the case that q q′ and q′ q for q
= q′. We
shall say that q is strictly less that q′ (written as q ≺ q′) if q q′ but q′
 q.
Two elements q, q′ are said to be comparable if either q q′ or q′ q and said
to be incomparable otherwise. We write q + q′ if q′ q and q , q′ if q′ ≺ q.

A pre-order on a set Q is said to be a well-quasi-order if every countably
infinite sequence of elements q1, q2, q3, . . . , from Q contains elements qr qs

for some 0 ≤ r < s. Equivalently, a pre-order is a well-quasi-order if there is
no infinite sequence of pairwise incomparable elements and there is no strictly

140 R. Chadha and M. Viswanathan

descending infinite sequence (of the form q1 , q2 , q3 , . . .). For the rest of
paper, we shall say that (Q,) is a w.q.o. if is a well-quasi-order on Q.

Given a w.q.o. (Q,) and Q′ ⊆ Q, we say that MQ′ ⊆ Q′ is a minor set for Q′

if i) for all q ∈ Q′ there is a q′ ∈ MQ′ such that q′ q, and ii) for all q1, q2 ∈ MQ′ ,
q1
= q2 implies q1
 q2. The definition of well-quasi-ordering implies that each
subset of Q has at least one minor set and all minor sets are finite.

A set U ⊆ Q is said to be upward closed if for every q1 ∈ U and q2 ∈ Q, q1 q2
implies that q2 ∈ U. An upward closed set is completely determined by its minor
set: if MU is a minor set for U then U = {q ∈ U | ∃qm ∈ MU s.t. qm q}. Also any
subset Q′ ⊆ Q determines an upward closed set, UQ′ = {q | ∃q′ ∈ Q′ s.t. q′ q}.
The following important observation follows from w.q.o. theory.

Proposition 1. For every infinite sequence of upward closed sets U1, U2
such that Ur ⊆ Ur+1 there is a j such that Ul = Uj for all l ≥ j.

Ranking functions. If the order also satisfies anti-symmetry then it is possi-
ble to define a function rank from Q into the class of ordinals as: rank(q) = 0 if Q
does not have any elements strictly less than q and rank(q) = sup({rank(q′) | q′ ≺
q})+1 otherwise. The function rank guarantees that if q1, q2 are comparable then
rank(q1) < rank(q2) iff q1 ≺ q2. We adapt the concept of the rank function for
pre-orders. First instead of working with the whole class of ordinals, we shall
work with the set of natural numbers2. Furthermore, we shall only require that
rank(q1) ≤ rank(q2) if q1 q2.

Definition 1. [Ranking function] Given a w.q.o. (Q,), a function α : Q → N
is said to be a ranking function if for every q1, q2 ∈ Q, q1 q2 implies α(q1) ≤
α(q2).

The ranking function α can be extended to a function on the set of upward
closed sets of (Q,) as follows. Let MU be a minor set for an upward closed U.
Let αmax(U) = max{α(q)|q ∈ MU}. It can be easily shown that this extension is
well-defined, i.e., does not depend on the choice of MU.

3 Well-Structured Transition Systems with Auxiliary
Storage

The paper considers automata with an auxiliary store and possibly infinitely
many control states, such that there is a well-quasi-ordering defined on the con-
trol states. We formally, define such automata in this section. We begin by first
introducing the concept of a pointed data structure that formalizes the notion
of an auxiliary store.

3.1 Pointed Data Structures

Definition 2 (Pointed data structure). A pointed data structure is a tuple
D = (D, õp, p̃red, di, pi) such that D is a set, õp is a collection of functions
2 The set of natural numbers is also the set of all finite ordinals.

Decidability Results for WSTS with Auxiliary Storage 141

f : D → D, p̃red is a collection of unary predicates on D, di is an element of
D and pi ∈ p̃red is a unary predicate on D such that pi(d) ⇔ (d = di). The
elements of D are henceforth called data values and the data value di is said to
be the initial data value.

For example, a pushdown store on a alphabet Γ in a pushdown automata can
be formalized as follows. The set Γ ∗ (set of all finite strings over Γ) can be
taken as the set of data values with the empty string ε as the initial value.
The set of predicates p̃red can be chosen as {empty} ∪ {topγ | γ ∈ Γ} ∪ {any},
where pi = {ε} (the initial predicate), topγ = {wγ |w ∈ Γ ∗} (the top of stack
is γ) and any = Γ ∗ (any stack). The set of functions õp can be defined as
{id} ∪ {pushγ | γ ∈ Γ} ∪ {popγ | γ ∈ Γ} where pushγ and popγ are defined as
follows. For all w ∈ Γ ∗, pushγ(w) = wγ and popγ(w) = w1 if w = w1γ and w
otherwise. In a pushdown system the functions popγ will be enabled only when
the store satisfies topγ and any respectively.

For the rest of paper, we shall assume that our data structure has a finite
number of predicates and a finite number of functions. This is mainly a matter
of convenience and we could have dealt with countable number of predicates and
functions as long as the data structure is finitely presentable. We could also have
dealt with a finite number of initial values, partial functions and relations in the
set õp. However, for the sake of clarity, we have omitted these cases here.

3.2 w.q.o. Automata

We now formalize the notion of WSTS with auxiliary storage.

Definition 3. [w.q.o. automaton] A w.q.o. automaton on a pointed data struc-
ture D = (D, õp, p̃red, di, pi) is a tuple (Q, , δ, qi) such that

1. (Q,) is a w.q.o.,
2. qi ∈ Q and
3. δ ⊆ Q × p̃red × õp × Q. Furthermore, the set δ is upward compatible, i.e.

for every (q, p, g, q′) ∈ δ and q q1 there exists q′1 such that q′ q′1 and
(q1, p, g, q′1) ∈ δ.

The set Q is said to be the set of control states of the automaton, δ the transition
function and qi the initial state. If the set Q is finite then we say that it is a
finite w.q.o. automaton.

Given an upward closed set U ⊆ Q, a predicate p ∈ p̃red, g ∈ õp let δ−1(p, g, U)
be the set {q | ∃q′ ∈ U s.t. (q, p, g, q′) ∈ δ}. The upward compatibility of δ ensures
that δ−1(p, g, U) is either empty or upward closed.

An example of a wqo automaton in literature is multi-set pushdown au-
tomata [24,16] and discussed in Section 5.1. For the remainder of the section, we
shall fix a pointed data structure D = (D, õp, p̃red, di, pi) and a w.q.o. automaton
A on D.

142 R. Chadha and M. Viswanathan

The semantics of a wqo automaton is defined in terms of a transition system
over a set of configurations. A configuration is a pair (q, d), where q ∈ Q is
a control state and d ∈ D is a data value. The pair (qi, di) is said to be the
initial configuration. For δ0 ⊆ δ, we say (q1, d1) →A,δ0 (q2, d2) if there is a
transition (q1, p, g, q2) ∈ δ0 such that p(d1) and d2 = g(d1). We shall omit A if the
automaton under consideration is clear from the context. The transition relation
on configurations will be →A,δ. The n-fold composition of →δ0 will be denoted by
→n

δ0
. In other words, (q, d) →n

δ0
(q′, d′) iff there are (q0, d0), (q1, d1), . . . (qn, dn)

such that q0 = q, d0 = d, qn = q′, dn = d′ and for every 0 ≤ r < n (qr, dr) →δ0

(qr+1, dr+1). We shall write (q, d) →∗
δ0

(q′, d′) if there is some j ≥ 0 such that
(q, d) →j

δ0
(q′, d′). Finally, we shall say that the configuration (q′, d′) is reachable

from (q, d) using transition in δ0 if (q, d) →∗
δ (q′, d′).

Given a set Q′ ⊆ Q, it will be useful to define two sets, Pre∗A, δ0,di
(Q′) and

Pre∗A, δ0
(Q′). The set Pre∗A, δ0,di

(Q′) = {q | ∃q′ ∈ Q′ s.t. (q, di) →∗
δ0

(q′, di)} gives
the set of all states from which some control state in Q′ can be reached starting
with and ending with the initial data value di. The set Pre∗A, δ0

(Q′) = {q | ∃q′ ∈
Q′, d ∈ D s.t. (q, di) →∗

δ0
(q′, d)} gives the set of all states from which some

control state in Q′ can be reached starting with the initial data value and ending
with some data value. We will omit the subscript A if it is clear from the context.

Observe that since δ is upward compatible, if (q, d) →n
δ (q′, d′) then for every

q1 + q there exists an q′1 + q′ such that (q1, d) →n
δ (q′1, d′). Therefore, for any

upward-closed set U, the sets Pre∗A, δ(U) and Pre∗A, δ,di
(U) are upward closed.

It will also be useful to identify two kinds of transitions in a wqo automaton.
The first ones are fired only when the data is initial and preserve the data.

Definition 4 (Initial data preserving). A transition (q, p, g, q′) ∈ δ) is said
to be initial data preserving if p = pi and g = id where id is the identity function.

The other kind of transitions will be rank non-decreasing transitions which will
be defined with respect to a ranking function (see Definition 1).

Definition 5 (Rank non-decreasing). Given a ranking function α on (Q,)
anda set of transition δ0 ⊆ δ, we say that δ0 is rankαnon-decreasing if for each pred-
icate p ∈ p̃red, function g ∈ õp and upward closed set U ⊂ Q either δ−1

0 (p, g, U) = ∅
or δ−1

0 (p, g, U) is upward-closed and αmax(δ−1
0 (p, g, U)) ≤ αmax(U).3

As mentioned in the introduction, we will consider special w.q.o. automata,
namely those in which the only rank decreasing transitions are those that are
also initial data preserving. We will say that such a restricted w.q.o. automata
is compatible to a ranking function; we define this formally next.

Definition 6 (Compatibility of ranking function). Given a ranking func-
tion α on (Q,) we say that α is compatible with δ if

1. α(qi) = 0, and

3 Please note that our definition of rank-decreasing functions is different from standard
one.

Decidability Results for WSTS with Auxiliary Storage 143

2. there exist δ = δa ∪ δb such that
– δb is the set of all initial data preserving transitions.
– δa = δ \ δb and δa is rank α non-decreasing. The pair (δa, δb) is said to

be the α-compatible splitting of δ.

The condition α(qi) = 0 is not a serious constraint as we can always define a
ranking function α′(q) = max(α(q)−α(qi), 0). The second condition implies that
the transition function δ can be split into two disjoint upward-compatible sets
δa and δb. All transitions in δb are enabled only when the data value is initial
and do not modify the data. This condition on δb ensures that any computation
(q, di) →∗

δ (q′, d′) is of the form (q, di) →∗
δa

(q0, di) →δb
(q1, di) →∗

δa
(q2, di) →δb

(q2, di) . . . →δb
(qn, di) →∗

δa
(q′, d′) for some q0, q1, . . . qn ∈ Q.

4 Decidability of the Coverability Problem

Given a w.q.o. automaton A = (Q, , δ, qi) on a pointed data structure D =
(D, õp, p̃red, di, pi), an upward closed set U, we are interested in deciding if there
is some configuration (q, d) such that q ∈ U and q is reachable from the initial
configuration qi. The upward closed set U is often represented by its finite mi-
nor set. This problem is known as coverability problem and we shall study two
versions of this problem. The first is whether there exists some state q ∈ U such
that the configuration (q, di) is reachable from (qi, di), i.e., if qi ∈ Pre∗A, δ,di

(U).
Secondly whether there exists some state q ∈ U and d ∈ D such that (q, d) is
reachable from (qi, di), i.e., if qi ∈ Pre∗A, δ(U).

We start by describing how the coverability problem is tackled in WSTSs
without the store. In that case, the transition relation δ ⊆ Q × Q and the
coverability problem is equivalent to deciding whether the reflexive transitive
closure (δ−1)∗ of the relation δ−1 contains qi or not. A backward reachability
analysis is performed, and an increasing sequence Ui is generated such that
U1 = U and Uj+1 = Uj ∪ δ−1(Uj). The upward compatibility ensures that
δ−1(Uj) is upward closed. Since any increasing sequence of upward closed sets
in a w.q.o. must be eventually constant, we terminate once Uj = Uj+1.

Our approach to the coverability problem for a w.q.o. automaton will follow
a similar approach. Given a w.q.o. automaton A = (Q, , δ, qi) on a pointed
data structure D = (D, õp, p̃red, di, pi), we shall assume the existence of a rank-
ing function α compatible with the transition relation δ. Let (δa, δb) be the
α-splitting of δ. We shall always assume that we can compute the minor set
for δ−1

b (U, pi, id) given a minor set for U. However, we shall need to compute
Pre∗A, δa,di

(U). For this we shall need the notion of rank k-approximations.

4.1 Rank k-Approximations

Intuitively, the rank k-approximation Ak of A is constructed from the subset of
control states of A whose rank is less than k. The construction is carried out
carefully in order to capture all the computations of the original automaton that
use the transitions in δa.

144 R. Chadha and M. Viswanathan

Definition 7 (Rank k-approximation). Given a w.q.o. automaton A = (Q,

 , δ, qi) on a pointed data structure D = (D, õp, p̃red, di, pi), a ranking function
α on (Q,) such that α is compatible with δ. Let (δa, δb) be the α-compatible
splitting of δ. Given k ∈ N, the rank k approximation is defined as the automaton
Ak = (Q≤k, k, δk, qi) where:

– Q≤k = {q ∈ Q |α(q) ≤ k},
– q k q′ for q, q′ ∈ Q≤k iff q q′ and
– (q, p, g, q′) ∈ δk for q, q′ ∈ Q≤k iff there exists q′′ ∈ Q such that q′′ + q′ and

(q, p, g, q′′) ∈ δa.

For the rest of the section, we shall assume a fixed w.q.o. automatonA=(Q, , δ, qi)
on a fixed pointed data structure D = (D, õp, p̃red, di, pi) and a fixed ranking func-
tion α on (Q,) compatible with δ. Let (δa, δb) be the α-compatible splitting of the
transition relation δ.

The following Lemma states that any computation in the rank k-approxima-
tion of A corresponds to a computation of A that uses the transitions in δa.

Lemma 1 (Soundness of approximation). Let Ak = (Q, , δ, qi) be the rank
k-approximation of A. For any q, q1 ∈ Q≤k, d, d1 ∈ D, if (q, d) →∗

δk
(q1, d1) then

there is some q′1 ∈ Q such that q′1 + q1 and (q, d) →∗
δa

(q′1, d1).

The following Lemma states that any computation of the automaton A that
uses transitions in δa and ending in a state which is above some state q0 ∈ Q≤k

is reflected in its k-th approximation.

Lemma 2 (Faithfulness of approximation). Let Ak = (Q, , δ, qi) be a rank
k-approximation of A. If there are q0, q, q

′ ∈ Q such that q0 ∈ Q≤k, q′ + q0 and
(q, d) →∗

δa
(q′, d′), then there is a q1 ∈ Q≤k such that q1 q and (q1, d) →∗

δk

(q0, d
′).

The above two lemmas show that if U ⊆ Q is an upward closed set such that
αmax(U) = k then minor sets for the sets Pre∗A,δa,di

(U) and Pre∗Ak,δk
(U) are the

minor sets for Pre∗Ak, δk,di
(Q′) and Pre∗Ak, δk

(Q′) respectively. Thus, if we have
algorithms to compute minor sets for Pre∗Ak, δk,di

(Q′) and Pre∗Ak, δk
(Q′) for any

subset Q′ ⊆ Q, then we can compute the minor sets Pre∗A, δa,di
(U) and Pre∗A, δa

(U)
for an upward closed set U whose rank is k. Towards this end, we shall define
effective wqo automata.

4.2 Effective w.q.o.Automata and Coverability

We start by defining a ranking function effectively compatible with the transition
relation of a wqo automata.

Definition 8 (Effectively compatible ranking functions). Given a w.q.o.

automaton, A = (Q,≤, δ, qi) on the pointed data structure D = (D, p̃red, õp, pi,
di), a ranking function α : Q → N compatible with δ is said to be effectively
compatible with δ if the following hold.

Decidability Results for WSTS with Auxiliary Storage 145

– For each k ∈ N, the set Q≤k = {q ∈ Q |α(q) ≤ k} is finite.
– There is an algorithm Rank that on input q ∈ Q computes α(q).
– There is an algorithm Elements that on input k ∈ N computes the set Q≤k.
– There is an algorithm Approx that on input k ∈ N outputs the rank k-

approximation.4

An effectively compatible ranking function is finitely presented by the algorithms
Rank, Elements and Approx.

If α is effectively compatible with δ, and the relation is decidable then Lemma 1
and Lemma 2 ensure that algorithms to check if q1 ∈ Pre∗A,δa,di

(U) or q1 ∈
Pre∗A,δa

(U) exist if state reachability can be solved for finitely many states. We
are now almost ready to prove our main theorem. We need one more definition.

Definition 9 (Effective w.q.o. automaton). A w.q.o. automaton A = (Q,≤
, δ, qi) on the pointed data structure D = (D, p̃red, õp, pi, di) is said to be effective
if the following hold.

– There is a ranking function α : Q → N effectively compatible with δ. Let the
algorithms Rank, Elements, Approx finitely present the ranking function.

– There is an algorithm Less that on inputs q1 and q2 returns true is q1 q2
and false otherwise.

– There is an algorithm InvDeltab which given a minor set for an upward closed
set U returns a minor set for δ−1

b (U, pi, id) where id is the identity function
on D where δb is the set of initial data preserving transitions.

An effective automaton is finitely presented by the algorithms Rank, Elements,
Approx, Less and InvDeltab.

We now have the main result of the paper.

Theorem 1 (Decidability of the coverability problem). Assume that for
a data structure D = (D, p̃red, õp, pi, di) there are two algorithms A and B such
that the following hold.

– Given a finite wqo automaton A1 = (Q1, 1, δ1, qi), and q1, q
′
1 ∈ Q1 the

algorithm A returns true if q1 ∈ Pre∗A1,δ1,di
(q′1) and false otherwise.

– Given a finite wqo automaton A1 = (Q1, 1, δ1, qi), and q1, q
′ ∈ Q1, the

algorithm B returns true if q1 ∈ Pre∗A1,δ1
(q′1) and false otherwise.

Let A = (Q, p̃red, õp, qi) be an effective (not necessarily finite) automaton. Given
a minor set MU for an upward closed set U, there is an algorithm to decide if
there is some q ∈ U such that the configuration (q, di) is reachable from the initial
configuration (qi, di). Similarly there is an algorithm to decide if there is some
q ∈ U and some d ∈ D such that (q, d) is reachable from the initial configuration
(qi, di).

4 Please note that since we are assuming that predicates and functions are finite sets,
a finite presentation of the rank k-function always exists.

146 R. Chadha and M. Viswanathan

Proof. Let α be the ranking function effectively compatible with δ. Let (δa, δb)
be the α-compatible splitting of δ. In order to decide whether qi ∈ Pre∗A, δ,di

(U),
we construct the increasing sequence U0 ⊆ U1 ⊆ U2, . . . such that U0 = U and
Ur+1 = Ur ∪ Pre∗A, δa,di

(Ur ∪ δ−1
b (Ur, pi, id)) where id is the identity function.

As (δa, δb) is an α-compatible splitting of δ, any computation (q, di) →∗
δ

(q′, d′) is of the form (q, di) →∗
δa

(q0, di) →δb
(q1, di) →∗

δa
(q2, di) →δb

. . . →δb

(qn, di) →∗
δa

(q′, d′) for some q0, q1, . . . qn ∈ Q. Thus, Pre∗A, δ,di
(U) =

⋃
r≥0 Ur.

Again, as every increasing sequence of increasing upward closed sets must be
eventually constant, we can terminate once we get Ur = Ur+1. Hence, the first
question can now be answered by deciding whether qi ∈ Ur. The second question
can be reduced to the first problem by considering U′ = Pre∗A, δa

(U). ()

Please note that the above proof is essentially different from the proof of de-
cidability of the coverability problem in multi-set pushdown automata (MPDS)
given in [16]. While we perform a backward-reachability analysis, the proof in [16]
constructs a sequence of over-approximations to rule out unreachable states and
a sequence of under-approximations to discover the reachable states. The proof
in [16] relies essentially on the fact that the w.q.o. is formed by products of
linear orders (in that case products of N) and cannot be extended to a general
w.q.o.. However, as in our case, the rank decreasing functions (decrementing of
counter) are constrained and occur only when the pushdown stack is empty. We
discuss the relation between the proofs in detail in [8].

5 Applications

We will now present many natural examples of w.q.o. automata. An immediate
of consequence of Theorem 1, will be decidability results for safety verification
for these systems. The examples that we present here, have as data store either
a pushdown stack, or some variant of it. Therefore, when presenting these exam-
ples, we will use more standard notation for such stacks, rather than define them
formally in terms of the domain, test predicates and operations. This mainly to
make the examples easy to follow, and not clutter them with a lot of notation.

5.1 Multi-set Pushdown System

Multi-set pushdown automata have been introduced in the literature [24,16]
as models of asynchronous programs that may make asynchronous procedure
calls which are not immediately executed but stored and scheduled only after a
recursive computation is completed.

Definition 10 (Multi-set pushdown system). A Multi-set pushdown system
(MPDS) is a tuple B = (S, Γ, Δpush, Δpop, Δcr, Δrt, s0), where S is a finite set
of states, Γ is a finite set of stack and multi-set symbols, Δpush, Δpop, Δcr, Δrt ⊆
S × Γ × S together form the transition relation, and s0 is the initial state.

The semantics of an MPDS B is defined in terms of a transition system as
follows. A configuration C of B is a tuple (s, w, B) ∈ S × Γ ∗ × B[Γ] where Γ ∗

Decidability Results for WSTS with Auxiliary Storage 147

is the set of all finite strings over Γ and B[Γ] is the set of all multi-sets over Γ .
The initial configuration of B is (s0, ε, ∅) where ε is the empty string and ∅ is the
empty multi-set. The transition relation ⇒ on configurations is given as a union
of four relations, ⇒push, ⇒pop, ⇒cr and ⇒rt defined as follows: (s, w, B) ⇒push

(s′, wγ′, B) iff (s, γ′, s′) ∈ Δpush, (s, wγ, B) ⇒pop (s′, w, B) iff (s, γ, s′) ∈ Δpop,
(s, w, B) ⇒cr (s′, w, B ∪ {γ′}) iff (s, γ′, s′) ∈ Δcr and (s, ε, B ∪ {γ}) ⇒rt (s′, ε, B)
iff (s, γ, s′) ∈ Δrt. Please note that the relation Δrt assume that the stack is
empty and does not change the contents of the stack. The relation ⇒∗ is defined
as the reflexive transitive closure of ⇒.

The ordering relation on S ×B[Γ] is defined as (s, B) (s1, B1) iff s = s1
and B is a sub-multi-set of B1; this is known to be a well-quasi-order. Using
this fact, any MPDS can be seen as an instance of an wqo automaton with
S × B[Γ] as the set of control states and the pushdown stack as the storage.
This wqo automaton can be turned into an effective w.q.o. automaton by using
the cardinality of the multi-set B as the ranking function. Therefore, Theorem 1
yields the following result.

Theorem 2 (Coverability of MPDS). Given a MPDS B = (S, Γ, Δpush,
Δpop, Δcr, Δrt, s0) and s ∈ S, the problem of checking whether there exist B ∈
B[Γ] and w ∈ Γ ∗ such that (s0, ε, ∅) ⇒∗ (s, w, B) is decidable.

The above result was proved in [24] using Parikh’s theorem and in [16] using
over-approximations and under-approximations; Theorem 1 yields a different
and more general proof of this result. A similar result can be obtained when the
asynchronous procedures are (safe) higher-order recursive procedures [8].

5.2 Timed Multi-set Pushdown System

Asynchronous programming forms the basis of event-driven languages that are
used to describe networks of embedded systems [12,14]. Such systems have real-
time constraints, in addition to synchronous and asynchronous procedure calls.
Though the asynchronous procedure calls are postponed till the end of the ex-
ecution of the current recursive procedure call, they are scheduled only if they
have not passed some real-time deadline. We model this by augmenting a push-
down system with real-time clocks. When a asynchronous procedure is called, a
clock is added to the multi-set and set to 0. We assume that all clocks proceed
at the same rate. Once the current recursive computation is completed, the next
job is scheduled only if the associated clock is within some interval bounded by
integers (we assume that ∞ is an integer for this case). The results can easily
be generalized to the case when the bounds are rationals rather than integers.

Definition 11. [Timed multi-set pushdown automata] A Timed multi-set push-
down system (TMPDS) is a tuple B = (S, Γ, Δpush, Δpop, Δcr, Δrt, s0), where S
is a finite set of states, Γ is a finite set of stack and multi-set symbols, the sets
Δpush, Δpop, Δcr ⊆ S × Γ × S, and Δrt ⊆ (S × Γ × N× N ∪ {∞})× S are finite
and together form the transition relation, and s0 is the initial state.

148 R. Chadha and M. Viswanathan

The semantics of an MPDS B is defined in terms of a transition system as
follows. A configuration C of B is a tuple (s, w, B) ∈ S×Γ ∗×B[Γ ×R+] where
Γ ∗ is the set of all finite strings over Γ , R+ is the set of positive real numbers
and B[Γ ×R+] is the set of all multi-sets over Γ ×R+. The initial configuration
of B is (s0, ε, ∅). The transition relation ⇒ on configurations is given as a union
of five relations, ⇒push, ⇒pop, ⇒cr,⇒rt and ⇒T .

The relation ⇒push is defined as (s, w, B) ⇒push (s′, wγ′, B) iff (s, , γ′, s′) ∈
Δpush. The relation ⇒pop is defined as (s, wγ, B) ⇒pop (s′, w, B) iff (s, γ, s′) ∈
Δpop. The relation ⇒cr is defined as (s, w, B) ⇒pop (s′, w, B ∪ {(γ′, 0)}) iff
(s, γ′, s′) ∈ Δcr. The relation ⇒rt is defined as (s, ε, B ∪{(γ, t)}) ⇒rt (s′, γ, B) iff
there exist n1, n2 ∈ N such that n1 ≤ t ≤ n2 and ((s, γ, n1, n2), s′) ∈ Δrt. The
relation ⇒T is defined as (s, w, B) ⇒T (s, w, Bt) for every t ∈ R+ where Bt is
the multi-set obtained by replacing each (γ, t′) ∈ B by (γ, t′ + t) ∈ B. Observe
that elements are deleted from B only when the pushdown stack is empty. The
relation ⇒∗ is defined as the reflexive transitive closure of ⇒.

We are once again interested in an algorithm which answers the question
that given s ∈ S whether there exists B ∈ B[Γ × R+] and w ∈ Γ ∗ such that
(s0, ε, ∅) ⇒∗ (s, w, B). In order to apply Theorem 1, we define a well-quasi-order
 on B[Γ ×R+] which gives rise to regions [2] by symmetrizing the relation .

The relation on B[Γ × R+] is defined as follows. Let nmax be the largest
natural number occurring in Δcr. Given t ∈ R+, let t� denote the integer part
of t and let frac(t) denote the fractional part of t. Given B1, B2 ∈ B[Γ × R+],
we say that B1 B2 iff there exists a one-to-one function j : B1 → B2 such that
the following hold.

– If j((γ1, t1)) = (γ2, t2) then γ1 = γ2.
– If j((γ, t1)) = (γ, t2) then t1 ≥ nmax iff t2 ≥ nmax.
– If j((γ, t1)) = (γ, t1), t1 < nmax then t1� = t2� and frac(t1) = 0 iff

frac(t2) = 0.

– If j((γ, t1)) = (γ, t2), j((γ′, t′1)) = (γ′, t′2) and t1, t
′
1 < nmax then frac(t1) ≤

frac(t′1) iff frac(t2) ≤ frac(t′2).

This relation defines a well-quasi-order on B[Γ × R+] [2]. The relation
induces an equivalence relation on B[Γ × R+]: B . B′ iff B B′ and B′ B.
An equivalence class under the relation. is said to be a region. Let Reg(Γ) be the
set of all regions defined in this way and let Reg(B) be the region that contains
B. The well-quasi-order extends to the set of regions: Reg(B1) R Reg(B2)
iff B1 B2. The function αR : Reg → N defined as αR(R(B)) = |B|, where |B|
is the cardinality of the multi-set B, is a ranking function.

The transition relation ⇒ can be extended to a binary relation ⇒R on S ×
Γ ∗ × Reg[Γ] as follows. We say that (s, w, Reg(B)) ⇒R (s′, w′, Reg(B′)) iff
(s, w, B) ⇒ (s′, w′, B′). The well-defineness of the relation ⇒R can be shown us-
ing the standard techniques [2]. Thus, (s0, ε, ∅) ⇒∗ (s, w, B) iff (s0, ε, Reg(∅)) ⇒∗

R

(s, w, Reg[B]) where ⇒∗
R is the reflexive transitive closure of ⇒R. Thus, using

S×Reg(Γ) as the set of control states, the pushdown stack as the data structure
and αR as the ranking function, we can prove the following.

Decidability Results for WSTS with Auxiliary Storage 149

Theorem 3 (Coverability of TMPDS). Given an TMPDS B = (S, Γ, Δpush,
Δpop, Δcr, Δrt, s0) and s ∈ S, the problem of checking whether there exist B ∈
B[Γ × R+] and w ∈ Γ ∗ such that (s0, ε, ∅) ⇒∗ (s, w, B) is decidable.

6 Conclusions and Future Work

We considered the coverability problem of a w.q.o. automaton which are well-
structured transition systems with an auxiliary store. Our main result is that if
the control state reachability problem is decidable for finite w.q.o. automaton,
then there is a decision procedure based on backward-reachability analysis for
the coverability problem with infinitely many states if the w.q.o. automaton
satisfies certain conditions. The main requirement is the existence of a ranking
function compatible with the WSTS. Intuitively, the compatibility of the ranking
function ensures that rank decreasing transitions only occur when the store
is the same as the initial store. For the rank non-decreasing transitions, the
backward reachability is performed using the decision procedure for finite w.q.o.
automaton. We showed that the decision procedure in the paper can be utilized in
the contexts of asynchronous procedure calls and networked embedded systems.

We plan to implement the decision procedure in this paper and utilize it for
model-checking the systems considered in this paper. A second line of research
is to investigate whether other decision procedures that rely on w.q.o. theory
such as the sub-covering problem can be extended to the framework of w.q.o.
automaton.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Information and Computation 160(1), 109–
127 (2000)

2. Abdulla, P.A., Jonsson, B.: Verifying networks of timed processes. In: Proceedings
of the International Conference on Tools and Algorithms for Construction and
Analysis of Systems, pp. 298–312 (1998)

3. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A Survey of Regular Model
Checking. In: Proceedings of the International Conference on Concurrency Theory,
pp. 35–48 (2004)

4. Abdulla, P.A., Nyl’en, A.: Better is better than Well: On efficient verification of in-
finite state systems. In: Proceedings of the IEEE Symposium on Logic in Computer
Science, pp. 132–140. IEEE Computer Society Press, Los Alamitos (2000)

5. Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. PhD thesis,
Collection des Publications de la Faculté des Sciences Appliquées de l’Université
de Liége (1999)

6. Bouajjani, A., Esparza, J., Schwoon, S., Strejcek, J.: Reachability analysis of mul-
tithreaded software with asynchronous communication. In: Ramanujam, R., Sen,
S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 348–359. Springer, Heidelberg (2005)

7. Carayol, A., Wohrle, S.: The Caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata. In: Proceedings of the International Confer-
ence on Foundations of Software Technology and Theoretical Computer Science,
pp. 112–123 (2003)

150 R. Chadha and M. Viswanathan

8. Chadha, R., Viswanthan, M.: Decidability results for well-structured transition
systems with auxiliary storage. Technical Report UIUCDCS-R-2007-2865, Univ.
of Illiniois at Urbana-Champaign (2007)

9. Emmi, M., Majumdar, R.: Decision problems for the verification of real-time soft-
ware. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp.
200–211. Springer, Heidelberg (2006)

10. Esparza, J., Etessami, K.: Verifying probabilistic procedural programs. In: Lodaya,
K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 16–31. Springer, Hei-
delberg (2004)

11. Finkel, A., Schnoebelen, Ph.: Well-structured transition systems everywhere! The-
oretical Computer Science 256(1–2), 63–92 (2001)

12. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
language: A holistic approach to networked embedded systems. In: Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pp. 1–11. ACM Press, New York (2003)

13. Graf, S., Saidi, H.: Construction of abstract state graphs with pvs. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

14. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architec-
ture directions for networked sensors. In: Proceedings of the International Confer-
ence on Architectural support for Programming Languages and Operating Systems,
pp. 93–104 (2000)

15. Holub, A.: Taming Java Threads. APress (2000)
16. Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In:

Proceedings of the ACM Symposium on Principles of Programming Languages,
pp. 339–350. ACM Press, New York (2007)

17. Kruskal, J.B.: The theory of well-quasi-ordering: A frequently discovered concept.
Journal of Combinatorial Theory: Series A 13(3), 297–305 (1972)

18. Libasync. http://pdos.csail.mit.edu/6.824-2004/async/
19. Libevent. http://www.monkey.org/provos/libevent/
20. Majumdar, R.: Personal communication
21. Mayr, R.: Decidability and Complexity of Model Checking Problems for Infinite-

State Systems. PhD thesis, Technical University Munich (1998)
22. Moller, F.: Infinite results. In: Proceedings of the Conference on Concurrency The-

ory, pp. 195–216 (1996)
23. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.

In: Proceedings of the International Conference on Tools and Algorithms for Con-
struction and Analysis of Systems, pp. 93–107 (2005)

24. Sen, K., Viswanathan, M.: Model checking multithreaded programs with asyn-
chronous atomic methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 300–314. Springer, Heidelberg (2006)

25. Vardhan, A.: Learning to Verify Systems. PhD thesis, University of Illinois, Urbana-
Champaign (2005)

http://pdos.csail.mit.edu/6.824-2004/async/
http://www.monkey.org/provos/libevent/

A Nice Labelling for
Tree-Like Event Structures of Degree 3�

Luigi Santocanale

LIF – CNRS, Université de Provence
luigi.santocanale@lif.univ-mrs.fr

Abstract. We address the problem of finding nice labellings for event
structures of degree 3. We develop a minimum theory by which we prove
that the labelling number of an event structure of degree 3 is bounded
by a linear function of the height. The main theorem we present in this
paper states that event structures of degree 3 whose causality order is
a tree have a nice labelling with 3 colors. Finally, we exemplify how to
use this theorem to construct upper bounds for the labelling number of
other event structures of degree 3.

1 Introduction

Event structures, introduced in [1], are nowadays a widely recognized model of
true concurrent computation and have found many uses since then. They are an
intermediate abstract model that make it possible to relate more concrete models
such as Petri Nets or higher dimensional automata [2]. They provide formal
semantics of process calculi [3,4]. More recently, logicians became interested in
event structures with the aim of constructing models of proof systems that are
invariant under the equalities induced by the cut elimination procedure [5,6].

Our interest for event structures stems from the fact that they combine dis-
tinct approaches to the modeling of concurrent computation. On one side, lan-
guage theorists have developed the theory of partially commutative monoids [7]
as the basic language to approach concurrency. On the other hand, the frame-
work of domain theory and, ultimately, order theoretic ideas have often been
proposed as the proper tools to handle concurrency, see for example [8]. In this
paper we pursue a combinatorial problem that lies at the intersection of these
two approaches. It is the problem of finding nice labellings for event structures
of fixed degree. To our knowledge, this problem has not been investigated any
longer since it was posed in [9,10] and partially solved in [11].

Let us recall that an event structure is made up of a set of local events E
which is ordered by a causality relation ≤. Moreover, a concurrency relation $,
that may only relate causally independent events, is given. A global state of the
computation is modeled as a clique of the concurrency relation. Global states
may be organized into a poset, the coherent domain of an event structure, which
represents all the concurrent non-deterministic executions of a system. Roughly
� Research supported by the Agence Nationale de la Recherche, project SOAPDC.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 151–165, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

152 L. Santocanale

speaking, the nice labelling problem consists in representing the coherent domain
of an event structure as a poset of traces or, more precisely, pomsets. That is, such
a domain should be reconstructed using the standard ingredients of trace theory:
an alphabet Σ, a local independence relation I, and a prefix closed subset of the
free monoid L, see [12,13]. By the general theory relating traces to ordered sets,
the problem always has a solution (Σ, I, L). We are asked to find a solution with
the cardinality of the alphabet Σ minimal. The problem is actually equivalent
to a graph coloring problem in that we can associate to an event structure a
graph, of which we are asked to compute the chromatic number. The degree of
an event structure is the maximal number of upper covers of some elements in
the associated domain. Under the graph theoretic translation of the problem,
the degree coincides with the clique number, and therefore it is a lower bound
for the cardinality of a solution. A main contribution in [11] was to prove that
event structures of degree 2 have a nice labelling with 2 letters, i.e. they have a
solution (Σ, I, L) with card(Σ) = 2. On the other hand, it was proved there that
event structures of higher degrees may require more letters than the degree.

The labelling problem may be thought to be a generalization of the problem
of covering a poset by disjoint chains. Dilworth’s Theorem [14] states that the
minimal cardinality of such a cover equals the maximal cardinality of an an-
tichain. This theorem and the results of [11] constitute the few knowledge on
the problem presently available to us. For example, we cannot state that there is
some fixed k > n for which every event structure of degree n has a nice labelling
with at most k letters. In light of standard graph theoretic results [15], the above
statement should not be taken for granted.

We present here our first results on the nice labelling problem for event struc-
tures of degree 3. We develop a minimum theory that shows that the graph of
a degree 3 event structure, when restricted to an antichain, is almost acyclic
and can be colored with 3 letters. This observation allows to construct an upper
bound to the labelling number of such event structure as a linear function of its
height. We prove then our main theorem stating that event structures of degree
3, whose causality order is a tree, have a nice labelling with 3 letters. Let us
just say that such an event structure may represent a concurrent system where
some processes are only allowed to fork or to take local nondeterministic choices.
Finally, we exemplify how to use this theorem to construct upper bounds for the
labelling number of other event structures of degree 3. In some simple cases, we
obtain constant upper bounds to the labelling number, i.e. upper bounds that
are functions of no parameter.

While these results do not answer the general problem, that of computing the
labelling number of degree 3 event structures, we are aware that graph coloring
problems may be difficult to answer. Thus we decided to present these results and
share the knowledge so far acquired and also to encourage other researchers to
pursue the problem. Let us mention why we believe that this and other problems
in the combinatorics of concurrency deserve to be deeply investigated. The the-
ory of event structures is now being applied within verification. A model checker,

A Nice Labelling for Tree-Like Event Structures of Degree 3 153

POEM, presently developed in Marseilles, makes explicit use of trace theory
and of the theory of partial orders to represent the state space of a concurrent
system [16]. The combinatorics of posets is exploited there and elsewhere to
achieve an the efficient exploration of the global states of concurrent systems
[17,18]. Thus, having a solid theoretical understanding of such combinatorics is,
for us, a prerequisite and a complement for designing efficient algorithms for
these kind of tools.

The paper is structured as follows. After recalling the order theoretic concepts
we shall use, we introduce event structures and the nice labelling problem in
section 2. In section 3 we develop the first properties of event structures of
degree 3. As a result, we devise an upper bound for the labelling number of such
event structures as a linear function of the height. In section 4 we present our
main result stating that event structures whose underlying order is a tree may
be labeled with 3 colors. In section 5 we develop a general approach to construct
upper bounds to the labelling number of event structures of degree 3. Using
this approach and the results of the previous section, we compute a constant
upper bound for a class of degree 3 event structures that have some simplifying
properties and which are consequently called simple.

Order Theoretic Preliminaries. We shall introduce event structures in the
next section. For the moment being let us anticipate that part of an event struc-
ture is a set E of events which is partially ordered by a causality relation ≤. In
this paper we shall heavily make use of order theoretic concepts. We introduce
them here together with the notation that shall be used. All these concepts will
apply to the poset 〈E,≤〉 of an event structure.

A finite poset is a pair 〈P,≤〉 where P is a finite set and ≤ is a reflexive,
transitive and antisymmetric relation on P . A subset X ⊆ P is a lower set if
y ≤ x ∈ X implies y ∈ X . If Y ⊆ P , then we denote by ↓ Y the least lower
set containing Y . Explicitly, ↓ Y = { x ∈ P | ∃y ∈ Y s.t. x ≤ y }. Two elements
x, y ∈ P are comparable if and only if either x ≤ y or y ≤ x. We write x . y
to mean that x, y are comparable. A chain is sequence x0, . . . , xn of elements
of P such that x0 < x1 < . . . < xn. The integer n is the length of the chain.
The height of an element x ∈ P , noted h(x), is the length of the longest chain
in ↓ { x }. The height of P is max{ h(x) |x ∈ P }. An antichain is a subset
X ⊆ P such that x
. y for each pair of distinct x, y ∈ X . The width of 〈P,≤〉,
noted w(P,≤), is the integer max{ card(A) |A is an antichain }. If the interval
{ z ∈ P |x ≤ z ≤ y } is the two elements set { x, y }, then we say that x is a
lower cover of y or that y is an upper cover of x. We denote this relation by
x ≺ y. The Hasse diagram of 〈P,≤〉 is the directed graph 〈P,≺〉. For x ∈ P ,
the degree of x, noted deg(x), is the number of upper covers of x. That is, the
degree of x is the outdegree of x in the Hasse diagram. The degree of 〈P,≤〉,
noted deg(P,≤), is the integer max{ deg(x) |x ∈ P }. We shall denote by f(x)
the number of lower covers of x (i.e. the indegree of x in the Hasse diagram).
The poset 〈P,≤〉 is graded if x ≺ y implies h(y) = h(x) + 1.

154 L. Santocanale

2 Event Structures and the Nice Labelling Problem

Event structures are a basic model of concurrency introduced in [1]. The defini-
tion we present here is from [2].

Definition 1. An event structure is a triple E = 〈E,≤, C〉 such that

– 〈E,≤〉 is a poset, such that for each x ∈ E the lower set ↓{ x } is finite,
– C is a collection of subsets of E such that:

1. { x } ∈ C for each x ∈ E,
2. X ⊆ Y ∈ C implies X ∈ C,
3. X ∈ C implies ↓X ∈ C.

The order ≤ of an event structure E is known as the causality relation between
events. The collection C is known as the set of configurations of E . A configuration
X ∈ C of causally unrelated events – that is, an antichain w.r.t. ≤ – is a sort of
snapshot of the global state of some distributed computation. A snapshotX may
be transformed into a description of the computation that takes into account its
history. This is done by adding to X the events that causally have determined
events in X . That is, the history aware description is the lower set ↓X generated
by X .

Two elements x, y ∈ E are said to be concurrent if x
. y and there exists
X ∈ C such that x, y ∈ X . Two concurrent elements will be thereby noted by
x$y. It is useful to introduce a weakened version of the concurrency relation
where we allow elements to be comparable: x$.y if and only if x$y or x . y.
Equivalently, x$.y if and only if there exists X ∈ C such that x, y ∈ X . In
many concrete models the set of configurations is completely determined by the
concurrency relation.

Definition 2. An event structure E is coherent if C is the set of cliques of the
weak concurrency relation: X ∈ C if and only if x$.y for every pair of elements
x, y ∈ X.

Coherent event structures are also known as event structures with binary conflict.
To understand the naming let us explicitely introduce the conflict relation and
two other derived relations:

– Conflict : x%y if and only if x
. y and x$/ y.
– Minimal conflict : x%y if and only (i) x%y, (ii) x′ < x implies x′$.y, and

(iii) y′ < y implies x$.y′.
– Orthogonality: x$y if and only if x%y or x$y.

A coherent event structure is completely described by a triple 〈E,≤,$〉 where
the latter is a symmetric relation subject to the following conditions: (i) x$y
implies x
. y, (ii) x$y and z ≤ x implies z$y or z ≤ y. Similarly, a coherent
event structure is completely determined by the order and the conflict relation.
In this paper we shall deal with coherent event structures only and, from now
on, event structure will be a synonym for coherent event structure.

A Nice Labelling for Tree-Like Event Structures of Degree 3 155

We shall focus mainly on the orthogonality relation. The rest of this section
will explain the role played by this relation. Let us observe now that two orthog-
onal elements are called independent in [11]. We prefer however not to use this
terminology: we shall frequently make use of standard graph theoretic language
and argue about cliques, not on their dual, independent sets. The orthogonal-
ity relation clearly is symmetric and moreover it inherits from the concurrency
relation the following property: if x$y and z ≤ x, then z$y or z ≤ y.

Definition 3. A nice labelling of an event structure E is a pair (λ,Σ), where
Σ is a finite alphabet and λ : E −→ Σ is such that λ(x)
= λ(y) whenever x$y.

That is, if we let G(E) – the graph of E – be the pair 〈E, $ 〉, a labelling of E is a
coloring of the graph G(E). For a graph G, let γ(G) denote its chromatic number.
Let us say then that the labelling number of E is γ(G(E)). The nice labelling
problem for a class K of event structures amounts to computing the number
γ(K) = max{ γ(G(E)) | E ∈ K }. To understand the origins of this problem, let
us recall the definition of the domain of an event structure.

Definition 4. The domain D(E) of an event structure E = 〈E,≤, C〉 is the
collection of lower sets in C, ordered by subset inclusion.

Following a standard axiomatization in theoretical computer science [2] D(E)
is a stable domain which is coherent if E is coherent. Stable means that D(E)
is essentially a distributive lattice. As a matter of fact, if E is finite, then a
possible alternative axiomatization of the poset D(E) is as follows. It is easily
seen that the collection D(E) is closed under binary intersections, hence it is a
finite meet semilattice without a top element, a chopped lattice in the sense of
[19, Chapter 4]. Also the chopped lattice is distributive, meaning that whenever
X,Y, Z ∈ D(E) and X ∪Y ∈ D(E), then Z∩ (X ∪Y) = (Z ∩X)∪ (Z ∩Y). It can
be shown that every distributive chopped lattice is isomorphic to the domain of
a finite – not necessarily coherent – event structure.

Lemma 1. A set { x1, . . . , xn } is a clique in the graph G(E) iff there exists
I ∈ D(E) such that I ∪ { xi }, i = 1, . . . , n, are distinct upper covers of I in the
domain D(E).

The Lemma shows that a nice labelling λ : E −→ Σ allows to label the edges
of the Hasse diagram of D(E) so that: (i) outgoing edges from the same source
vertex have distinct labels, (ii) perspective edges – i.e. edges I0 ≺ I1 and J0 ≺ J1
such that I0 = I1 ∩ J0 and J1 = I1 ∪ J0 – have the same label. These conditions
are necessary and sufficient to show that D(E) is order isomorphic to a consistent
(but not complete) set of P -traces (or pomsets) on the alphabet Σ in the sense
of [12].

The degree of an event structure E is the degree of the domain D(E), that is,
the maximum number of upper covers of a lower set I within the poset D(E).
Lemma 1 shows that the degree of E is equal to the size of a maximal clique in
G(E), i.e. to the clique number of G(E). Henceforth, the degree of E is a lower
bound to γ(G(E)). The following Theorems state the few results on the nice
labelling problem that are available in the literature.

156 L. Santocanale

Theorem 1 (see [14]). Let NCn be the class of event structures of degree at
most n with empty conflict relation. Then γ(NCn) = n.

Theorem 2 (see [11]). Let Kn be the class of event structures of degree at
most n. Then γ(Kn) = n if n ≤ 2 and γ(Kn) ≥ n+ 1 otherwise.

The last theorem has been our starting point for investigating the nice labelling
problem for event structures of degree 3.

3 Cycles and Antichains

From now on, in this and the following sections, E = 〈E,≤, C〉 will denote a
coherent event structure of degree at most 3. We begin our investigation of the
nice labelling problem by studying the restriction to an antichain of the graph
G(E). The main tool we shall use is the following Lemma. It is a straightforward
generalization of [11, Lemma 2.2] to degree 3. In [20] we proposed generalizations
of this Lemma to higher degrees, pointing out their strong geometrical flavor.

Lemma 2. Let { x0, x1, x2 }, { x1, x2, x3 } be two size 3 cliques in the graph G(E)
sharing the same face { x1, x2 }. Then x0, x3 are comparable.

Proof. Let us suppose that x0, x3 are not comparable. It is not possible that
x0$x3, since then we have a size 4 clique in the graph G(E). Thus x0%x3 and we
can find x′0 ≤ x0 and x′3 ≤ x3 such that x′0 %x′3. We claim that { x′0, x1, x2, x

′
3 }

is a size 4 clique in G(E), thus reaching a contradiction.
If x′0 $/ x1, then x′0 ≤ x1, but this, together with x1$x3, contradicts x′0%x′3.

Similalry, x′0 $x2, x′3$x1, x′3$x2. ()

We are going to improve on the previous Lemma. To this goal, let us say that
a sequence x0x1 . . . xn−1xn is a straight cycle if xn = x0, xi$xi+1 for i =
0, . . . , n − 1, xi
. xj whenever i, j ∈ { 0, . . . , n − 1 } and i
= j. As usual, the
integer n is the length of the cycle. Observe that a straight cycle is simple, i.e.,
a part from the endpoints of the cycle, it does not visit twice the same vertex .
The height of a straight cycle C = x0x1 . . . xn is the integer

h+(C) =
∑

i=0,...,n−1

h(xi) + 1 .

The definition of h+ implies that if C′ is a subcycle of C induced by a chord,
then h+(C′) < h+(C).

Proposition 1. The graph G(E) does not contain a straight cycle of length
strictly greater than 3.

Proof. Let SC≥4 be the collection of straight cycles in G(E) whose length is at
least 4. We shall show that if C ∈ SC≥4, then there exists C′ ∈ SC≥4 such that
h+(C′) < h+(C).

A Nice Labelling for Tree-Like Event Structures of Degree 3 157

Let C be the straight cycle x0$x1 $x2 . . . xn−1$xn = x0 where n ≥ 4.
Let us suppose that this cycle has a chord. It follows, by Lemma 2, that n > 4.
Hence the chord divides the cycle into two straight cycles, one of which has still
length at least 4 and whose height is less than the height of C, since it contains
a smaller number of vertices.

Otherwise C has no chord and x0 $/ x2. This means that either there ex-
ists x′0 < x0 such that x′0$/ x0, or there exists x′2 < x2 such that x0$/ x

′
2. By

symmetry, we can assume the first case holds. As in the proof of Lemma 2
{ x′0, x1, x2, x3 } form an antichain, and x′0x1x2x3 is a path. Let C′ be the set
{ x′0x1, . . . xn−1x

′
0 }. If C′ is an antichain, then C′ is a straight cycle such that

h+(C′) < h+(C). Otherwise the set { j ∈ { 4, . . . , n− 1 } |xj ≥ x′0 } is not empty.
Let i be the minimum in this set, and observe that xi−1 $xi and x′0 ≤ xi but
x′0
≤ xi−1 implies xi−1 $x′0. Thus C̃ = x′0x1x2x3 . . . xi−1x

′
0 is a straight cycle

of lenght at least 4 such that h+(C̃) < h+(C). ()

Corollary 1. Any subgraph of G(E) induced by an antichain can be colored with
3 colors.

Proof. Since the only cycles have length at most 3, such an induced graph is
chordal and its clique number is 3. It is well known that the chromatic number
of chordal graphs equals their clique number [21]. ()

In the rest of this section we exploit the previous observations to construct upper
bounds for the labelling number of E . We remark that these upper bounds might
appear either too abstract, or too trivial. On the other hand, we believe that
they well illustrate the kind of problems that arise when trying to build complex
event structures that might have labelling number greater than 4.

A stratifying function for E is a function h : E −→ N such that, for each
n ≥ 0, the set { x ∈ E |h(x) = n } is an antichain. The height function is a
stratifying function. Also ς(x) = card{ y ∈ E | y < x } is a stratifying function.
With respect to a stratifying function h the h-skewness of E is defined by

skewh(E) = max{ |h(x)− h(y)| |x$y } .

More generally, the skewness of E is defined by

skew(E) = min{ skewh(E) |h is a stratifying function } .

Proposition 2. If skew(E) < n then γ(G(E)) ≤ 3n.

Proof. Let h be a stratifying function such that |h(x)−h(y)| < n whenever x$y.
For each k ≥ 0, let λk : { x ∈ E |h(x) = k } −→ { a, b, c } be a coloring of the
graph induced by { x ∈ E |h(x) = k }. Define λ : E −→ { a, b, c }×{ 0, . . . , n−1 }
as follows:

λ(x) = (λh(x)(x), h(x)modn) .

Let us suppose that x$y and h(x) ≥ h(y), so that 0 ≤ h(x) − h(y) < n. If
h(x) = h(y), then by construction λh(x)(x) = λh(y)(x)
= λh(y)(y). Otherwise

158 L. Santocanale

h(x) > h(y) and 0 ≤ h(x) − h(y) < n implies h(x)modn
= h(y)modn. In both
cases we obtain λ(x)
= λ(y). ()

An immediate consequence of Proposition 2 is the following upper bound for the
labelling number of E :

γ(G(E)) ≤ 3(h(E) + 1) .

To appreciate the upper bound, consider that another approximation to the
labelling number of E is provided by Dilworth’s Theorem [14], stating that
γ(G(E)) ≤ w(E). To compare the two bounds, consider that there exist event
structures of degree 3 whose width is an exponential function of the height.

4 An Optimal Nice Labelling for Trees and Forests

We prove in this section the main contribution of this paper. Assuming that
〈E,≤〉 is a tree or a forest, then we define a labelling with 3 colors, and prove
it is a nice labelling. Since clearly we can construct a tree which needs at least
three colors, such a labelling is optimal. Before defining the labelling, we shall
develop a small amount of observations.

Definition 5. We say that two distinct events are twins if they have the same
set of lower covers.

Clearly if x, y are twins, then z < x if and only if z < y. More importantly,
if x, y are twins, then the relation x$y holds. As a matter of fact, if x′ < x
then x′ < y, hence x′$.y. Similarly, if y′ < y then y′$.x. It follows that a set of
events having the same lower covers form a clique in G(E), hence it has at most
the degree of an event structure, 3 in the present case. To introduce the next
Lemmas, if x ∈ Y ⊆ E, define

OY
x = { z | z$x and y
≤ z, forall y ∈ Y } .

If Y = { x, y }, then we shall abuse of notation and write Ox,y
x , Oy,x

x as synonyms
of OY

x . Thus z ∈ Ox,y
x if and only if z$x and y
≤ z.

Lemma 3. If x, y, z are parwise distinct twins, then O
{x,y,z}
x = ∅.

Proof. Let us suppose that w ∈ O
{x,y,z}
x . If w$y, then w . z by Lemma 2.

Since z
≤ w, then w < z. However this implies w < x, contradicting w$x.
Hence w$/ y and we can find w′ ≤ w, y′ ≤ y such that w′%y′. It cannot be
the case that y′ < y, otherwise y′ < x and the pair (w′, y′), properly covered
by the pair (w, x), cannot be a minimal conflict. Thus w′ < w, and y′ equals
to y. We claim that w′ ∈ O{x,y,z}. As a matter of fact, w′ cannot be above any
of the elements in { x, y, z }, otherwise w would have the same property. From
w$x and w′ < w, we deduce that w′$x or w′ ≤ x. If the latter, then w′ < x,
so that w′ < y, contradicting w′%y. Therefore w′$x and {w′, x, y }, { x, y, z }
are two 3-cliques sharing the same face { x, y }. As before, w′ . z, leading to a
contradiction. ()

A Nice Labelling for Tree-Like Event Structures of Degree 3 159

Lemma 4. If x, y are twins, then Ox,y
x , Ox,y

y are comparable w.r.t. set inclusion
and Ox,y

x ∩Ox,y
y is a linear order.

Proof. We observe first that if z ∈ Ox,y
x and w ∈ Ox,y

y then z . w. As a
consequence Ox,y

x ∩Ox,y
y is linearly ordered.

Let us suppose that there exists z ∈ Ox,y
x and w ∈ Ox,y

y such that z
. w.
Observe then that { z, x, y, w } is an antichain: y
≤ z, and z < y implies z < x,
which is not the case due to z $x. Thus z
. y and similarly w
. x.

Since there cannot be a length 4 straight cycle, we deduce z$/ w. Let z′ ≤ z
and w′ ≤ w be such that z′%w′. We claim first that z′$x. Otherwise, z′ ≤ x
and z′ < x, since z′ = x implies x ≤ z. The relation z′ < x in turn implies
z′ < y, which contradicts z′%w′. Also it cannot be the case that y ≤ z′, since
otherwise y ≤ z. Thus, we have argued that z′ ∈ Ox,y

x . Similarly w′ ∈ Ox,y
y .

As before { z′, x, y, w′ } is an antichain, hence z′, x, y, w′ also form a length 4
straight cycle, a contradiction.

Observe now that w ≤ z ∈ Ox,y
x and w
≤ x implies w ∈ Ox,y

x . From w ≤ z$x
deduce w$x or w ≤ x. Since w
≤ x, then w$x. Also, if y ≤ w then y ≤ z,
which is not the case.

Let z ∈ Ox,y
x \ Ox,y

y , pick any w ∈ Ox,y
y and recall that z, w are comparable.

We cannot have z ≤ w since z
≤ y implies then z ∈ Ox,y
y . Hence w < z ∈ Ox,y

x

and w
≤ x imply w ∈ Ox,y
x by the previous observation. ()

The following Lemma will prove to be the key observation in defining later a
nice labelling.

Lemma 5. Let (x, y) (z, w) be two pairs of pairwise distinct twins such that
z ∈ Ox,y

x ∩Ox,y
y and w
≤ x. Then Ow,z

z ⊃ Ow,z
w .

Proof. If Ow,z
z
⊃ Ow,z

w , then Ow,z
z ⊆ Ow,z

w by Lemma 4. Since w
≤ x and w
= y,
then w
≤ y. We have shown that x, y ∈ Ow,z

z , hence x, y ∈ Ow,z
w . It follows that

{ x, y, z, w } is a size 4 clique, a contradiction. ()

We come now to discuss some subsets of E for which we shall prove that there
exists a nice labelling with 3 letters. The intuitive reason for that is the presence
of many twins.

Definition 6. A subset T ⊆ E is a tree if and only if

– each x ∈ T has exactly one lower cover π(x) ∈ E,
– T is convex: x, z ∈ T and x < y < z implies y ∈ T ,
– if x, y are minimal in T , then π(x) = π(y).

If T is a tree and x ∈ T , the height of x in T , noted hT (x), is the cardinality of
the set { y ∈ T | y < x }. A linear ordering � on T is said to be compatible with
the height if it satisfies

hT (x) < hT (y) implies x� y . (HEIGHT)

160 L. Santocanale

It is not difficult to see that such a linear ordering always exists. With respect
to such linear ordering, define

O
�
(x) = { y ∈ T | y$x and y � x } , x ∈ T.

We shall represent O
�
(x) as the disjoint union of C

�
(x) and L

�
(x) where

C
�
(x) = { y ∈ O

�
(x) | z ≺ x implies z ≤ y } , L

�
(x) = O

�
(x) \ C

�
(x) .

With respect these sets C
�
(x), L

�
(x), x ∈ T , we develop a series of observations.

Lemma 6. If y ∈ C
�
(x) then x, y are twins. Consequently there can be at most

two elements in C
�
(x).

Proof. If y ∈ C
�
(x), then y � x and hT (y) ≤ hT (x). Since y is above any lower

cover of x, and distinct from such a lower cover, then hT (x) ≤ hT (y). It follows
that hT (x) = hT (y), hence if z is a lower cover of x, then it is also a lower cover
of y. Since x, y have exactly one lower cover, it follows that x, y are twins. ()
Lemma 7. If x, y are twins, then L

�
(x) ⊆ Ox,y

x . If z ∈ L
�
(x) and z′ ∈ Ox,y

x is
such that z′ ≤ z, then z′ ∈ L

�
(x). That is, L

�
(x) is a lower set of Ox,y

x .

Proof. Let z ∈ L
�
(x), so that z$x and z$π(x). The relation y ≤ z implies

that π(x) = π(y) ≤ y ≤ z, and hence contradicts z$π(x). Hence y
≤ z and
z ∈ Ox,y

x . Let us suppose that z′ < z and z′$x. Then h(z′) < h(z) and z′ � z,
so that z′ ∈ C

�
(x). Since z′$x then either z′$π(x), or π(x) ≤ z′. However, the

latter property implies π(x) ≤ z, which is not the case. Therefore z′$π(x) and
z′ ∈ L

�
(x). ()

Lemma 8. If x, y, z are pairwise distinct twins, then L
�
(x) = ∅ and z is the

minimal element of Ox,y
x ∩Ox,y

y . In particular O
�
(x) = C

�
(x) ⊆ { y, z }.

Proof. By the previous observation L
�
(x) ⊆ Ox,y

x and, similarly, L
�
(x) ⊆ Ox,z

x .
Hence L

�
(x) ⊆ Ox,y

x ∩ Ox,z
x = Ox,y,z

x = ∅, by Lemma 3. Since x$z and y$z
then z ∈ Ox,y

x ∩Ox,y
y . If z′ < z then z′ < x and z′ < y hence z′
∈ Ox,y

x ∪Ox,y
y .

Finally, the relation C
�
(x) ⊆ { y, z } follows from Lemma 6. ()

The previous observations motivate us to introduce the next Definition.

Definition 7. Let us say that x, y ∈ T are a proper pair of twins if they are
distinct and { z |π(z) = π(x) } = { x, y }. We say that a linear order � on T is
compatible with proper pair of twins if it satisfies (HEIGHT) and moreover

Ox,y
x ⊃ Ox,y

y implies x� y , (TWINS)

for each proper pair of twins x, y.

Again is not difficult to see that such a linear order always exists and in the
following we shall assume that � satisfies both (HEIGHT) and (TWINS).

We are ready to define a partial labelling λ of the event structure E . The function
λ will have T as its domain. W.r.t. � let us say that x ∈ T is principal if
C
�
(x) = ∅. Let Σ = { a0, a1, a2 } be a three elements totally ordered alphabet.

The labelling λ : T −→ Σ is defined by induction on � as follows:

A Nice Labelling for Tree-Like Event Structures of Degree 3 161

1. If x ∈ T is principal and hT (x) = 0, then we let λ(x) = a0.
2. If x ∈ T is principal and hT (x) ≥ 1, let π(x) be its unique lower cover. Since

π(x) ∈ T and π(x) � x, λ(π(x)) is defined and we let λ(x) = λ(π(x)).
3. If x is not principal and L

�
(x) = ∅, then, by Lemma 6, we let λ(x) be the

least symbol not in λ(C
�
(x)).

4. If x is not principal and L
�
(x)
= ∅ then:

– by Lemma 8 C
�
(x) = { y } is a singleton and x, y is a proper pair of twins,

– by Lemma 7 L
�
(x) is a lower set of Ox,y

x . By the condition (TWINS),
Ox,y

x ⊆ Ox,y
y , so that Ox,y

x is a linear order. Let therefore z0 be the
common least element of L

�
(x) and Ox,y

x .
We let λ(x) be the unique symbol not in λ({ y, z0 }).

Proposition 3. For each x, y ∈ T , if x$y then λ(x)
= λ(y).

Proof. It suffices to prove that λ(y)
= λ(x) if y ∈ O
�
(x). The statement is proved

by induction on �. Let us suppose the statement is true for all z � x.
(i) If hT (x) = 0 then x is minimal in T , so that O

�
(x) = C

�
(x). If moreover x

is principal then O
�
(x) = C

�
(x) = ∅, so that the statement holds trivially.

(ii) If x is principal and hT (x) ≥ 1, then its unique lower cover π(x) belongs
to T . Observe that O

�
(x) = L

�
(x) = { y ∈ T | y � x and y$π(x) }, so that if

y ∈ O
�
(x), then y$π(x). Since y � x and π(x) � x, and either y ∈ O

�
(π(x))

or π(x) ∈ O
�
(y), it follows that λ(x) = λ(π(x))
= λ(y) from the inductive

hypothesis.
(iii) If x is not principal and L

�
(x) = ∅, then O

�
(x) = C

�
(x) and, by construc-

tion, λ(y)
= λ(x) whenever y ∈ O
�
(x).

(iv) If x is not principal and L
�
(x)
= ∅, then let C

�
(x) = { y } and let z0 be the

common least element of L
�
(x) and Ox,y

x . Since by construction λ(x)
= λ(y), to
prove that the statement holds for x, it is enough to pick z ∈ L

�
(x) and argue

that λ(z)
= λ(x). We claim that each element z ∈ L
�
(x)\{ z0 } is principal. If the

claim holds, then λ(z) = λ(π(z)), so that λ(z) = λ(z0) is inductively deduced.
Suppose therefore that there exists z ∈ L

�
(x) which is not principal and let

w ∈ C
�
(z). Observe that x, y form a proper pair of twins, since otherwise L

�
(x) =

∅ by Lemma 8. Similarly w, z form a proper pair of twins: otherwise, if z, w, u
are pairwise distinct twins, then either w ≤ x or u ≤ x by Lemma 3. However
this is not possible, since for example z0 ≤ π(x) < u ≤ x contradicts z0$x.

Since y � x, condition (TWINS) implies Ox,y
x ⊆ Ox,y

y , and hence z ∈ Ox,y
x ∩

Ox,y
y . If w ∈ C

�
(z), then we cannot have w ≤ x or w = y, since again we would

deduce z0 ≤ x. Thus Lemma 5 implies Ow,z
z ⊃ Ow,z

w . On the other hand, w � z
and condition (TWINS) implies Ow,z

z ⊆ Ow,z
w .

Thus, we have reached a contradiction by assuming C
�
(z)
= ∅. It follows that

z is principal. ()

The obvious corollary of Proposition 3 is that if E is already a sort of tree, then
it has a nice labelling with 3 letters. We state this fact as the following Theorem,
after we have made precise the meaning of the phrase “E is a sort of tree.”

Definition 8. Let us say that E is a forest if every element has at most one
lower cover. Let F3 be the class of event structures of degree 3 that are forests.

162 L. Santocanale

Theorem 3. The labelling number of the class F3 is 3.

As a matter of fact, let E be a forest, and consider the event structure E⊥ obtained
from E by adding a new bottom element ⊥. Remark that the graph G(E⊥) is
the same graph as G(E) apart from the fact that an isolated vertex ⊥ has been
added. The set of events E is a tree within E⊥, hence the graph induced by E
in G(E⊥) can be colored with three colors. But this graph is exactly G(E).

5 More Upper Bounds

The results presented in the previous section exemplify a remarkable property of
event structures of degree 3: many types of subsets of events induce a subgraph
of G(E) that can be colored with 3 colors. These include antichains by Corollary
1, trees by Proposition 3, and lower sets in C, that is configurations of E . As a
matter fact, if X ∈ C, then w(X) ≤ 3, so that such a subset can be labeled with
3 letters by Dilworth’s Theorem. Also, recall that the star of an event x ∈ E is
the subgraph of G(E) induced by the subset { x } ∪ { y ∈ E | y$x }. A star can
also be labeled with 3 letters. To understand the reason, let Nx be the event
structure 〈{ y | y$x },≤x,$x〉, where ≤x and $x are the restrictions of the
causality and concurrency relations to the set of events of Nx.

Lemma 9. The degree of Nx is strictly less than deg(E).

Proof. The lemma follows since if y$ xz in Nx, then y$z in E . As a matter
of fact, let us suppose that y$ xz in Nx and y′ < y. If y′ ∈ Nx, then y′$.z. If
y′
∈ Nx, then y′ < x. It follows then from z$x and y′ < x that y′$.x. Similarly,
if z′ < z then z′$.x. ()

Hence, if deg(E) = 3, then deg(Nx) ≤ 2, and it can be labeled with 2 letters, by
[11]. It follows that star of x can be labeled with 3 letters.

It might be asked whether this property can be exploited to construct nice
labellings. The positive answer comes from a standard technique in graph theory
[22]. Consider a partition P = { [z] | z ∈ E } of the set of events such that each
equivalence class [z] has a labelling with 3 letters. Define the quotient graph
G(P , E) as follows: its vertexes are the equivalence classes of P and [x]$ [y] if
and only if there exists x′ ∈ [x], y′ ∈ [y] such that x′$y′.

Proposition 4. If the graph G(P , E) is n-coloriable, then E has a labelling with
3n colors.

Proof. For each equivalence class [x] choose a labelling λ[x] of [x] with an al-
phabet with 3 letters. Let λ0 a coloring of the graph G(P , E) and define λ(x) =
(λx, λ0([x])). Then λ is a labelling of E : if x$y and [x] = [y], then λx =
λ[y](x)
= λy and otherwise, if [x]
= [y], then [x]$ [y] so that λ0([x])
=
λ0([y]). ()

The reader should remark that Proposition 4 generalizes Proposition 2. The
Proposition also suggests that a finite upper bound for the labelling number of
event structures of degree 3 might indeed exist.

A Nice Labelling for Tree-Like Event Structures of Degree 3 163

We conclude the paper by exempli-
fying how to use the Labelling Theo-
rem on trees and the previous Lemma
to construct a finite upper bound for
the labelling number of event structures
that we call simple due to their addi-
tional simplifying properties. Consider
the event structure on the right and
name it S. In this picture we have used
dotted lines for the edges of the Hasse

1 2

3 4 5

6 7 8 9

���
���

���
���

��

��
��

��
��

��
��
��
��

���
���

���
���

��

diagram of 〈E,≤〉, simple lines for maximal concurrent pairs, and double lines
for minimal conflicts. Concurrent pairs x$y that are not maximal, i.e. for which
there exists x′, y′ such that x′$y′ and either x < x′ or y < y′, are not drawn.
We leave the reader to verify that a nice labelling of S needs at least 4 letters.
On the other hand, it shouldn’t be difficult to see that a nice labelling with 4
letters exists. To obtain it, take apart events with at most 1 lower cover from the
others, as suggested in the picture. Use then the results of the previous section
to label with three letters the elements with at most one lower cover, and label
the only element with two lower covers with a forth letter.

A formalization of this intuitive method leads to the following Definition and
Proposition.

Definition 9. We say that an event structure is simple if

1. it is graded, i.e. h(x) = h(y)− 1 whenever x ≺ y,
2. every size 3 clique of G(E) contains a minimal conflict.

The event structure S is simple and proves that even simple event structures
cannot be labeled with just 3 letters.

Proposition 5. Every simple event structure of degree 3 has a nice labelling
with 12 letters.

Proof. Recall that f(x) is the number of lower covers of x and let En = { x ∈
E | f(x) = n }. Observe that a simple E is such that E3 = ∅: if x ∈ E3, then its
three lower covers form a clique of concurrent events. Also, by considering the
lifted event structure E⊥, introduced at the end of section 4, we can assume that
card(E0) = 1, i.e. E has just one minimal element which necessarily is isolated
in the graph G(E).

Let � be a linear ordering of E compatible with the height. W.r.t. this linear
ordering we shall use a notation analogous to the one of the previous section: we let

O
�
(x) = { y ∈ E | y � x and y$x } , C(x) = { y ∈ E | y′ ≺ y implies y′ ≺ x } .

Claim. The subgraph of G(E) induced by E2 can be colored with 3-colors.
We claim first that if x ∈ E2 then O

�
(x) ⊆ C(x). Let y ∈ O

�
(x) and let x1, x2 be

the two lower covers of x. From xi < x$y it follows xi < y or xi$y. If xi$y
for i = 1, 2, then y, x1, x2 is a clique of concurrent events. Therefore, at least

164 L. Santocanale

one lower cover of x is below y, let us say x1 < y. It follows that h(y) ≥ h(x),
and since y� x implies h(y) ≤ h(x), then x, y have the same height. We deduce
that x1 ≺ y. If y has a second lower cover y′ which is distinct from x1, then
y′, x1, x2 is a clique of concurrent events. Hence, if such y′ exists, then y′ = x2.
Second, we remark that if y, z ∈ C(x) and x ∈ E2 then y$z: if y′ < y then
y′ ≤ x so that x$z implies y′$.z, and symmetrically. It follows that for x ∈ E2,
C(x) may have at most 2 elements. In particular, the restriction of � to E2 is a
2-elimination ordering. � Claim

For x ∈ E1 let ρ(x) = max{ z ∈ E | z ≤ x, z
∈ E1 } and [x] = { y ∈ E1 | ρ(y) =
ρ(x) }. Let P be the partition {E0 } ∪ { [x] | x ∈ E1 } ∪ {E2 }. Since each [x],
x ∈ E1, is a tree, the partition P is such that each equivalence class induces a
3-colorable subgraph of G(E).

Claim. The graph G(P , E) is 4-colorable.

Since E0 is isolated in G(P , E), is it enough to prove that the subgraph of G(P , E)
induced by the trees { [x] | x ∈ E1 } is 3-colorable. Transport the linear ordering
� to a linear ordering on the set of trees: [y] � [x] if and only if ρ(y) � ρ(x).
Define O

�
([x]) as usual, we claim that O

�
([x]) may contain at most two trees.

We define a function f : O
�
([x]) −→ C(ρ(x)) as follows. If [y]$ [x] and [y]� [x]

then we can pick y′ ∈ [y] and x′ ∈ [x] such that y′$x′. We notice also that
y′$ρ(x): from ρ(x) ≤ x′$y′, we deduce ρ(x)$y′ or ρ(x) ≤ y′. The latter,
however, implies ρ(x) ≤ ρ(y), by the definition of ρ, and this relation contradicts
ρ(y) � ρ(x). Thus we let

f([y]) = min{ z | ρ(y) ≤ z ≤ y′ and z
≤ ρ(x) } .

By definition, f([y])$ρ(x) and every lower cover of f([y]) is a lower cover of
x. This clearly holds if f([y])
= ρ(y), and if f([y]) = ρ(y) then it holds since
ρ(y) � ρ(x) implies f([y]) ∈ O

�
(x) ⊆ C(x) by the previous Claim. Thus the set

f(O
�
(x)) has cardinality at most 2 and, moreover, we claim that f is injective. Let

us suppose that f([y]) = f([z]). If f([y]) = ρ(y), then f([z]) = ρ(z) as well and
[y] = [x]. Otherwise f([y]) = f([x]) impliees ρ(y) = ρ(f([y])) = ρ(f([z])) = ρ(z)
and [y] = [z]. � Claim

Thus, by applying Proposition 4, we deduce that G(E) has a labelling with 12
letters. ()

Acknowledgement. We would like to thank Rémi Morin for introducing and guid-
ing us to and through the realm of concurrency theory.

References

1. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part 1. Theor. Comput. Sci. 13, 85–108 (1981)

2. Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of logic in com-
puter science, of Handb. Log. Comput. Sci., vol. 4, pp. 1–148. Oxford Univ. Press,
New York (1995)

A Nice Labelling for Tree-Like Event Structures of Degree 3 165

3. Winskel, G.: Event structure semantics for CCS and related languages. In:
Nielsen, M., Schmidt, E.M. (eds.) Automata, Languages, and Programming. LNCS,
vol. 140, pp. 561–576. Springer, Heidelberg (1982)

4. Varacca, D., Yoshida, N.: Typed event structures and the pi-calculus: Extended
abstract. Electr. Notes Theor. Comput. Sci. 158, 373–397 (2006)

5. Faggian, C., Maurel, F.: Ludics nets, a game model of concurrent interaction. In:
LICS, pp. 376–385. IEEE Computer Society Press, Los Alamitos (2005)

6. Melliès, P.A.: Asynchronous games 2: The true concurrency of innocence. In: Gard-
ner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 448–465. Springer,
Heidelberg (2004)

7. Diekert, V., Rozenberg, G. (eds.): The book of traces. World Scientific Publishing
Co. Inc., River Edge, NJ (1995)

8. Pratt, V.: Modeling concurrency with partial orders. Internat. J. Parallel Program-
ming 15(1), 33–71 (1986)

9. Rozoy, B., Thiagarajan, P.S.: Event structures and trace monoids. Theoret. Com-
put. Sci. 91(2), 285–313 (1991)

10. Rozoy, B.: On distributed languages and models for concurrency. In: Rozenberg,
G. (ed.) Advances in Petri Nets 1992. LNCS, vol. 609, pp. 267–291. Springer,
Heidelberg (1992)

11. Assous, M.R., Bouchitté, V., Charretton, C., Rozoy, B.: Finite labelling problem
in event structures. Theor. Comput. Sci. 123(1), 9–19 (1994)

12. Arnold, A.: An extension of the notions of traces and of asynchronous automata.
ITA 25, 355–396 (1991)

13. Hoogers, P.W., Kleijn, H.C.M., Thiagarajan, P.S.: An event structure semantics
for general Petri nets. Theoret. Comput. Sci. 153(1-2), 129–170 (1996)

14. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. of
Math. 51(2), 161–166 (1950)

15. Mycielski, J.: Sur le coloriage des graphs. Colloq. Math. 3, 161–162 (1955)
16. Niebert, P., Qu, H.: The implementation of mazurkiewicz traces in poem. In: Graf,

S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 508–522. Springer, Heidel-
berg (2006)

17. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the veri-
fication of asynchronous circuits. In: Probst, D.K., von Bochmann, G. (eds.) CAV
1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993)

18. Niebert, P., Huhn, M., Zennou, S., Lugiez, D.: Local first search - a new paradigm
for partial order reductions. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.
LNCS, vol. 2154, pp. 396–410. Springer, Heidelberg (2001)

19. Grätzer, G.: The congruences of a finite lattice. Birkhäuser Boston Inc., Boston,
MA (2006) A proof-by-picture approach.

20. Santocanale, L.: Topological properties of event structures. GETCO06 (August
2006)

21. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J.
Math. 15, 835–855 (1965)

22. Zykov, A.A.: On some properties of linear complexes. Mat. Sbornik N.S. 24(66),
163–188 (1949)

Causal Message Sequence Charts�

Thomas Gazagnaire1, Blaise Genest2, Löıc Hélouët3, P.S. Thiagarajan4,
and Shaofa Yang3

1 IRISA/ENS Cachan, Campus de Beaulieu, 35042 Rennes Cedex, France
thomas.gazagnaire@irisa.fr

2 IRISA/CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
blaise.genest@irisa.fr

3 IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France
{loic.helouet, shaofa.yang}@irisa.fr
4 School of Computing, NUS, Singapore

thiagu@comp.nus.edu.sg

Abstract. Scenario languages based on Message Sequence Charts
(MSCs) and related notations have been widely studied in the last
decade [14,13,2,9,6,12,8]. The high expressive power of scenarios renders
many basic problems concerning these languages undecidable. The most
expressive class for which several problems are known to be decidable is
one which possesses a behavioral property called “existentially bounded”.
However, scenarios outside this class are frequently exhibited by asyn-
chronous distributed systems such as sliding window protocols. We pro-
pose here an extension of MSCs called Causal Message Sequence Charts,
which preserves decidability without requiring existential bounds. Inter-
estingly, it can also model scenarios from sliding window protocols. We
establish the expressive power and complexity of decision procedures for
various subclasses of Causal Message Sequence Charts.

1 Introduction

Scenario languages based on Message Sequence Charts (MSCs) have met con-
siderable interest in the last ten years. The attractiveness of this notation can
be explained by two major characteristics. Firstly, from the engineering point of
view, MSCs have a simple and appealing graphical representation based on just a
few concepts: processes, messages and internal actions. Secondly, from a mathe-
matical standpoint, scenario languages admit an elegant formalization: they can
be defined as languages generated by finite state automata over an alphabet of
MSCs. These automata are usually called High-level Message Sequence Charts
(HMSCs) [10].

An MSC is a restricted kind of labelled partial order and an HMSC is a
generator of a (usually infinite) set of MSCs, that is, a language of MSCs. For
example, the MSC M shown in Figure 2 is a member of the MSC language
generated by the HMSC of Figure 1 while the MSC N shown in Figure 2 is not.
� Work supported by the INRIA-NUS Associated Team CASDS and the ANR projects

DOTS.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 166–180, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Causal Message Sequence Charts 167

M1

p q p q

M2

M1

M2
Q A

H

Fig. 1. An HMSC over two MSCs

HMSCs are very expressive and hence a number of basic problems associated
with them cannot be solved effectively. For instance, it is undecidable whether
two HMSCs generate the same collection of MSCs [14], or whether an HMSC
generates a regular MSC language (an MSC language is regular if the collection of
all the linearizations of all the MSCs in the language is a regular string language
in the usual sense). Consequently, subclasses of HMSCs have been identified
[13,2,6] and studied.

On the other hand, a basic limitation of HMSCs is that their MSC languages
are finitely generated. More precisely, each MSC in the language can be defined as
the sequential composition of elements chosen from a fixed finite set of MSCs [12].
However, the behaviours of many protocols constitute MSC languages that are
not finitely generated. This occurs for example with scenarios generated by the
alternating bit protocol. Such protocols can induce a collection of braids like N
in Figure 2 which cannot be finitely generated.

One way to handle this is to work with so called safe (realizable) Composi-
tional HMSCs (CHMCs, for short) in which message emissions and receptions
are decoupled in individual MSCs but matched up at the time of composition,
so as to yield a (complete) MSC. CHMSCs are however notationally awkward
and do not possess the visual appeal of HMSCs. Furthermore, several positive
results on HMSCs rely on a decomposition of MSCs into atoms (the minimal
non-trivial MSCs) [9,12,6], which does not apply for CHMSCs, and results in a
higher complexity [5]. It is also worth noting that without the restriction to safety
(realizability), compositional HMSC languages embed the full expressive power
of communicating automata [3] and consequently inherit all their undecidability
results.

This paper proposes another approach to extend HMSCs in a tractable man-
ner. The key feature is to allow the events belonging to a lifeline to be partially
ordered. More specifically, we extend the notion of an MSC to that of causal
MSC in which the events belonging to each lifeline (process), instead of being
linearly ordered, are allowed to be partially ordered. To gain modelling power,
we do not impose any serious restrictions on the nature of this partial order.
Secondly, we assume a suitable Mazurkiewicz trace alphabet [4] for each lifeline
and use this to define a composition operation for causal MSCs. This leads to
the notion of causal HMSCs which generate tractable languages of causal MSCs.

A causal HMSC is a priori not existentially bounded in the sense defined in
[5]. Informally, this property of an MSC language means that there is a uniform
upper boundK such that for every MSC in the language there exists an execution

168 T. Gazagnaire et al.

p q

Q

A

Q

A

Q

A

p q

A
Q

Q

A

Q

Q

AQ

NM

Fig. 2. Two MSCs M and N

along which—from start to finish—all FIFO channels remain K-bounded. Since
this property fails, in general, for causal MSC languages, the main method used
to gain decidability for safe CMSCs [5] is not applicable. Instead, to characterize
regularity and decidability of certain subclasses of causal HMSCs, we need to
generalize the method of [13] and of [6] in a non-trivial way.

In the next section we introduce causal MSCs and causal HMSCs. We also de-
fine the means for associating an ordinary MSC language with a causal HMSC.
In the subsequent section we develop the basic theory of causal HMSCs. In sec-
tion 4, we identify the property called “window-bounded”, an important ingre-
dient of the “braid”-like MSC languages generated by many protocols. Basically,
this property bounds the number of messages a process p can send to a process
q without waiting for an acknowledgement to be received. We then show that
one can decide if a given causal HMSC generates a window-bounded MSC lan-
guage. In section 5 we compare the expressive power of languages based on causal
HMSCs with other known HMSC-based language classes. Proofs are omitted due
to lack of space, but can be found in the full version of the paper available at:
www.irisa.fr/distribcom/Personal_Pages/helouet/Papers/full_concur07.pdf .

2 MSCs, Causal MSCs and Causal HMSCs

Through the rest of the paper, we fix a finite nonempty set P of process names
with |P| > 1. For convenience, we let p, q range over P and drop the subscript
p ∈ P when there is no confusion. We also fix finite nonempty sets Msg , Act
of message types and internal action names respectively. We define the alpha-
bets Σ! = {p!q(m) | p, q ∈ P , p
= q,m ∈ Msg}, Σ? = {p?q(m) | p, q ∈ P ,
p
= q,m ∈ Msg}, and Σact = {p(a) | p ∈ P , a ∈ Act}. The letter p!q(m)
means the sending of message m from p to q; p?q(m) the reception of message
m at p from q; and p(a) the execution of internal action a by process p. Let
Σ = Σ! ∪ Σ? ∪ Σact . We define the location of a letter α in Σ, denoted loc(α),
by loc(p!q(m)) = p = loc(p?q(m)) = loc(p(a)). For each process p in P , we set
Σp = {α ∈ Σ | loc(α) = p}. In order to define a concatenation operation for
causal MSCs, we fix a family of Mazurkiewicz trace alphabets {(Σp, Ip)}p∈P ([4]),

Causal Message Sequence Charts 169

one for each p. That is, Ip ⊆ Σp×Σp is a reflexive and symmetric relation, called
the independence relation. We denote the dependence relation (Σp×Σp)−Ip by
Dp. Following the usual definitions of Mazurkiewicz traces, for each (Σp, Ip), the
associated trace equivalence relation ∼p over Σ�

p is the least equivalence relation
such that, for any u, v in Σ�

p and α, β in Σp, α Ip β implies uαβv ∼p uβαv.
Equivalence classes of ∼p are called traces. For u in Σ�

p , we let [u]p denote the
trace containing u.

Definition 1. A causal MSC over (P , Σ) is a structure B = (E, λ,
{�p}p∈P ,0), where E is a finite nonempty set of events, λ : E → Σ is a
labelling function. And the following conditions hold:

– For each process p, �p ⊆ Ep × Ep is a partial order, where Ep = {e ∈ E |
λ(e) ∈ Σp}. We let �̂p ⊆ Ep × Ep denote the least relation such that �p is
the reflexive and transitive closure of �̂p.

– 0 ⊆ E! × E? is a bijection, where E! = {e ∈ E | λ(e) ∈ Σ!} and E? = {e ∈
E | λ(e) ∈ Σ?}. For each (e, e′) ∈ 0, λ(e) = p!q(m) iff λ(e′) = q?p(m).

– The transitive closure of the relation
(⋃
p∈P

�p

)
∪ 0, denoted ≤, is a partial

order.

For each p, the relation �p dictates the “causal” order in which events of
Ep may be executed. The relation 0 identifies pairs of message-emission and
message-reception events. We say �p respects the trace alphabet (Σp, Ip) iff
for any e, e′ ∈ Ep, the following hold: (i) λ(e) Dp λ(e′) implies e �p e′;
(ii) e �̂p e

′ implies λ(e) Dp λ(e′). The causal MSC B is said to respect {(Σp, Ip)}
iff �p respects (Σp, Ip) for every p. In order to gain modelling power, we allow
each �p to be any partial order, not necessarily respecting (Σp, Ip). We say
that the causal MSC B is FIFO1 iff for any (e, f) ∈ 0, (e′, f ′) ∈ 0 such that
λ(e) = λ(e′) = p!q(m) (and thus λ(f) = λ(f ′) = q?p(m)), we have either e �p e

′

and f �q f
′; or e′ �p e and f ′ �q e

′. Note that we do not demand a priori that
a causal MSC must be FIFO.

Let B = (E, λ, {�p},0) be a causal MSC. A linearization of B is a word
a1a2 . . . a
 over Σ such that E = {e1, . . . , e
} with λ(ei) = ai for each i; and
ei ≤ ej implies i ≤ j for any i, j. We let Lin(B) denote the set of linearizations
of B. Clearly, Lin(B) is nonempty. We set Alph(B) = {λ(e) | e ∈ E}, and
Alphp(B) = Alph(B) ∩Σp for each p.

The leftmost part of Figure 3 depicts a causal MSC M . In this diagram, we
enclose events of each process p in a vertical box and show the partial order �p

in the standard way. In case �p is a total order, we place events of p along a
vertical line with the minimum events at the top and omit the box. In particular,
in M , the two events on p are not ordered (i.e. �̂p is empty) and �q is a total
order. Members of 0 are indicated by horizontal or downward-sloping arrows

1 There are two notions of FIFOness for MSCs in the literature. One allows overtaking
of messages with different message types via the same channel, while the other does
not. As our results hold for both notions, we choose the more permissive one.

170 T. Gazagnaire et al.

labelled with the transmitted message. Both words p!q(Q).q!p(A).q?p(Q).p?q(A)
and q!p(A).p?q(A).p!q(Q).q?p(Q) are linearizations of M .

An MSC B = (E, λ, {�p}p∈P ,0) is defined in the same way as a causal MSC
except that every �p is required to be a total order. In an MSC B, the relation
�p must be interpreted as the visually observed order of events in one sequential
execution of p. Let B′ = (E′, λ′, {�′p},0′) be a causal MSC. Then we say the
MSC B is a visual extension of B′ if E′ = E, λ′ = λ, �′p ⊆ �p and 0′ = 0.
We let Vis(B′) denote the set of visual extensions of B′. In Figure 3, Vis(M)
consists of MSCs M1,M2.

Q

A

p q

Q

A

p q p q

A

Q

M M1 M2

Fig. 3. A causal MSC M and its visual extensions M1, M2

We shall now define the concatenation operation of causal MSCs using the
trace alphabets {(Σp, Ip)}.

Definition 2. Let B = (E, λ, {�p},0) and B′ = (E′, λ′, {�′p},0′) be causal
MSCs. We define the concatenation of B with B′, denoted by B � B′, as the
causal MSC B′′ = (E′′, λ′′, {�′′p},0′′) where

– E′′ is the disjoint union of E and E′. λ′′ is given by: λ′′(e) = λ(e) if e ∈ E
and λ′′(e) = λ′(e) if e ∈ E. And 0′′ = 0 ∪0′.

– For each p, �′′p is the transitive closure of

�p

⋃
�′p

⋃
{(e, e′) ∈ Ep × E′p | λ(e)Dp λ

′(e′)} .

Clearly � is a well-defined and associative operation. Note that in case B and
B′ are MSCs and Dp = Σp × Σp for every p, then the result of B � B′ is the
asynchronous concatenation (also called weak sequential composition) of B with
B′ [15], which we denote by B ◦ B′. We also remark that the concatenation of
causal MSCs is different from the concatenation of traces. The concatenation of
trace [u]p with [v]p is the trace [uv]p. However, a causal MSC B need not respect
{(Σp, Ip)}. Consequently, for a process p, Lin(B) may contain a word u such
that the projection of u on Alphp(B) is not a trace.

We can now define causal HMSCs.

Definition 3. A causal HMSC over (P , {(Σp, Ip)}) is a structure
H = (N,Nin ,B,−→, Nfi) where N is a finite nonempty set of nodes, Nin ⊆ N
the set of initial nodes, B a finite nonempty set of causal MSCs, −→ ⊆ N×B×N
the transition relation, and Nfi ⊆ N the set of final nodes.

Causal Message Sequence Charts 171

A path in the causal HMSC H is a sequence ρ = n0
B1−→ n1

B2−→ · · · B�−→ n
 . If
n0 = n
, then we say ρ is a cycle. The path ρ is accepting iff n0 ∈ Nin and n
 ∈
Nfi . The causal MSC generated by ρ, denoted �(ρ), is B1 �B2 � · · ·�B
. Note
that the concatenation operation � is associative. We let CaMSC (H) denote the
set of causal MSCs generated by accepting paths of H . We also set Vis(H) =⋃
{Vis(M) | M ∈ CaMSC (H)} and Lin(H) =

⋃
{Lin(M) | M ∈ CaMSC (H)}.

Obviously, Lin(H) is also equal to
⋃
{Lin(M) | M ∈ Vis(H)}. We shall refer

to CaMSC (H), Vis(H), Lin(H), respectively, as the causal language, visual
language and linearization language of H .

An HMSC H = (N,Nin ,B,−→, Nfi) is defined in the same way as a causal
HMSC except that B is a finite set of MSCs and every MSC in B is FIFO.
A path ρ of H generates an MSC by concatenating the MSCs along ρ. We
let Vis(H) denote the set of MSCs generated by accepting paths of H with ◦,
and call Vis(H) the visual language of H . Recall that an MSC language (i.e. a
collection of MSCs) L is finitely generated [12] iff there exists a finite set X of
MSCs satisfying the condition: for each MSC B in L, there exist B1, . . . , B
 in
X such that B = B1 ◦ · · · ◦B
. Many protocols exhibit scenario collections that
are not finitely generated. For example, sliding window protocols can generate
arbitarily large MSCs repeating the communication behaviour shown in MSC
N of Figure 2. One basic limitation of HMSCs is that their visual languages
are finitely generated. In contrast, the visual language of a causal HMSC is not
necessarily finitely generated. For instance, suppose we view H in Figure 1 as a
causal HMSC by considering M1,M2 as causal MSCs and associating H with
the independence relations given by: Ip = {((p!q(Q), p?q(A)), (p?q(A), p!q(Q)))}
and Iq = ∅. Then clearly Vis(H) is not finitely generated, as it contains infinitely
many MSCs similar to N of Figure 2.

3 Regularity and Model-Checking for Causal HMSCs

3.1 Semantics for Causal HMSCs

As things stand, a causal HMSC H defines three syntactically different lan-
guages, namely its linearization language Lin(H), its visual language (MSC)
language Vis(H) and its causal MSC language CaMSC (H). The next proposi-
tion shows that they are also semantically different in general. It also identifies
the restrictions under which they match semantically.

Proposition 1. Let H,H ′ be causal HMSCs over the same family of trace al-
phabets {(Σp, Ip)}. Consider the following three hypotheses: (i) CaMSC (H) =
CaMSC (H ′); (ii) Vis(H) = Vis(H ′); and (iii) Lin(H) = Lin(H ′). Then we
have:

– (i) =⇒ (ii) and (ii) =⇒ (iii); but the converses do not hold in general.
– If every causal MSC labelling transitions of H,H ′ respects {(Σp, Ip)}, then

(ii) =⇒ (i).
– If every causal MSC labelling transitions of H,H ′ is FIFO, then (iii) =⇒

(ii).

172 T. Gazagnaire et al.

For most purposes, the relevant semantics for a causal HMSC seems to be its
visual language.

3.2 Regular Sets of Linearizations

It is undecidable in general whether an HMSC has a regular linearization lan-
guage [13]. In the literature, a subclass of HMSCs called regular [13] (or
bounded [2]) HMSCs, has been identified. The linearization language of every
regular HMSC is regular. And one can effectively whether an HMSC is in the
subclass of regular HMSCs. We extend these results to causal HMSCs. First,
let us recall the notions of connectedness from Mazurkiewicz traces theory [4],
and of communication graphs [2,13,6]. Let p ∈ P , and B = (E, λ, {�p},0) be
a causal MSC. We say that Γ ⊆ Σp is Dp-connected iff the (undirected) graph
(Γ,Dp ∩ (Γ × Γ)) is connected. Moreover, we define the communication graph
of B, denoted by CGB , to be the directed graph (Q,), where Q = {p ∈ P |
Ep
= ∅} and 	 ⊆ Q×Q is given by (p, q) ∈ 	 iff 0 ∩ (Ep × Eq)
= ∅. Now we
say the causal MSC B is tight iff its communication graph CGB is connected
and for every p, Alphp(B) is Dp-connected. We say the causal MSC B is rigid iff
(i) B is FIFO; (ii) CGB is strongly connected; and (iii) for every p, Alphp(B) is
Dp-connected. We will focus here on rigidity and study the notion of tightness
in section 3.3.

Let H = (N,Nin ,B,−→, Nfi) be a causal HMSC. We say that H is regular iff
for every cycle ρ in H , the causal MSC �(ρ) is rigid. For instance, the simple
protocol modeled by the causal HMSC of Figure 4, is regular, since the only
cycle is labeled by two local events a, b, one message from p to q and one message
from q to p. The communication graph associated to this cycle is then strongly
connected, p!q(m) − b − p?q(n) on process p is connected, and q!p(n) − a −
q?p(m) on process q is connected. Equivalently, H is regular iff for every strongly
connected subgraph G of H with {B1, . . . , B
} being the set of causal MSCs
appearing inG, we haveB1�. . .�B
 is rigid. Note that the rigidity ofB1�. . .�B

does not depend on the order in which B1, . . . , B
 are listed. This leads to a co-
NP-complete algorithm to test whether a causal HMSC is regular.

In the same way, we say that H is globally-cooperative iff for every strongly
connected subgraph G of H with {B1, . . . , B
} being the set of causal MSCs
appearing in G, we have that B1 � . . .�B
 is tight.

Theorem 1. Let H = (N,Nin ,B,−→, Nfi) be a regular causal HMSC. Then
Lin(H) is a regular subset of Σ�, that is, we can build a finite state automaton
AH over Σ that recognizes Lin(H). Furthermore, AH has at most

(
|N |2 · 2|Σ| ·

2|N |·|Σ|·2
m
)|N |·|Σ|·2m

states, where m = max{|B| | B ∈ B}.

Intuitively, for a word σ in Σ�, AH guesses an accepting path ρ of H and checks
whether σ is in Lin(�(ρ)). Upon reading a prefix σ′ of σ, AH memorizes a
sequence of subpaths of ρ from which σ′ was “linearized”. The crucial step is
to ensure that at any time, it suffices to remember a bounded number of such
subpaths, and moreover, a bounded amount of information for each subpath.

Causal Message Sequence Charts 173

Ip

Iq

m a

qp p q

nb

= { (p?q(n), p!q(m)), (p!q(m), p?q(n)) }

= { (q?p(m), q!p(n)), (q!p(n), q?p(m)) }

Fig. 4. A regular causal HMSC which is not finitely generated

3.3 Inclusion and Intersection Non-emptiness of Causal HMSCs

As the linearization languages of regular causal HMSCs are regular, verification
for regular causal HMSCs can be effectively solved. It is natural to ask whether
we can still obtain positive results of verification beyond the subclass of regular
causal HMSCs. As for HMSCs, one can show that for a suitable choice of K, the
set of K-bounded linearizations of any globally cooperative HMSC is regular,
and this is sufficient for effective verification [5]. Unfortunately, this result uses
Kuske’s encoding [11] into traces that is based on the existence of an (existen-
tial) bound on communication. Consequently, this technique does not apply to
globablly cooperative causal HMSCs, as the visual language of a causal HMSC
needs not be existentially bounded. For instance, consider the causal HMSC H
of Figure 5. It is globally cooperative (but not regular), and its visual language
contains MSCs shown in the right part of Figure 5: in order to receive the first
message from p to r, the message from p to q and the message from q to r have
to be sent and received. Hence every message from p to r has to be sent before
receiving the first message from p to r, which means that H is not existentially
bounded.

It is known that problems of inclusion, intersection non-emptiness and equality
of visual languages of HMSCs are undecidable [13]. Clearly, these undecidability
results also apply to causal HMSCs. In [13], decidability results for inclusion and
intersection non-emptiness of globally cooperative HMSCs are established. Our
goal here is to extend these results to globally cooperative causal HMSCs.

We shall adapt the notion of atoms [1,9] and the techniques from [6]. Let us
first introduce a notion of decomposition of causal MSCs into basic parts.

Definition 4. A causal MSC B is a basic part (w.r.t. the trace alphabets
{(Σp, Ip)}) if there do not exist causal MSCs B1, B2 such that B = B1 �B2.

Note that we require that the set of events of a causal MSC is not empty. Now
for a causal MSC B, we define a decomposition of B to be a sequence B1 · · ·B
 of
basic parts such that B = B1� · · ·�B
. For a set B of basic parts, we associate a
trace alphabet (B, IB) (w.r.t. the trace alphabets {(Σp, Ip)}) where IB is given by:

174 T. Gazagnaire et al.

Ip

Iq

= { (p!q(m), p!r(o)), (p!r(o), p!q(m)) } n
m

o

o

qp r

r

o

pr

n

q
m

p

= { } = { }Ir

Fig. 5. A globally-cooperative causal HMSC that is not existentially bounded

B IB B
′ iff for every p, for every α ∈ Alphp(B), for every α′ ∈ Alphp(B

′), it is the
case that α Ip α′. We let ∼B be the corresponding trace equivalence relation and
denote the trace containing a sequence u = B1.B
 in B� by [u]B (or simply
[u]). For a language L ⊆ B�, we define its trace closure [L]B =

⋃
{[u]B | u ∈ L}.

Proposition 2. For a given causal MSC B, we can effectively construct the
smallest finite set of basic parts, denoted Basic(B), such that every decomposition
of B is in Basic(B)�. Further, the set of decompositions of B forms a trace of
(Basic(B), IBasic(B)).

We briefly describe the algorithm for constructing Basic(B), which is analogous
to technique in [9]. Let B = (E, λ, {�p},0). We consider the undirected graph
(E,R), where R is the symmetric closure of 0 ∪

(⋃
p∈P R

′
p ∪ R′′p

)
, where R′p =

{(e, e′) ∈ Ep × Ep | e �p e′ and λ(e) Ip λ(e′)} and R′′p = {(e, e′) ∈ Ep ×
Ep | e
�p e

′ and e′
�p e and λ(e) Dp λ(e′)}. Each basic part in Basic(B) can
be formed from a connected component of (E,R) and thus Basic(B) can be
constructed in quadratic time.

In view of Proposition 2, we assume through the rest of this section that every
transition of a causal HMSC H is labelled by a basic part. Clearly this incurs
no loss of generality, since we can simply decompose each causal MSC in H
into basic parts and decompose any transition of H into a sequence of transi-
tions labeled by these basic parts. Given a causal HMSC H , we let Basic(H)
be the set of basic parts labelling transitions of H . Proposition 2 implies that
a causal MSC is uniquely defined by its basic part decomposition. Then in-
stead of the linearization language we can use the basic part language of H ,
denoted by BP(H) = {B1 . . . B
 ∈ Basic(H)� | B1 � . . . � B
 ∈ CaMSC (H)}.
Notice that BP (H) = [BP (H)] by Proposition 2, that is, BP (H) is closed by
commutation. We can also view H as a finite state automaton over the alpha-
bet Basic(H), and denote by LBasic(H) = {B1 · · ·B
 ∈ Basic(H)� | n0

B1−→
n1 · · ·

B�−→ n
 is an accepting path of H.} its associated (regular) language. We
now relate BP(H) and LBasic(H).

Proposition 3. Let H be a causal HMSC. Then BP(H) = [LBasic(H)].

Assuming we know how to compute the trace closure of the regular language
LBasic(H), we can obtain BP (H) with the help of Proposition 3. In general, we

Causal Message Sequence Charts 175

cannot effectively compute this language. However if H is globally cooperative,
then [LBasic(H)] is regular and a finite state automaton recognizing [LBasic(H)]
can be effectively constructed [4,13]. Considering globally cooperative causal
HMSCs as finite state automata over basic parts, we can apply [13] to obtain
the following decidability and complexity results:

Theorem 2. Let H,H ′ be causal HMSCs over the same family of trace alphabets
{(Σp, Ip)}. Suppose H ′ is globally cooperative. Then we can build a finite state
automaton A′ over Basic(H ′) such that LBasic(A′) = [LBasic(H ′)]. And A′ has
at most 2O(n·b) states, where n is the number of nodes in H and b is the number
of basic parts in Basic(H). Consequently, the following problems are decidable:

(i) Is CaMSC (H) ⊆ CaMSC (H ′)?
(ii) Is CaMSC (H) ∩ CaMSC (H ′) = ∅?
Furthermore, the complexity of (i) is PSPACE-complete and that of (ii) is
EXPSPACE-complete.

The above theorem shows that we can model check a causal HMSC against a
globally cooperative causal HMSC specification. Note that we can only apply
Theorem 2 to two causal HMSCs over the same family of trace alphabets. If the
causal HMSCs H,H ′ in theorem 2 satisfy the additional condition that every
causal MSCs labeling the transitions of H and H ′ respects {(Σp, Ip)}, then we
can compare the visual languages Vis(H) and Vis(H ′), thanks to Proposition 1.
On the other hand, when two causal HMSCs are defined with different families
of trace alphabets, the only possible comparison between them seems to be on
their linearization languages. Consequently, we would need to work with regular
causal HMSCs.

4 Window-Bounded Causal HMSCs

One of the chief attractions of causal MSCs is they enable the specification of
behaviors containing braids of arbitrary size such as those generated by sliding
windows protocols. Very often, sliding windows protocols appear in a situa-
tion where two processes p and q exchange bidirectional data. Messages from
p to q are of course used to transfer information, but also to acknowledge
messages from q to p. If we abstract the type of messages exchanged, these
protocols can be seen as a series of query messages from p to q and answer
messages from q to p. Implementing a sliding window means that a process
may send several queries in advance without needing to wait for an answer to
each query before sending the next query. Very often, these mechanisms tol-
erate losses, i.e. the information sent is stored locally, and can be retransmit-
ted if needed (as in the alternating bit protocol). To avoid memory leaks, the
number of messages that can be sent in advance is often bounded by some in-
teger k, that is called the size of the sliding window. Note however that for
scenario languages defined using causal HMSCs, such window sizes do not al-
ways exist. This is the case for example for the causal HMSC depicted in Fig-
ure 1 with independence relations Ip = {((p!q(Q), p?q(A)), (p?q(A), p!q(Q)))}

176 T. Gazagnaire et al.

and Iq = {((q?p(Q), q!p(A)), (q!p(A), q?p(Q))}. The language generated by this
causal HMSC contains scenarios where an arbitrary number of messages from
p to q can cross an arbitrary number of messages from q to p. A question that
naturally arises is to know if the number of messages crossings is bounded by
some constant in all the executions of a protocol specified by a causal HMSC.
In what follows, we define these crossings, and show that their boundedness is a
decidable problem.

A

A

A

Q

Q m1

p q
Q

Fig. 6. Window of message m1

Definition 5. Let M = (E, λ, {�p},0) be an MSC For a message (e, f) in
M , that is, (e, f) ∈ 0, we define the window of (e, f), denoted WM (e, f),
as the set of messages {(e′, f ′) ∈ 0| loc(λ(e′)) = loc(λ(f)) and loc(λ(f ′)) =
loc(λ(e)) and e ≤ f ′ and e′ ≤ f}.
We say that a causal HMSC H is K-window-bounded iff for every M ∈ Vis(H)
and for every message (e, f) of M , it is the case that |WM (e, f)| ≤ K. H is said
to be window-bounded iff H is K-window-bounded for some K.

Figure 6 illustrates notion of window, where the window of the message m1
is symbolized by the area delimited by dotted lines. It consists of all but the
first message Q from p to q. Clearly, the causal HMSC H of Figure 1 is not
window-bounded. We now describe an algorithm to effectively check whether
a causal HMSC is window bounded. It builds a finite state automaton whose
states remember the labels of events that must appear in the future of messages
(respectively in the past) in any MSC of Vis(H).

Formally, for a causal MSC B = (E, λ, {�p},0) and (e, f) ∈0 a message of
B, we define the future and past of (e, f) in B as follows:

FutureB(e, f) = {a ∈ Σ | ∃x ∈ E, f ≤ x ∧ λ(x) = a}
PastB(e, f) = {a ∈ Σ | ∃x ∈ E, x ≤ e ∧ λ(x) = a}

In Figure 6, PastB(m1) = {p!q(Q), q?p(Q), q!p(A)}.

Causal Message Sequence Charts 177

Proposition 4. Let B = (E, λ, {�p},0) and B′ = (E′, λ′, {�′p},0′) be two
causal MSCs, and let m ∈0 be a message of B. Then we have:

FutureB�B′(m) = FutureB(m) ∪ {a′ ∈ Σ | ∃x, y ∈ E′
∃a ∈ FutureB(m) s.t. λ(y) = a′ ∧ x ≤′ y ∧ a Dloc(a) λ(x)}

Let H = (N,Nin ,B,−→, Nfi) be a causal HMSC. Consider a path ρ of H with
�(ρ) = B1 � · · · � B
 and a message m in B1. Then Proposition 4 implies the
sequence of sets FutureB1(m), FutureB1�B2(m), . . ., FutureB1�···�B�

(m) is non-
decreasing. Furthermore, these sets can be computed on the fly, that is with a
finite state automaton. Similar arguments hold for the past sets. Now consider
a message (e, f) in a causal MSC B labelling some transition t of H . With the
above observation on Future and Past , we can show that, if there is a bound
K(e,f) such that the window of a message (e, f) in the causal MSC generated by
any path containing t is bounded by K(e,f), then K(e,f) is at most b|N |(|Σ|+ 1)
where b = max{|B| | B ∈ B}. Further, we can effectively determine whether
such a bound K(e,f) exists by constructing a finite state automaton whose states
memorize the future and past of (e, f). Thus we have the following:

Theorem 3. Let H = (N,Nin ,B,−→, Nfi) be a causal HMSC. If H is window-
bounded, then H is K-window-bounded, where K is at most b|N |(|Σ|+ 1) with
b = max{|B| | B ∈ B}. Further, we can effectively determine whether H is
window-bounded in time O(s · |N |2 · 2|Σ|), where s is the sum of the sizes of
causal MSCs in B.

5 Relationship with Other Scenario Models

We compare here the expressive power of other HMSC-based scenario languages
with causal HMSCs in terms of their visual languages. We consider first HMSCs.
Two important strict HMSC subclasses are (i) regular [13] (also called bounded
in [2]) HMSCs which ensure that the linearizations form a regular set and (ii)
globally-cooperative HMSCs [6], which ensure that for a suitable choice of K,
the set of K-bounded linearizations form a regular set. By definition, causal
HMSCs, regular causal HMSCs and globally-cooperative causal HMSCs extend
respectively HMSCs, regular HMSCs and globally-cooperative HMSCs.

Figure 5 shows a globally-cooperative causal HMSC which is not in the
subclass of regular causal HMSCs. Thus, regular causal HMSCs form a strict
subclass of globally-cooperative causal HMSCs. Trivially, globally-cooperative
causal HMSCs are a strict subclass of causal HMSCs. Figure 4 displays a regu-
lar causal HMSC whose visual language is not finitely generated. It follows that
(regular/globally-cooperative) causal HMSCs are strictly more powerful than
(regular/globally-cooperative) HMSCs.

Another extension of HMSCs is Compositional HMSCs [7], or CHMSCs for
short. CHMSCs generalize HMSCs by allow dangling message-sending and
message-reception events, i.e. where the message pairing relation0 is only a par-
tial non-surjective mapping contained in E!×E?. The concatenation of two Com-
positional MSCs M ◦M ′ performs the instance-wise concatenation as for MSCs,

178 T. Gazagnaire et al.

and computes a new message pairing relation0′′ defined over (E!∪E′!)×(E?∪E′?)
extending 0 ∪ 0′, and preserving the FIFO ordering of messages of the same
content (actually, in the definition of [7], there is no channel content).

A CHMSC H generates a set of MSCs, denoted Vis(H) by abuse of notation,
obtained by concatenation of MSCs along a path of the graph. With this defini-
tion, some path of a CHMSC may not generate any correct MSC. Moreover, a
path of a CHMSC generates at most one MSC. The class of CHMSC for which
each path generates exactly one MSC is called safe CHMSC, still a strict exten-
sion over HMSCs. Regular and globally cooperative HMSCs have also their strict
extensions in terms of safe CHMSCs, namely as regular CHMSC and globally
cooperative CHMSCs.

r HMSC r CaHMSC r CHMSC

gc HMSC

gc CaHMSC

gc CHMSC

HMSC

CaHMSC

s CHMSC

CHMSC

Causal Compositional

regular

 globally
cooperative

 finitely
generated

Fig. 7. Comparison of Scenario languages

It is not hard to build a regular Compositional HMSC H with Vis(H) = {Mi |
i = 0, 1, . . .} where each Mi consists of an emission event e from p to r, then
a sequence of i blocks of three messages: a message from p to q followed by a
message from q to r then a message from r to p. And at last the reception event on
r from p matching e. That is, H is not finitely generated. A causal HMSC cannot
generate the same language. Assume for contradiction, a causal HMSC G with
Vis(G) = Vis(H). Let k be the number of messages of the biggest causal MSC
which labels a transition of G. We know that Mk+1 is in Vis(G), hence Mk+1 ∈
Vis(�(ρ)) for some accepting path ρ of G. Let N1, . . . , N
 be causal MSCs along
ρ, where � ≥ 2 because of the size k. It also means that there exist N ′

1 ∈ Vis(N1),
. . ., N ′

 ∈ Vis(N
) such that N ′
1 ◦ · · ·◦N ′

m ∈ Vis(G). Thus, N1 ◦ · · ·◦N
 = Mj for
some j, a contradiction since Mj is a basic part (i.e. cannot be the concatenation
of two MSCs). That is (regular) compositional HMSCs are not included into
causal HMSCs. On the other hand, regular causal HMSCs have a regular set
of linearizations (Theorem 1). Also by the results in [8], it is immediate that

Causal Message Sequence Charts 179

the class of visual languages of regular compositional HMSCs captures all the
MSC languages that have a regular set of linearizations. Hence the class of
regular causal HMSCs is included into the class of regular compositional HMSCs.
Last, we already know with Figure 5 that globally-cooperative causal HMSCs
are not necessarily existentially bounded, hence they are not included into safe
Compositional HMSC. Furthermore, globally-cooperative causal HMSCs are not
included into CHMSCs because the former can generate MSCs that are not
FIFO.

The relationships among these scenario models are summarized by Figure 7,
where arrows denote strict inclusion of visual languages. Two classes are incom-
parable if they are not connected by a transitive sequence of arrows. We use the
abbreviation r for regular, gc for globally-cooperative, s for safe, CaHMSC for
causal HMSCs and CHMSC for compositional HMSCs.

6 Conclusion

We have defined an extension of HMSC called causal HMSC that allows the
definition of braids, such as those appearing in sliding window protocols. We
also identified in this setting, many subclasses of scenarios that were defined for
HMSCs which have decidable verification problems. An interesting class that
emerges is globally-cooperative causal HMSCs. This class is incomparable with
safe Compositional HMSCs because the former can generate scenario collections
that are not existentially bounded. Yet, decidability results of model checking
can be obtained for this class.

An interesting open problem is deciding whether the visual language of a
causal HMSC is finitely generated. Yet another interesting issue is to consider
the class of causal HMSCs whose visual languages are window-bounded. The
set of behaviours generated by these causal HMSCs seems to exhibit a kind of
regularity that could be exploited. Finally, designing suitable machine models
(along the lines of Communicating Finite Automata [3]) is also an important
future line of research.

References

1. Ahuja, M., Kshemkalyani, A.D., Carlson, T.: A basic unit of computation in dis-
tributed sytems. In: Proc. of ICDS’90, pp. 12–19 (1990)

2. Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer,
Heidelberg (1999)

3. Brand, D., Zafiropoulo, P.: On communicating finite state machines. Technical
Report RZ1053, IBM Zurich Research Lab (1981)

4. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore
(1995)

5. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking for a
class of communicating automata. Information and Computation 204(6), 920–956
(2006)

180 T. Gazagnaire et al.

6. Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state high-level MSCs:
Model-checking and realizability. Journal of Computer and System Sciences 72(4),
617–647 (2006)

7. Gunter, E., Muscholl, A., Peled, D.: Compositional message sequence charts. In:
Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031,
Springer, Heidelberg (2001)

8. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.S.:
A theory of regular MSC languages. Information and Computation 202(1), 1–38
(2005)

9. Hélouët, L., Le Maigat, P.: Decomposition of message sequence charts. In: Proc.
of SAM’00 (2000)

10. ITU-TS: ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-
TS (1999)

11. Kuske, D.: Regular sets of infinite message sequence charts. Information and Com-
putation 187(1), 80–109 (2003)

12. Morin, R.: Recognizable sets of message sequence charts. In: Alt, H., Ferreira, A.
(eds.) STACS 2002. LNCS, vol. 2285, pp. 523–534. Springer, Heidelberg (2002)

13. Muscholl, A., Peled, D.: Message sequence graphs and decision problems on
Mazurkiewicz traces. In: Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS
1999. LNCS, vol. 1672, Springer, Heidelberg (1999)

14. Muscholl, A., Peled, D., Su, Z.: Deciding properties for message sequence charts. In:
Nivat, M. (ed.) ETAPS 1998 and FOSSACS 1998. LNCS, vol. 1378, pp. 226–242.
Springer, Heidelberg (1998)

15. Reniers, M.: Message Sequence Chart: Syntax and Semantics. PhD thesis, Eind-
hoven University of Technology (1999)

Checking Coverage for Infinite Collections of
Timed Scenarios�

S. Akshay1,3, Madhavan Mukund2, and K. Narayan Kumar2

1 LSV, ENS Cachan, France
akshay@lsv.ens-cachan.fr

2 Chennai Mathematical Institute, Chennai, India
{madhavan,kumar}@cmi.ac.in

3 Institute of Mathematical Sciences, Chennai, India

Abstract. We consider message sequence charts enriched with timing
constraints between pairs of events. As in the untimed setting, an infinite
family of time-constrained message sequence charts (TC-MSCs) is gener-
ated using an HMSC—a finite-state automaton whose nodes are labelled
by TC-MSCs. A timed MSC is an MSC in which each event is assigned
an explicit time-stamp. A timed MSC covers a TC-MSC if it satisfies
all the time constraints of the TC-MSC. A natural recognizer for timed
MSCs is a message-passing automaton (MPA) augmented with clocks.
The question we address is the following: given a timed system specified
as a time-constrained HMSC H and an implementation in the form of a
timed MPA A, is every TC-MSC generated by H covered by some timed
MSC recognized by A? We give a complete solution for locally synchro-
nized time-constrained HMSCs, whose underlying behaviour is always
regular. We also describe a restricted solution for the general case.

1 Introduction

In a distributed system, several agents interact with each other to generate a
global behaviour. The interaction between these agents is usually specified in
terms of scenarios, using message sequence charts (MSCs) [7].

Weconsider scenarios extendedwith timing constraints, called time-constrained
MSCs (TC-MSCs). In a TC-MSC, we associate lower and upper bounds on the
time interval between certain pairs of events. TC-MSCs are a natural and useful
extension of the untimed notation for scenarios, because protocol specifications
typically include timing requirements for message exchanges, as well as descrip-
tions of how to recover from timeouts.

As an implementation model for timed distributed systems, we use communi-
cating finite-state machines equipped with clocks, called timed message-passing
automata (timed MPAs). Clock constraints are used to guard transitions and
specify location invariants, as in other models of timed automata [3]. Just as the

� Partially supported by Timed-DISCOVERI, a project under the Indo-French Net-
working Programme.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 181–196, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

182 S. Akshay, M. Mukund, and K.N. Kumar

runs of timed automata can be described in terms of timed words, the interac-
tions exhibited by timed MPAs can be described using timed MSCs—MSCs in
which each event is assigned an explicit timestamp.

Scenario specifications are typically incomplete and can be classified into two
categories, positive and negative. Positive scenarios are those that the system
should execute while negative scenarios indicate undesirable behaviours. This
leads to the scenario matching problem: given a distributed system and a set of
positive (negative) scenarios, does the system exhibit (avoid) these scenarios? In
the untimed setting, efficient algorithms for the scenario matching problem have
been identified in [10]. An automated approach is proposed in [5].

The timed analogue of scenario matching is coverage. A timed MSC T covers
a TC-MSC specification M if the timestamps on the events in T satisfy the
constraints specified in M . In general, a TC-MSC is covered by infinitely many
timed MSCs. The coverage problem is to check whether the set of timed MSCs
generated by a timed MPA cover all the TC-MSCs in the specification.

For finite sets of TC-MSCs, this problem reduces to the intersection of timed
regular languages. In this case, checking coverage can be automated using the
modelchecker Uppaal for timed systems, as described in [4].

In this paper, we consider the coverage problem for infinite collections of TC-
MSCs. A standard way to generate an infinite set of MSCs is to use a High-level
Message Sequence Chart (HMSC) [8]. In its most basic form, an HMSC is a
finite directed graph, called a Message Sequence Graph (MSG), with each node
labelled by an MSC. We label nodes in an MSGs with TC-MSCs and add time
constraints across edges, resulting in a structure called a time-constrained MSG
(TC-MSG). A TC-MSG defines a collection of TC-MSCs by concatenating the
TC-MSCs labeling each path from an initial node to a terminal node.

Formally, coverage asks whether for every TC-MSC M generated by a TC-
MSG, there is a timed MSC exhibited by the system that covers M . Since the
set of TC-MSCs generated by a TC-MSG is infinite, it turns out that coverage
can no longer be reduced to a simple intersection of timed regular languages.

We describe an algorithm to solve the coverage problem for locally synchro-
nized TC-MSGs—those for which the underlying behaviour is guaranteed to
be regular [6]. Our approach consists of “guiding” the timed MPA implemen-
tation to follow the TC-MSG specification in such a way that we can reduce
the problem to untimed language inclusion. This allows us to solve the coverage
problem both for positive and negative specifications. For arbitrary TC-MSGs,
a fully general guided simulation can result in non-regular behaviours. However,
we can adapt our approach to solve the coverage problem for TC-MSCs that are
executed node by node in the underlying TC-MSG.

The paper is organized as follows. We begin with some preliminaries about
MSCs and MSGs. In the next section, we describe how to attach timing infor-
mation to scenario specifications. Section 4 formally describes timed message-
passing automata. With this background, we formally describe the coverage
problem in Section 5. Our solution is described in Section 6. We conclude with
a brief discussion.

Checking Coverage for Infinite Collections of Timed Scenarios 183

2 Preliminaries on MSCs

2.1 Message Sequence Charts

Let P = {p, q, r, . . .} be a finite set of processes (agents) that communicate
through messages via reliable FIFO channels using a finite set of message types
M. For p ∈ P , let Actp = {p!q(m), p?q(m) | p
= q ∈ P ,m ∈ M} be the set of
communication actions for p. The action p!q(m) is read as p sends the message
m to q and the action p?q(m) is read as p receives the message m from q. We set
Act =

⋃
p∈P Actp. We also denote the set of channels by Ch = {(p, q) | p
= q}.

Labelled posets. An Act-labelled poset is a structure M = (E,≤, λ) where
(E,≤) is a poset and λ : E → Act is a labelling function.

For e ∈ E, let ↓e = {e′ | e′ ≤ e}. For X ⊆ E, ↓X = ∪e∈X↓e. We call X ⊆ E
a prefix of M if X = ↓X . For p ∈ P and a ∈ Act , we set Ep = {e | λ(e) ∈ Actp}
and Ea = {e | λ(e) = a}, respectively.

For each (p, q) ∈ Ch, we define a relation <pq as follows, to captures the fact
that channels are FIFO with respect to each message—if e <pq e

′, the message
m read by q at e′ is the one sent by p at e.

e <pq e
′ �

= λ(e) = p!q(m), λ(e′) = q?p(m) and |↓e ∩ Ep!q(m)| = |↓e′ ∩Eq?p(m)|
Finally, for each p ∈ P , we define the relation ≤pp= (Ep ×Ep) ∩≤, with <pp

standing for the largest irreflexive subset of ≤pp.

Definition 1. An MSC (over P) is a finite Act-labelled poset M = (E,≤, λ)
that satisfies the following conditions.

1. Each relation ≤pp is a linear order.
2. If p
= q then for each m ∈ M, |Ep!q(m)| = |Eq?p(m)|.
3. If e <pq e

′, then |↓e ∩
(⋃

m∈MEp!q(m)
)
| = |↓e′ ∩

(⋃
m∈MEq?p(m)

)
|.

4. Thepartial order≤ is the reflexive, transitive closureof the relation
⋃

p,q∈P <pq.

The second condition ensures that every message sent along a channel is received.
The third condition says that every channel is FIFO across all messages.

p q r

e1

e′1

e2

e′2 e3

e′3

m1

m2

m3

Fig. 1. An MSC

In diagrams, the events of an MSC are presented in
visual order. The events of each process are arranged in
a vertical line and messages are displayed as horizontal
or downward-sloping directed edges. Fig. 1 shows an
example with three processes {p, q, r} and six events
{e1, e′1, e2, e′2, e3, e′3} corresponding to three messages—
m1 from p to q, m2 from q to r and m3 from p to r.

For an MSC M = (E,≤, λ), we let lin(M) =
{λ(π) | π is a linearization of (E,≤)}. For instance,
p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?p(m3) is
one linearization of the MSC in Fig. 1.

MSC languages. An MSC language is a set of MSCs.
We can also regard an MSC language L as a word language L over Act consisting
of all linearizations of the MSCs in L. For an MSC language L, we set lin(L) =⋃
{lin(M) |M ∈ L}.

184 S. Akshay, M. Mukund, and K.N. Kumar

Definition 2. An MSC language L is said to be a regular MSC language if the
word language lin(L) is a regular language over Act.

Let M be an MSC and B ∈ N. We say that w ∈ lin(M) is B-bounded if for
every prefix v of w and for every channel (p, q) ∈ Ch,

∑
m∈M |πp!q(m)(v)| −∑

m∈M |πq?p(m)(v)| ≤ B, where πΓ (v) denotes the projection of v on Γ ⊆ Act .
This means that along the execution of M described by w, no channel ever
contains more than B-messages. We say that M is (universally) B-bounded if
every w ∈ lin(M) is B-bounded. An MSC language L is B-bounded if every
M ∈ L is B-bounded. Finally, L is bounded if it is B-bounded for some B.

We then have the following result [6].

Theorem 1. If an MSC language L is regular then it is bounded.

2.2 Message Sequence Graphs

Message sequence graphs (MSGs) are finite directed graphs with designated
initial and terminal vertices. Each vertex in an MSG is labelled by an MSC.
The edges represent (asynchronous) MSC concatenation, in which one MSC is
“pasted” below the other. Formally, MSC concatenation is defined as follows.

Let M1 = (E1,≤1, λ1) and M2 = (E2,≤2, λ2) be a pair of MSCs such that E1

and E2 are disjoint. The (asynchronous) concatenation of M1 and M2 yields the
MSC M1 ◦M2 = (E,≤, λ) where E = E1∪E2, λ(e) = λi(e) if e ∈ Ei, i ∈ {1, 2},
and ≤ = (≤1 ∪ ≤2 ∪

⋃
p∈P E

1
p × E2

p)∗.
A Message Sequence Graph is a structure G = (Q,→, Qin, QF , Φ), where Q

is a finite and nonempty set of states, → ⊆ Q × Q, Qin ⊆ Q is a set of initial
states, QF ⊆ Q is a set of final states and Φ labels each state with an MSC.

A path π through an MSG G is a sequence q0 → q1 → · · · → qn such that
(qi−1, qi) ∈ → for i ∈ {1, 2, . . . , n}. The MSC generated by π is M(π) = M0 ◦
M1 ◦ M2 ◦ · · · ◦ Mn, where Mi = Φ(qi). A path π = q0 → q1 → · · · → qn
is a run if q0 ∈ Qin and qn ∈ QF . The language of MSCs accepted by G is
L(G) = {M(π) | π is a run through G}. We say that an MSC language L is
MSG-definable if there exists and MSG G such that L = L(G).

An example of an MSG is depicted in Fig. 2. The initial state is marked ⇒
and the final state has a double circle. The language L defined by this MSG is
not regular: L projected to {p!q(m), r!s(m)}∗ consists of σ ∈ {p!q(m), r!s(m)}∗
such that |πp!q(m)(σ)| = |πr!s(m)(σ)| ≥ 1, which is not a regular string language.

⇒M1 M2

p q r s

M1

m

m

p q r s

M2

m

m

p q

r s

CGM1◦M2

Fig. 2. A message sequence graph

Checking Coverage for Infinite Collections of Timed Scenarios 185

In general, it is undecidable whether an MSG describes a regular MSC lan-
guage [6]. However, a sufficient condition for the MSC language of an MSG to
be regular is that the MSG be locally synchronized.

Communication graph. For an MSC M = (E,≤, λ), let CGM , the commu-
nication graph of M , be the directed graph (P , �→) where:

– P is the set of processes of the system.
– (p, q) ∈ �→ iff there exists an e ∈ E with λ(e) = p!q(m).

M is said to be com-connected if CGM consists of one nontrivial strongly con-
nected component and isolated vertices.

Locally synchronized MSGs. The MSG G is locally synchronized [9] (or
bounded [2]) if for every loop π = q → q1 → · · · → qn → q, the MSC M(π) is
com-connected. In Fig. 2, CGM1◦M2 is not com-connected, so the MSG is not
locally synchronized. We have the following result for MSGs [2].

Theorem 2. If G is locally synchronized, L(G) is a regular MSC language.

One of the factors contributing to the non-regularity of MSG-definable languages
is that there is, in general, no bound on the asynchrony between processes. For
instance, in Fig. 2, if we traverse the loop k times, we can identify a prefix of
the MSC M1 ◦M2 ◦ · · · ◦M1 ◦M2︸ ︷︷ ︸

k copies

in which r and s are currently in the final

copy of M2 while p and q are in the first copy of M1, at a distance 2k. In
locally synchronized MSGs, the gap between the first and last processes is always
bounded. To formalize this, we define the active suffix of a path.

Active suffix. Let G be an MSG and π = q0q1 . . . qk a path through G. Let X
be a prefix of M(q0)◦M(q1)◦· · ·◦M(qk). For each process p, let ip ∈ {0, 1, . . . , k}
be the node such that the maximum p-event in X lies in M(qip). By convention,
if X has no p-events, ip = 0. Let imin = minp∈P ip. The active suffix of π is
defined to be the path qiminqimin+1 . . . qk.

The following two facts about locally synchronized MSGs will be useful. The
first follows from Theorems 1 and 2. The second fact is the key to the proof of
Theorem 2 (see [6], Appendix A).

Corollary 1. Let G be a locally synchronized MSG. Then we can effectively
compute bounds B,K ∈ N such that:

– Every MSC in L(G) is B-bounded.
– For every MSC M ∈ L(G), for every prefix X of M , the length of the active

suffix of X is bounded by K.

3 Adding Time to Scenarios

3.1 Time-Constrained MSCs

A time-constrained MSC is an MSC annotated with time intervals between some
pairs of events. For instance, consider the interaction between a user, an ATM

186 S. Akshay, M. Mukund, and K.N. Kumar

User ATM Server

u1

u2

[0, 4]

a1

a2

a3

a4

s1

s2
[0, 2]

card

card-data

card-OK
pin-request

Fig. 3. A TC-MSC describing interaction with an ATM

and a server depicted in Fig. 3. This MSC has eight events generated by four
messages, with time constraints between the event pairs (u1, u2) and (s1, s2).
The constraint [0, 2] on (s1, s2) specifies that the server is expected to respond
to a request to authenticate an ATM card within 2 time units. Similarly, the
constraint [0, 4] on (u1, u2) specifies that a user will be asked to enter his PIN
within 4 time units of inserting the card.

For simplicity, we assume that time intervals are bounded by natural numbers.
For m,n ∈ N, [m,n] is the closed interval {x ∈ R≥0 | m ≤ x ≤ n}, while (m,n)
is the open interval {x ∈ R≥0 | m < x < n}. As usual, we permit half-open
intervals of the form [m,n) and (m,n]. To specify an interval without an upper
bound we write [m,∞) or (m,∞). Let I denote the set of intervals.

Definition 3. Let M = (E,≤, λ) be an MSC. An interval constraint is a tuple
〈(e1, e2), I〉 where e1, e2 ∈ E with e1 ≤pp e2 for some p ∈ P or e1 <pq e2 for
some channel (p, q) ∈ Ch and I ∈ I.

The restrictions on e1 and e2 ensure that an interval constraint is either local to
a process or describes a bound on the delivery time of a single message.

Definition 4. A time-constrained MSC (TC-MSC) is a pair T = (M, EC) where
M = (E,≤, λ) is an MSC and EC ⊆ (E ×E)×I is a set of interval constraints
such that each pair (e1, e2) is mapped to at most one interval.

3.2 Timed MSCs

In a timed MSC, events are explicitly time-stamped so that the ordering on the
time-stamps respects the partial order on the events.

Definition 5. A timed MSC is pair (M, τ) where M = (E,≤, λ) is an MSC
and τ : E → R≥0 assigns a nonnegative time-stamp to each event, such that for
all e1, e2 ∈ E, if e1 ≤ e2 then τ(e1) ≤ τ(e2).

A timed MSC covers a TC-MSC if the time-stamps assigned to events respect
the interval constraints specified in the TC-MSC. Let r ∈ R≥0 and I ∈ I. We
write r |= I to denote that r lies in the interval specified by I.

Checking Coverage for Infinite Collections of Timed Scenarios 187

User ATM Server

(u1, 0)

(u2, 3.9)

(a1, 0)

(a2, 1)

(a3, 3.3)

(a4, 3.3)

(s1, 1)

(s2, 2.3)

card

card-data

card-OK

pin-request

Fig. 4. A timed MSC describing interaction with an ATM

Definition 6. Let M = (E,≤, λ) be an MSC, T = (M, EC) a TC-MSC and
Mτ = (M, τ) a timed MSC. Mτ is said to cover T if for each 〈(e1, e2), I〉 ∈
EC, τ(e2)− τ(e1) |= I.

Fig. 4 shows a timed MSC that covers the TC-MSC in Fig. 3.
LetMτ = (M, τ) be a timed MSC, whereM = (E,≤, λ). A timed linearization

of Mτ is a sequence (e0, τ(e0))(e1, τ(e1)) · · · (en, τ(en)) where e0e1 . . . em is a
linearization of (E,≤) and τ(e0) ≤ τ(e1) ≤ · · · ≤ τ(en). As is the case with
untimed MSCs, under the FIFO assumption for channels, a timed MSC can be
faithfully reconstructed from any one of its timed linearizations.

3.3 Time-Constrained MSGs

A natural way to describe infinite families of TC-MSCs is to label the nodes of
an MSG with TC-MSCs instead of normal MSCs. In addition, we permit local
(process-wise) timing constraints along the edges of the MSG. A constraint for
process p along an edge q −→ q′ specifies a constraint between the final p-event of
M(q) and the initial p-event of M(q′), provided p actively participates in both
these nodes. If p does not participate in either of these nodes, the constraint is
ignored. We can think of each node in a TC-MSG as describing one phase of a
communication protocol, with timing constraints along the edges specifying how
long each process can wait between phases.

Definition 7. A time-constrained MSG (TC-MSG) is a structure G =
(Q,→, Qin, QF , Φ,EdgeC), where

– Q is a finite non-empty set of states with sets of initial and final states Qin

and QF , respectively, and → ⊆ Q×Q is a transition relation, as in an MSG.
– Φ labels each node with a TC-MSC.
– EdgeC ⊆ Q × Q × P × I describes local constraints on the edges, with the

restriction that (q, q′, p, I) ∈ EdgeC only if q −→ q′ and each triple (q, q′, p)
is mapped to at most one interval.

The definitions of paths and runs are the same for TC-MSGs as for MSGs. If π =
q0q1 . . . qn is a path through G, the TC-MSC generated by π is denoted M(π). To
define M(π), we begin with the TC-MSC M0◦M1◦· · ·◦Mn, where Mi = Φ(qi) for

188 S. Akshay, M. Mukund, and K.N. Kumar

i ∈ {0, 1, . . . , n}. For each edge qi −→ qi+1, 0 ≤ i < n, if (qi, qi+1, p, I) ∈ EdgeC
we add a constraint I between the last p-event in Mi and the first p-event in
Mi+1, provided p participates in both Mi and Mi+1.

The language L(G) of TC-MSCs accepted by G is defined to be the set of
TC-MSCs generated by the runs of G.

We define com-connectedness for TC-MSCs based on the communication
graph just as we do for untimed MSCs. From this, we can define locally synchro-
nized TC-MSGs in the same way as we do for MSGs.

4 Timed Message-Passing Automata

Message-passing automata are a natural machine model for recognizing MSCs.
We extend the definition used in [6] to include clocks.

Definition 8. Let C denote a finite-set of real-valued variables called clocks. A
clock constraint is a conjunctive formula of the form x ∼ n or x − y ∼ n for
x, y ∈ C, n ∈ N and ∼ ∈ {≤, <,=, >,≥}. Let Form(C) denote the set of clock
constraints over the set of clocks C.

Clock constraints will be used as guards in timed message-passing automata.

Definition 9. A clock assignment for a set of clocks C is a function v : C → R≥0
that assigns a nonnegative real value to each clock in C.

A clock assignment v satisfies a clock constraint ϕ, denoted v |= ϕ, if ϕ
evaluates to true when we replace each clock x in ϕ by the value v(x).

Let v : C → R≥0 be a clock assignment. For d ∈ R≥0, v + d denotes the clock
assignment that maps each x ∈ C to v(x) + d. For X ⊆ C, v[X ← 0] is the clock
assignment that agrees with v for x ∈ C \X and maps all clocks in X to 0.

Definition 10. A timed message-passing automaton (timed MPA) over Act
with a set of clocks C is a structure A = ({Ap}p∈P ,Act , C). Each component Ap

is of the form (Sp, S
p
in,→p), where:

– Sp is a finite set of p-local states.
– Sp

in ⊆ Sp, is a set of initial states for p.
– →p ⊆ Sp × Form(C)×Actp × 2C × Sp is the p-local transition relation.

The local transition relation →p specifies how the process p sends and receives
messages. The transition (s, ϕ, p!q(m), X, s′) says that in state s, p can send the
message m to q and move to state s′. This transition is guarded by the clock
constraint ϕ—the transition is enabled only when the current values of all the
clocks satisfy ϕ. The set X specifies the clocks whose values are reset to 0 when
this transition is taken. Similarly, the transition (s, ϕ, p?q(m), X, s′) signifies that
at state s, p can receive the message m from q and move to state s′ provided
the current clock values satisfy ϕ. Once again, all clocks in X are reset to 0.

Checking Coverage for Infinite Collections of Timed Scenarios 189

To simplify the presentation, we have not included location invariants in our
model. Location invariants are clock constraints attached to states that constrain
the duration for which the automaton can remain in each state. Our results
extend smoothly to timed MPAs equipped with location invariants.

Like timed automata, timed MPA can perform two types of moves: moves
where the automaton does not change state and time elapses, and moves where
some local component p changes state instantaneously as permitted by →p.

A global state of A is an element of
∏

p∈P Sp. For a global state s, sp denotes
the pth component of s. A configuration is a triple (s, χ, v) where s is a global
state, χ : Ch →M∗ is the channel state describing the message queue in each
channel c and v : C → R≥0 is a clock assignment. An initial configuration of A
is of the form (sin, χε, v0) where sin ∈

∏
p∈P S

p
in, χε(c) is the empty string ε for

every channel c and v0(x) = 0 for every x ∈ C.
The set of reachable configurations of A, ConfA, is defined inductively, to-

gether with a transition relation =⇒⊆ ConfA × (Σ ∪ R≥0)× ConfA.

– Every initial configuration (sin, χε, v0) is in ConfA.
– If (s, χ, v) ∈ ConfA and d ∈ R≥0, then there is a global move (s, χ, v) d=⇒

(s, χ, v + d) and (s, χ, v + d) ∈ ConfA.
– If (s, χ, v) ∈ ConfA and (sp, ϕ, p!q(m), X, s′p) ∈ →p such that v satisfies ϕ,

there is a global move (s, χ, v)
p!q(m)
=⇒ (s′, χ′, v[X ← 0]) with (s′, χ′, v[X ←

0]) ∈ ConfA, where, for r
= p, sr = s′r, χ
′((p, q)) = χ((p, q)) · m, and for

c
= (p, q), χ′(c) = χ(c).
– Similarly, if (s, χ, v) ∈ ConfA and (sp, ϕ, p?q(m), X, s′p) ∈ →p such that v

satisfies ϕ, there is a global move (s, χ, v)
p?q(m)
=⇒ (s′, χ′, v[X ← 0]) with

(s′, χ′, v[X ← 0]) ∈ ConfA, where, for r
= p, sr = s′r, χ((q, p)) = m ·
χ′((q, p)), and for c
= (q, p), χ′(c) = χ(c).

Let prf(σ) denote the set of prefixes of a timed word σ = (a1, t1)(a2, t2) . . .
(ak, tk) ∈ (Act × R≥0)∗. A run of A over σ is a map ρ : prf(σ) → ConfA such
that ρ(ε) is assigned an initial configuration (sin, χε, v0) and for each σ′ ·(ai, ti) ∈
prf(σ), ρ(σ′) di=⇒ ai=⇒ ρ(σ′ · (ai, ti)) with ti = ti−1 + di and t0 implicitly set to 0.

The run ρ is complete if ρ(σ) = (s, χε, v) is a configuration in which all
channels are empty. When a run on σ is complete, σ is a timed linearization of a
timed MSC. We define L(A) = {σ | A has a complete run over σ}. Thus, L(A)
corresponds to the set of timed linearizations of a collection of timed MSCs. Let
L(A) be the language of timed MSCs corresponding to L(A).

Fig. 5 shows a timed MPA along with two of the timed MSCs that it recog-
nizes. In the timed MSCs, we have only written the time-stamps associated with
the events and not the event names themselves. In this timed MPA, r sends a
message m1 to s. Process s replies with m2 exactly 1 time unit after it receives
m1. If m2 is received by r within 2 time units of its sending m1, it sends m3 and
quits. Otherwise, if at least 2.2 time units go by before r receives m2, it resends
m1. Note that there is no transition enabled in r for the interval 2 < x ≤ 2.2.

190 S. Akshay, M. Mukund, and K.N. Kumar

⇒ r1 r2 r3 r4
r!s(m1)

{x}

x > 2.2, r?s(m2)

x ≤ 2,
r?s(m2) r!s(m3)

s2

⇑
s1 s3

s?r(m1)

{y}

y = 1, s!r(m2)
s?r(m3)

T1

r s

0.5
2.0
2.3

0.7
1.7
2.5

m1

m2

m3

T2

r s

0.5
2.8
2.9
4.5
4.8

1.7
2.7
3.0
4.0
5.0

m1

m2

m1

m2

m3

Fig. 5. A timed MPA and some timed MSCs that it recognizes

5 The Coverage Problem

We are interested in the following verification problem for timed scenario speci-
fications. Let G be a TC-MSG and A a timed MPA. The coverage problem for
G and A is to determine whether for each TC-MSC M ∈ L(G), there is a timed
MSC T ∈ L(A) such that T covers M . This is a natural verification problem
when we interpret TC-MSGs as incomplete positive specifications.

For instance, consider the TC-MSG G in Fig. 6. In G, r sends a message m1
to s that could be delayed by upto 3 time units, to which s replies after exactly 1
time unit. If the response m2 from s reaches r within 2 time units from the time
r sent m1, r sends a final message m3 and quits. Otherwise, r resends m1. M1
and M2 (Fig. 6) are TC-MSCs in L(G), generated by paths q1q2 and q1q3q1q2,
respectively. These are covered by the timed MSCs T1 and T2 (Fig. 5) in L(A).

In the untimed case, scenario matching asks whether L(G) ⊆ L(A), where G
is an MSG and A is an MPA. In the timed case, we cannot reduce coverage to
language inclusion of timed MSCs. A TC-MSC M represents an infinite family of
timed MSCs, each of which covers M . However, the implementation need not, in
general, permit all these realizations. For instance, the timed MPA in Fig. 5 will
not exhibit any timed MSC covering M2 from Fig. 6 where the time difference
between the first two p-events is 2.1, such as in the timed MSC T ′2 in Fig. 6.

Another plausible approach is to treat this as a timed game between Spoiler,
who picks a path in the TC-MSG G, and Duplicator, who picks a timed MSC in
L(A) that covers the TC-MSC generated along the path chosen by Spoiler. At
each step, Spoiler adds a node to the path in G. Duplicator has to match this
move by extending the current timed MSC so that it stays in L(A) and covers
the TC-MSC described by the extended path. However, a winning strategy in
this game would have the following property: if two paths π1 and π2 have a
common prefix π, then the timed MSC generated by Duplicator for the prefix π
must be the same for the plays in which Spoiler generates π1 and π2. Notice that
the paths that generate M1 and M2 in Fig. 6 share a common prefix, namely
q1. In any timed MSC that covers M1, message m1 must be delivered within 1
time unit whereas in any timed MSC that covers M2, m1 can only reach after
1 time unit. Hence, any timed MSC that covers M(q1) and can be extended to

Checking Coverage for Infinite Collections of Timed Scenarios 191

q1

⇒
r s

m1

[0, 3]

q2

r sm2

m3

q3

r sm2

([0, 2],[1, 1]) ((2, 3],[1, 1])

M1
r s

m1

[0, 3]
m2

m3

[0, 2] [1, 1]

M2
r s

m1

[0, 3]
m2

m1

[0, 3]
m2

m3

(2, 3]

[0, 2]

[1, 1]

[1, 1]
T ′

2
r s

0.5
2.6
2.9
4.5
4.8

1.5
2.5
3.0
4.0
5.0

m1

m2

m1

m2

m3

Fig. 6. The coverage problem

cover M1 cannot simultaneously be extended to cover M2. In other words, the
game-theoretic formulation introduces too strict a correlation between the timed
MSCs covering different paths through the TC-MSG.

These observations suggest that traditional approaches for scenario matching
in the untimed case do not generalize to the coverage problem in the timed case.
In the next section, we formulate a solution to the coverage problem for locally
synchronized TC-MSGs.

6 Coverage for Locally Synchronized TC-MSGs

Theorem 3. Let G be a locally synchronized TC-MSG and A a timed MPA.
The coverage problem for G and A is decidable.

Proof. Our proof strategy is as follows. FromA, we construct a timed automaton
B that simulates the global behaviour of A, restricted to runs that are consistent
with paths through L(G). In addition to the communication actions in Act , the
timed automaton B also has moves labelled by nodes from G, indicating the path
that it is following. As usual, we can use the region construction [1] to obtain an
untimed regular language Untime(L(B)) ⊆ (Act∪Q)∗. It will then turn out that
Untime(L(B)) projected onto Q precisely describes the set of paths through G
that are covered by some timed MSC in L(A).

To check coverage, we just need to verify that the node language of G,
LQ(G) = {q0q1 . . . qn ∈ Q∗ | q0 → q1 → · · · → qn is a run}, is included in
LQ(B) = πQ(Untime(L(B))). This would imply that for every path in π through
G, the TC-MSC M(π) is covered by some timed MSC in L(A).

There is, however, a complication. Some paths in G may define TC-MSCs
that cannot be covered, because of self-contradictory timing constraints. These
paths need not be covered by timed MSCs from L(A). We cannot, therefore,

192 S. Akshay, M. Mukund, and K.N. Kumar

directly compare LQ(G) with LQ(B). The solution is straightforward: we start
with the trivial automaton AU that recognizes Act∗, which can be regarded as
a degenerate timed automaton with no timing constraints. To AU , we apply the
same construction as we have done for A. The resulting timed automaton BU will
mark out all paths π through G for which M(π) can be covered by some timed
MSC. We can now check whether LQ(BU) = πQ(Untime(L(BU))) is included in
LQ(B). Since both LQ(BU) and LQ(B) are regular languages, the result follows.

Constructing B. Recall that A = ({Ap}p∈P ,Act , C), where each component
Ap is of the form (Sp, S

p
in,→p), as described in Section 4. The structure of the

TC-MSG is given by G = (Q,→, Qin, QF , Φ,EdgeC), as described in Section 3.
Without loss of generality, we assume that all the events that occur in the TC-
MSCs labelling nodes of G have distinct names, so that when we refer to a
constraint 〈(e, e′), I〉, there is no ambiguity.

Alphabet. The alphabet of B is Act ∪Q, where Q is the set of nodes in G.

States. A state of B consists of the following components:

– s ∈
∏

p∈P Sp, a global state of A.
– χ : Ch →M∗, the state of the channels.
– η : Act → {0, . . . , B−1}, a function to count occurrences of each action in

Act modulo B.
– π ∈ Q∗, (the active suffix of) a path in G.
– ρ : EM(π) → {0, 1, 2}, a labelling function for the events in the TC-MSC
M(π). (Events labelled 0 are yet to be executed. Events labelled 1 represent
the “active” frontier of events that will be executed next along each process.
Events labelled 2 are those that have already been executed.)

The state space of B is finite because of the bounds B and K that we can
compute for a locally synchronized TC-MSG G (Corollary 1). Since every TC-
MSC in L(G) is B-bounded, the channel state χ is bounded. Moreover, since
the length of the active suffix along any run is at most K, the length of π is
bounded, and hence so is ρ.

An initial state of B is one in which the global state of the timed MPA A
is sin ∈

∏
p∈P S

p
in, all channels are empty, η maps each action to 0, the active

suffix π = q for some initial node q ∈ Qin and ρ maps the minimal events along
each process in M(q) to 1 and all other events to 0.

Clocks of B. Interval constraints in G will be monitored using additional clocks
in B. The set of clocks of B consists of all clocks of A along with a clock zlc for
each constraint lc local to a process in G, a clock zEC for each edge constraint
EC in G, and a set of clocks zmesg

i , 1 ≤ i ≤ B, one for each potentially active
copy of a message constraint mesg in G.

If lc = 〈(e, e′), I〉 is a local constraint on process p, the clock zlc is reset to
zero when B simulates e and is checked against the interval I when B simulates
e′. Each clock zEC is used to check edge constraints in an analogous manner.
For message constraints, we may have multiple copies of the same message in a

Checking Coverage for Infinite Collections of Timed Scenarios 193

channel. We have to maintain and check the constraint independently for each
copy of the message. However, since channels are B-bounded, there can be no
more than B active copies of a message at any point. Thus, we can use the clocks
zmesg
i in conjunction with the state information η that assigns a number modulo
B to each communication action in order to check message constraints.

Transitions. We can now define the transition function for B. Each move of B
consists of one of the following:

– Pick a process p and perform a legal move in A that executes the (unique)
p-event ep labelled 1 by ρ. This move is labelled by λ(ep) ∈ Act .

– If there is no active event for some process, extend the active suffix by adding
a node q. This move is labelled q.

Transitions on Act. Since B incorporates the global state, the channel state
and the clocks of A, it can faithfully simulate every move of A. We use the
remaining components of the state of B to restrict the moves of A to follow a
path in G.

Formally, we have a move (s, ϕ, α,X, s′) in B, where ϕ is a clock constraint,
α ∈ Act and X is a set of clocks to be reset if the following hold. Let us assume
that α ∈ Actr is an r-action. Then:

– The projection of (s, ϕ, α,X, s′) onto components from A defines a valid
(global) transition of A.

– The action α must match the label of the r-event er currently labelled 1 by
ρ in s.

– If lc = 〈(e, er), I〉 is a local constraint, we must have in ϕ a constraint
checking that zlc satisfies I. For instance, if I = [m,n), we have a constraint
m ≤ zlc ∧ zlc < n in ϕ.

– If EC = 〈(e, er), I〉 is an edge constraint, e is the maximum r-event in M(qi)
and er is the minimum r-event in M(qi+1) for some nodes qi, qi+1 along π,
then we must have in ϕ a constraint checking that zEC satisfies I.

– If α = r?s(m), η(α) = k and there is a message constraint mesg = 〈(es, er), I〉
from the corresponding send event es, we must have in ϕ a constraint checking
that zmesg

(k+1) mod m satisfies I.

The new state of B, s′, is obtained from s as follows.

– The global state of A is updated according to the transition simulated by B.
– The channel state of A is updated in the obvious way.
– η(α) is updated to (η(α) + 1) mod B.
– ρ(er) is set to 2 and the next r event in M(π), if any, is labelled 1.
– Let π = q0q1 . . . qm. Let imax be the maximum index in the set {i | ∀e ∈
M(qi). ρ(e) = 2}. Update π to qimaxqimax+1 . . . qm. Note that this deletes all
completed nodes from the active suffix except the last one. We need to retain
qimax in the active suffix to check edge constraints.

194 S. Akshay, M. Mukund, and K.N. Kumar

Finally, we compute the set X of clocks to be reset on this transition as follows:

– If lc = 〈(er, e′), I〉 is a local constraint involving er, add zlc to X .
– If er is the maximum r-event in M(q), for each edge q −→ q′ ∈ G, if e′ is the

minimum r-event in M(q′) and EC = 〈(er, e′), I〉 is an edge constraint, add
zEC to X .
Note that we activate clocks for edge constraints along all possible extensions
of the path when we encounter a maximal event in a node. However, when we
reach a minimal event in the next node, we ensure that we only enforce the
constraint for the edge that was actually traversed. Each time we traverse an
edge with constraint EC , the clock zEC will be reset, so there is no danger
when we check an edge constraint that the clock value is stale.

– If α = r!s(m) and there is a message constraint mesg = 〈(er, es), I〉 involving
er, add zEC

η(α) to X .

Transitions on Q. If B is in a state s = (s, χ, η, π, ρ) where for some subset
P ⊆ P , for each p ∈ P there is no p-event labelled 1 by ρ, we need to extend
π = q0q1 . . . qm. In such a situation, for each q such that there is an edge qm −→ q

in G, we add a transition s
q−→ s′ in B where s′ = (s, χ, η, π ·q, ρ′), such that ρ′(e)

agrees with ρ(e) for all e ∈ M(π), ρ′(e) = 1 if e is a minimum p-event in M(q)
for p ∈ P , and ρ′(e) = 0 for all other events e ∈M(q).

Accepting states B. A state s = (s, χ, η, π, ρ) of B is accepting if s is an
accepting state of A, χ = χε, the channel state in which there are no messages
in any channel, π = q0q1 . . . qm with qm ∈ QF and ρ(e) = 2 for all e ∈M(π).

From the definition of B, it is routine, though tedious, to prove that B simulates
precisely those runs of A that cover some path in G. Moreover, for each such run,
B records the sequence of nodes in G traversed along the run. Thus LQ(B) =
πQ(Untime(L(B))) is a regular language describing the set of paths in G covered
by runs of A. As described earlier, we can apply the same construction to the
trivial automaton AU recognizing Act∗ to get a timed automaton BU that marks
out all feasible paths in G. It then follows that checking coverage is equivalent
to checking that LQ(BU) ⊆ LQ(B).

From Locally Synchronized to Arbitrary TC-MSGs

If we drop the assumption that the TC-MSG we start with is locally synchro-
nized, the automaton B fails to be finite-state because we cannot guarantee a
bound on either the channel capacities or the length of the active suffix.

However, in such a situation, we can still solve a restricted version of the
problem. For each MSC of the form M = M1 ◦M2 ◦ · · · ◦Mk ∈ L(G) generated
by a path q1q2 . . . qk with Mi = M(qi) for i ∈ {1, 2, . . . , k}, we ask whether there
is a timed MSC T ∈ L(A) such that lin(T) = w1w2 . . . wk where wi ∈ lin(Mi)
for i ∈ {1, 2, . . . , n}. In other words, we restrict our attention to runs of A that
cover G one node at a time.

Checking Coverage for Infinite Collections of Timed Scenarios 195

We can suitably modify the construction of the automaton B to achieve this.
In the new version of B, there is always only one active node, from the way we
have defined the simulation. Channel capacities are bounded by the maximum
capacity exhibited by the individual TC-MSCs labelling the nodes of G. We can
then obtain an analogous result for coverage in terms of LQ(BU) and LQ(B).
Due to lack of space, we omit further details.

Negative Specifications

For negative specifications, the verification problem is dual—given a TC-MSG
G and a timed MPA A, we want to ensure that there is no timed MSC T ∈ L(A)
that covers any TC-MSC M ∈ L(G). Let us call this problem avoidance.

Unlike coverage, avoidance does reduce directly a problem involving timed
languages. We want lin(L(G)), the set of timed linearizations of L(G), to be
disjoint from L(A) = lin(L(A)), the set of timed linearizations of L(A). However,
there is still the problem of finding an effective presentation of lin(L(G)).

Notice, however, that the construction used to prove Theorem 3 also solves
the avoidance problem. Using the terminology introduced above, avoidance is
equivalent to checking that LQ(BU) ∩ LQ(B) = ∅.

7 Discussion

We have shown how to solve the timed analogue of the scenario matching
problem for specifications consisting of infinite sets of time-constrained MSCs.
Though our result is stated in the context of timed MPAs, our construction
works even if the system is presented as a global timed automaton. Our solution
to the coverage problem for positive specifications also yields a solution to the
avoidance problem for negative specifications. An interesting problem to be tack-
led is realizability for time-constrained MSGs—given a TC-MSG G, construct a
timed MPA A such that L(A) covers L(G).

References

1. Alur, R., Dill, D.: A Theory of Timed Automata. Theor. Comput. Sci. 126, 183–225
(1994)

2. Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer,
Heidelberg (1999)

3. Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

4. Chandrasekaran, P., Mukund, M.: Matching Scenarios with Timing Constraints.
In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 98–112.
Springer, Heidelberg (2006)

196 S. Akshay, M. Mukund, and K.N. Kumar

5. D’Souza, D., Mukund, M.: Checking consistency of SDL+MSC specifications. In:
Ball, T., Rajamani, S.K. (eds.) Model Checking Software. LNCS, vol. 2648, pp.
151–165. Springer, Heidelberg (2003)

6. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.S.:
A Theory of Regular MSC Languages. Inf. Comp. 202(1), 1–38 (2005)

7. ITU-T Recommendation Z.120: Message Sequence Chart (MSC). ITU, Geneva
(1999)

8. Mauw, S., Reniers, M.A.: High-level message sequence charts. In: Proc. SDL’97,
pp. 291–306. Elsevier, Amsterdam (1997)

9. Muscholl, A., Peled, D.: Message sequence graphs and decision problems on
Mazurkiewicz traces. In: Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS
1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999)

10. Muscholl, A., Peled, D., Su, Z.: Deciding properties for message sequence charts. In:
Nivat, M. (ed.) ETAPS 1998 and FOSSACS 1998. LNCS, vol. 1378, pp. 226–242.
Springer, Heidelberg (1998)

Is Observational Congruence Axiomatisable in
Equational Horn Logic?

Michael Mendler1,� and Gerald Lüttgen2

1 Informatics Theory Group, University of Bamberg, Germany
michael.mendler@wiai.uni-bamberg.de

2 Department of Computer Science, University of York, UK
gerald.luettgen@cs.york.ac.uk

Abstract. It is well known that bisimulation on μ-expressions cannot
be finitely axiomatised in equational logic. Complete axiomatisations
such as those of Milner and Bloom/Ésik necessarily involve implicational
rules. However, both systems rely on features which go beyond pure equa-
tional Horn logic: either the rules are impure by involving non-equational
side-conditions, or they are schematically infinitary like the congruence
rule which is not Horn. It is an open question whether these complica-
tions cannot be avoided in the proof-theoretically and computationally
clean and powerful setting of second-order equational Horn logic.

This paper presents a positive and a negative result regarding axioma-
tisability of observational congruence in equational Horn logic. Firstly,
we show how Milner’s impure rule system can be reworked into a pure
Horn axiomatisation that is complete for guarded processes. Secondly,
we prove that for unguarded processes, both Milner’s and Bloom/Ésik’s
axiomatisations are incomplete without the congruence rule, and neither
system has a complete extension in rank 1 equational axioms. It remains
open whether there are higher-rank equational axioms or Horn rules
which would render Milner’s or Bloom/Ésik’s axiomatisations complete
for unguarded processes.

1 Introduction

The existence and nonexistence of equational axiomatisations of behavioural
equivalences in process algebra has received significant interest in the liter-
ature [2,8,23,24,26]. Most recent work is concerned with finite processes and
equational axiomatisations for a range of operators (such as for priority [1])
and behavioural semantics (such as for simulation equivalence [9]). The focus
on finite processes is natural since many behavioural relations cannot be finitely
axiomatised in the presence of recursion. This has long been known for reg-
ular expressions [11] and was shown to apply to μ-expressions as well [8,26].
Except for special and not very well understood situations in the language of
∗-expressions [11,13,14], purely equational theories appear to be inadequate for

� The author acknowledges support by the EU Types network IST 510996.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 197–211, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

198 M. Mendler and G. Lüttgen

recursive processes. Thus, a more powerful setting is needed in order to study
the relative proof-theoretic complexities of theories for regular processes.

A suitable and quite natural setting is provided by (second-order) equational
Horn logic [25]. Indeed, Milner’s axiomatisation of strong bisimulation for fi-
nite state processes [20] and Bloom/Ésik’s abstract generalisation [6,12] involve
conditional equations, as does Milner’s axiomatisation of observational congru-
ence [22] and Glabbeek’s axiomatisation of branching bisimulation [16], or the
various bisimulation-style equivalences in timed process algebras [3,4,5,10]. Look-
ing at these in detail, however, reveals that they are not strictly Horn theories
because they depend on the congruence rule for recursion (cf. rule C4 below)
which is not Horn, and they are not pure because rules have guardedness side
conditions (cf. rule R2 below).

C4
E = F

μx.E = μx. F
R2

F = E{F/x}
μx.E = F

x guarded in E

To see that rule C4 is not Horn, consider the soundness of C4 which logically
corresponds to the formula (∀x.E = F) ⊃ μx.E = μx. F . This formula is not
Horn since the precondition of the implication is universally quantified; in [12],
this is called an implication between equations. The Horn interpretation of C4
would be ∀x. (E = F ⊃ μx.E = μx. F) which is unsound. Take for example
E ≡ a.x and F ≡ a.0. Then, the equation E{0/x} = F{0/x} is sound, but
μx. a.x is not bisimilar to μx. a.0. In the Horn theory of closed terms, rule C4
is only admissible in the sense that, if all closed instantiations of E = F are
derivable, then all closed instantiations of μx.E = μx. F are derivable, too. But
this rule is infinitary and not expressible in Horn form. This leads us to the
following – in our opinion – key open problem:

Can bisimulation for finite state processes be axiomatised in pure equa-
tional Horn logic?

The answer to this question relates to the issue of guardedness. On the face of
it, C4 appears to be necessary to prove equalities between recursive processes.
Consider processes p=df μx. (α.x + β.x) and q=df μx. (β.x + α.x), where “α.”
and “β.” are action prefixes, x is a process variable, “μx.” the recursion operator
and “+” non-deterministic choice. The processes p and q are bisimilar, and
the equation p = q can be derived by first applying the commutativity law on
open terms α.x + β.x = β.x + α.x and then closing under recursion using C4.
Interestingly, for guarded processes, i.e., if both α and β are observable actions,
the same is achieved without C4. Using recursive unfolding and commutativity,
one derives p = α.p+ β.p and q = α.q + β.q, i.e., both p and q provably satisfy
the same guarded equation system. From there, by way of rule R2, symmetry
and transitivity of equality, one finally gets p = μx.(α.x + β.x) = q.

Due to this issue of unguardedness, the above question is particularly challeng-
ing for observational congruence [21]. The question’s importance lies in the fact
that the Horn rule format is crucial for standard automated reasoning based on
Prolog-style SLD resolution. Moreover, the question is an interesting one since,
as we will show, Bloom and Ésik’s axiomatisation which is commonly considered

Is Observational Congruence Axiomatisable in Equational Horn Logic? 199

pure Horn is in fact not Horn, and Milner’s axiomatisation which is commonly
considered impure is in fact pure, i.e., guardedness is equational.

As our first technical result, we provide an axiomatisation of observational
congruence for finite state processes which is in pure equational Horn form.
This axiomatisation is an adaptation of Milner’s proof system and interprets
the underlying equality as partial equivalence via which we may encode the side
condition of rule R2. Our axiom system is sound for all processes and com-
plete for guarded processes. Hence, the question remains whether this axiom
system can be extended to handle unguardedness. As our second technical re-
sult, we show that no finite rank 1 equational extension of Milner’s axiom system
yields completeness for unguarded processes, not even when including the im-
pure rule R2 or the pure GA-implication rule of Bloom/Ésik [26]. To the best
of our knowledge, this result is the first negative result on process-algebraic ax-
iomatisations in equational Horn logic to be reported in the literature. It can be
generalised to rank 2 and provides a number of technical insights into the proof-
theoretic expressiveness of Horn logic for observational congruence. Specifically,
we conjecture that unguardedness on μ-expressions cannot be axiomatised in
second-order equational Horn logic of any rank. Note that for ∗-expressions this
problem does not occur. In [18], Kozen presented a finitary axiomatisation of
the Kleene algebra of ∗-expressions involving only pure equational implications.
Since ∗-expressions do not have an explicit recursion binder, a congruence rule
like C4 is therefore not needed in Kleene algebra. Finally, note that the proofs
of our results can be found in a technical report [19].

2 The Process Language μBCCSP2

Variable-binding operators require second-order matching, in order to handle
syntactic contexts such as the bodies F of recursive processes μx. F . This section
introduces our process language and makes precise what we understand by a
second-order Horn axiomatisation. In particular, the language must be general
enough to capture not only the object-level syntax of processes but also the
meta-level syntax of schemes and rules needed to formalise logic deduction. Our
language μBCCSP2 is an extension of BCCSP [15] by recursion and schematic
variables. It corresponds to the second-order fragment T 2 of [26].

Second-Order Syntax, Semantics and Observational Congruence. The
second-order language of (schematic, context) μ-expressions, or expressions for
short, is defined by

F ::= x(F1, F2, . . . , Fn) | $k | 0 | α.F | F1 + F2 | μx. F .

It includes variables x and the usual process-algebraic operators of prefixing
α.F , summation F1 + F2 and recursion μx. F . The prefixes α range over a
denumerable set of observable actions a0, a1, a2, . . . and the distinguished silent
action τ . The constant 0 represents the inactive process. The expressions $k are
call-back constants, where k ≥ 1, which will be used to form contexts.

200 M. Mendler and G. Lüttgen

Every variable x has a (context) rank which specifies the number of parame-
ters that x must be instantiated with to form a process. This is done in (context)
applications of the form x(F1, F2, . . . , Fn), where rank(x) = n. We assume that
there is a countably infinite number of variables at every rank. Rank 0 vari-
ables are called process variables and all other variables schematic variables.
For process variables we simply write x instead of x(). Recursion is possible
over process variables only, i.e., we require rank(x) = 0 in any expression μx. F .
The variable x in x(F1, F2, . . . , Fn) stands for a context with uniquely identi-
fied syntactic slots into which the expressions Fi, for 1 ≤ i ≤ n, are inserted.
These slots are represented by the call-back constants $1, $2, . . . , $n. Formally
speaking, call-back constants are nothing but implicitly bound and canonically
named process variables. These would be represented as explicit λ-abstractions
in higher-order systems like [26]. The result of instantiating x by expression F
is written F [F1, F2, . . . , Fn] and obtained if each occurrence of $k in F is substi-
tuted by Fk. We say that F has rank n if it does not contain call-back constants
larger than $n. Expressions of rank 0 are called process schemes, and those of
higher rank are called contexts or expressions. Thus, if F has rank n and all Fi,
for 1 ≤ i ≤ n, are process schemes, then F [F1, F2, . . . , Fn] is a process scheme.

The recursion operator μx. F binds all occurrences of process variable x in F .
There is no variable binder for schematic variables. The notions of free and
bound occurrences of variables and of guardedness of variables are as usual. In
particular, a variable x is called guarded in an expression F , if all occurrences of x
in F are within the scope of an α-prefix with α
= τ . An expression F without free
variables (of any rank) is closed ; otherwise it is open. Process schemes without
schematic variables, i.e., both rank and variable rank are 0, are called process
terms. Process terms without free process variables are process constants, or
simply processes. We use E,F, . . . to range over general expressions, t, u, . . . to
range over process terms, and p, q, . . . for process constants. We let ≡ stand for
the syntactic identity on expressions and denote the sub-expression relation by

, i.e., E
 F if either E is a proper sub-expression of F or if E ≡ F . Besides the
meta-level identity E ≡ F on expressions we consider formal equalities E = F
between process schemes, called equation schemes. By the rank of an equation
scheme E = F we understand the maximal variable rank of E and F . As noted
above, the rank of a variable specifies the rank of the context expression by
which it needs to be instantiated to generate a process scheme.

An instantiation σ is a finite partial mapping from variables to expressions
which is rank-preserving, i.e., such that for any variable x in the domain of σ,
expression σ(x) is of rank rank(x). If E is an expression with free variablesX and
σ an instantiation with domain X , the instantiation of E by σ, written σ(E),
is obtained by recursively replacing each sub-expression x(F1, F2, . . . , Fn)
 E
by σ(x)[σ(F1), σ(F2), . . . , σ(Fn)]. This is a second-order operation which is to be
distinguished from the standard first-order substitution E{F/x} in which vari-
able x is replaced by F in a single recursive pass through E. For instance, if x and
y are two variables of rank 0 and 1, respectively, and E=df x(y), then the substi-
tution σ with σ(x)=df y + $1, σ(y)=df 0 yields σ(E) ≡ σ(x(y)) ≡ σ(x)[σ(y)] ≡
(y+$1)[0] ≡ y+0, while substitution E{y+$1/x}{0/y} would return (y+$1)(0)

Is Observational Congruence Axiomatisable in Equational Horn Logic? 201

which is not well-formed. Instantiations preserve well-formedness and rank. In
particular, if E is a process scheme, then σ(E) is again a process scheme.

Preserving well-formedness is not enough for instantiations to be sensible in
equational reasoning for recursive processes with variable binding. It must be
ensured that in the instantiation σ(E) = σ(F) of an equation E = F we do not
inadvertently capture free process variables inside E or F . An instantiation σ
is called free for E, if its application σ(E) avoids name capture of free process
variables, i.e., every occurrence of a free variable in σ(x) remains free after
instantiation into σ(E). We will use symbol θ to range over free instantiations.
In practise, there are two options to keep instantiations free. One is to require
that θ is closed, i.e., for all x in its domain, θ(x) is closed. The other is to rename
bound variables systematically, e.g., by taking expressions up to α-conversion.

The semantics of μBCCSP2 is the transition system induced by process con-
stants as states and where the action–labelled transition relation is inductively
defined by the standard operational rules:

—

α. p
α−→ p

p1
α−→ q

p1 + p2
α−→ q

p2
α−→ q

p1 + p2
α−→ q

t{μx. t/x} α−→ q

μx. t
α−→ q

Finally, recall the definition of observational equivalence and observational con-
gruence [21]. As usual, ε=⇒ stands for (τ−→)∗, α=⇒ denotes ε=⇒ ◦ α−→ ◦ ε=⇒,
and α̂=df α, if α
= τ , and τ̂ =df ε. A symmetric binary relation R on process
constants is a weak bisimulation relation if

∀〈p, q〉 ∈ R. ∀α, p′. (p α−→ p′ implies ∃q′. q α̂=⇒ q′ and 〈p′, q′〉 ∈ R).

The largest such relation ≈ is an equivalence and referred to as observational
equivalence. The largest congruence � contained in ≈, called observational con-
gruence, is characterised by the condition that p � q iff

∀α, p′. (p α−→ p′ implies ∃q′. q α=⇒ q′ and p′ ≈ q′),

and symmetrically. The relation � is lifted to process schemes E, F by universal
abstraction: E � F , if θ(E) � θ(F) for all closed instantiations θ.

Second-Order Equational Horn Logic. If E and F are two well-formed
process schemes, then formal equations E = F are of second order, also known
as hyper-identities [8]. This is because of the presence of schematic variables in
our setting. A (pure) second-order equational Horn system is a finite set of Horn
rules, i.e., rules of the form

E1 = F1 · · · En = Fn

E = F
,

where the Ei = Fi are referred to as the rule’s premises and E = F as the rule’s
conclusion. If the rule has no premises, i.e., n = 0, then it is called axiom. Given
a finite set A of Horn rules, we say that an equation scheme G = H is derivable
from A, in symbols A 3 G = H , if there exists a finite sequence of equation
schemes G0 = H0, G1 = H1, . . . , Gn = Hn such that (a) G ≡ Gn and H ≡ Hn;
and (b) every equation Gi = Hi is derived by instantiating some Horn rule

202 M. Mendler and G. Lüttgen

E1 = F1 · · · Em = Fm

E = F

from A by way of a free instantiation θi such that (i) θi(E) ≡ Gi, θi(F) ≡ Hi

and (ii) for all 1 ≤ s ≤ m there exists an index r < i satisfying θi(Es) ≡ Gr

and θi(Fs) ≡ Hr. Permitting arbitrary free instantiations yields a rather general
notion of deduction for Horn theories. In particular, we can derive equations
A 3 t = u between open process terms.

Naturally, a theoryA is sound if A 3 G = H implies G � H , i.e., θ(G) � θ(H)
for all closed instantiations θ. For this to hold true, each Horn rule must be
sound in the sense that for all closed instantiations θ, if ∀i. θ(Ei) � θ(Fi), then
θ(E) � θ(F). This interpretation of soundness, where the universal quantifier
over the interpretation of free variables covers the whole rule, is the definitive
characteristic of Horn logic. It is important to note that this is something very
different from the implication (∀i. Ei � Fi) ⊃ E � F , which would be say-
ing that for all closed θ, θ(E) � θ(F) if for all closed θ and i, θ(Ei) � θ(Fi).
This is a strictly weaker soundness criterion. The former and stronger Horn-style
soundness is the basis for the standard process of Prolog-style SLD resolution,
which is known to be complete for Horn theories and ground goals. On open
goals G = H , the backward proof search generates closed solution instantiations
through unification, essentially treating the free variables in the goal as existen-
tial or flexible. That this works is due to the strong soundness of Horn rules.
The difference from the usual first-order setting is that we permit instantiation
of schemes by syntactic context functions, which requires second-order unifica-
tion. We refer the reader to [25] for more details on higher-order unification and
the proof theory of higher-order Horn logic.

3 A Pure Horn Axiomatisation

This section shows that the side condition “x guarded in E” in Milner’s rule R2
can be eliminated in pure equational Horn logic. The key idea is to re-interpret
equations so that they only relate extensional processes.

The syntactic relation �� of weak visibility is the least relation which satisfies
the rules t �� t and, if t �� r, then t + u �� r, u + t �� r, τ.t �� r and μy. t ��
r{μy. t/y}. Intuitively, t �� r states that r occurs weakly unguarded in t. Note
that �� abstracts from τ -actions unlike the strong form of � in [22,26]. A process
term t is called extensional if there is no term μy. u such that t �� μy. u and u �� y.
Hence, an extensional process term is a process term that cannot engage in an
initial divergence. For example, process μx. (a.x + b.x) is extensional whereas
μx. (a.x + τ.x), τ.μx. (a.x + τ.x) and μx. x are not. Moreover, every guarded
process is extensional, but not vice versa, e.g., a.μx. x is extensional but not
guarded. On the other hand, whenever μx.t is extensional, x is guarded in t.

We now provide a sound axiomatisation of � restricted to extensional pro-
cesses. This is only a partial equivalence relation, i.e., a relation that is transitive
and symmetric but not reflexive. It turns out that with this modification, the side
condition of Milner’s rule R2 can be expressed purely equationally. In the follow-
ing, we reconstruct Milner’s original axiomatisation of observational congruence

Is Observational Congruence Axiomatisable in Equational Horn Logic? 203

as a pure equational Horn theory. For notational convenience, we abbreviate the
reflexive equation E = E by E ↓. To begin with, any algebraic axiomatisation
depends on reflexivity, symmetry, transitivity and congruence of equality, all of
which may be cast into Horn rules:

Eq1
–

0 ↓ Eq2
–

a.x ↓ Eq3
z(μx. z(x)) ↓
μx. z(x) ↓ Eq4

x = y

y = x

Eq5
x = y y = z

x = z
C1

x = y

α.x = α.y
C2

x1 = y1 x2 = y2

x1 + x2 = y1 + y2

Here, all x, xi, y, yi are process variables, z is a schematic variable of rank 1,
α is an arbitrary action and a stands for an action different from τ . (Strictly
speaking, for finite axiomatisation, a, α must be read as a special form of action
variables.) Eq1–Eq3 are reflexivity rules. Together with Eq4, Eq5, C1 and C2, the
above rules yield a weak extension of the standard equational theory for finite
processes by recursion. It is weak since it proves p = p for extensional processes
only, as shown in Prop. 1 below.

The standard equational axioms of commutativity, associativity, idempotence
and neutrality, as well as Milner’s τ -laws can be phrased as Horn rules, too:

S1
x1 + x2 = y

x2 + x1 = y
S2

(x1 + x2) + x3 = y

x1 + (x2 + x3) = y
S3

x = y

x+ y = x
S4

x = y

x+ 0 = y

T1
α.x = y

α.τ.x = y
T2

τ.x = y

x+ τ.x = y
T3

α.(x1 + τ.x2) = y

α.x2 + α.(x1 + τ.x2) = y

Finally, consider the following rules for the recursion operator, both of which are
variations of Milner’s recursion rules [22]:

R1
μx. z(x) = y

z(μx. z(x)) = y
R2∗

x = z(x) μx. z(x) = y

x = y

R1 expresses that μx. t is a solution of the fixed point equation x = t. This
is usually represented by an equation scheme μx. t = t{μx. t/x} for the direct
unfolding of recursive processes. Our formulation uses a conditional form which
essentially restricts the recursive unfolding to the cases where μx. t is extensional.
The second rule R2∗ states that extensional equations have unique recursive so-
lutions. More precisely, if p = t{p/x} and if the fixed point μx. t is provably
identical to some process q, then p and q are identical. Hence, if μx. t is exten-
sional, then all solutions of the equation x = t are equal to μx. t. The second
premise μx. z(x) = y of R2∗ takes the place of the non-equational side condition
“x guarded in E” in Milner’s R2, in the sense that μx. z(x) = y can only be
derived if z is a guarded context.

Let M∗ be the system of axioms Eq1–Eq5, C1–C2, S1–S4, T1–T3, R1, R2∗.
Observe that M∗ is a pure equational Horn axiomatisation in rank 1.

Proposition 1. A process p is extensional iff M∗ 3 p ↓.

204 M. Mendler and G. Lüttgen

It is important to note that the statement of Prop. 1 is non-monotonic in the
number of axioms. Adding axioms to M∗ may yield provable reflexivities for non-
extensional processes, while removing axioms may mean that some extensional
processes are not verifiably reflexive any longer.

Theorem 1. M∗ is sound regarding � for all processes and complete for guarded
processes.

Proof. The proof is a replay of Milner’s proof [22]. For soundness one observes
that the side condition of Milner’s rule R2 is captured by the equation μx. z(x) =
y in R2∗. For if M∗ 3 μx.E = p, then by symmetry and transitivity M∗ 3
(μx.E) ↓, which means that μx.E is extensional by Prop. 1 and thus x is guarded
in E. For completeness one observes that, by Prop. 1 and since guardedness
implies extensionality, M∗ 3 p ↓ is derivable for every guarded process, and also
that all rules of Milner can be simulated by the associated rule in M∗. ()

Thm. 1 implies that the deductive mechanism of equational (second-order) Horn
logic is sufficient to axiomatise recursion on the fragment of (closed) processes.
The salient feature of Milner’s proof was to show that the infinitary nature of
rule C4 can be localised completely in the question of guardedness. Our result
shows that the guardedness side condition can be captured equationally in the
form of extensionality. Thus, Milner’s rank 1 axiomatisation – counter to com-
mon belief – is essentially pure Horn. The restriction of completeness to guarded
processes does not affect expressiveness. Many process algebras (see, e.g., [5])
and tools are based on guarded recursive specifications, and it is well known
that every unguarded process is provably equivalent to a guarded one [22]. How-
ever, as we shall see next, this latter property seems to depend crucially on the
presence of non-Horn rule C4 which is implicit in Milner’s original article [22].

4 Can Horn Eliminate Unguardedness?

As seen above, observational congruence of guarded processes in μBCCSP2 can
indeed be formalised in pure equational Horn logic of (variable) rank 1. We now
show that for general, unguarded processes, neither Milner’s axiomatisation [22]
nor Bloom/Ésik’s axiomatisation (see Sewell [26]) are complete when leaving out
the only non-Horn rule C4. Moreover, both cannot be made complete by adding a
finite number of rank 1 equational axioms. We first establish our incompleteness
result considering equational axioms, and then lift it to include the standard
recursion rules employed by Milner and Bloom/Ésik.

Our plan is to show that certain sound equations cannot be derived from any
finite and sound equational axiomatisation of �. These equations involve choices
between pairwise distinct actions ai, for 0 ≤ i ≤ n−1, where n ∈ N. Such a choice
can be written in a straightforward way, say as the process An =df τ.

∑n−1
i=0 ai.0,

or expressed in a more complex manner through a recursive maze of τ -transitions,
each of which postpones the choice without preempting any of the actions ai.

Is Observational Congruence Axiomatisable in Equational Horn Logic? 205

A special class of such terms are constructed from the following family En
k of

context expressions, indexed by k ≥ 0 and n ≥ max(k, 1):

E1
0 =df $1

Ei+2
0 =df $1 + Ei+1

0 [$2, . . . , $(i+2)]
Ei+1

j+1 =df μxi−j .($1 + τ. Ei+1
j [$2, $3, . . . , $(i+1), xi−j]),

where x0, x1, . . . , xn are pairwise distinct process variables. Each En
k is closed

and of rank n with k bound variables xn−k, xn−k+1, . . . , xn−1, for instance:

E3
3 ≡ μx0. ($1 + τ. E3

2 [$2, $3, x0])
≡ μx0. ($1 + τ. μx1. ($2 + τ. E3

1 [$3, x0, x1]))
≡ μx0. ($1 + τ. μx1. ($2 + τ. μx2. ($3 + τ. E3

0 [x0, x1, x2])))
≡ μx0. ($1 + τ. μx1. ($2 + τ. μx2. ($3 + τ. (x0 + (x1 + x2))))).

If ãn0 is a shorthand for the sequence ã=df a0.0, a1.0, . . . , an−1.0, then En
n [ã] �

An. However, as we will see, no finite (rank 1) axiomatisation can derive En
n [ã] =

An for every n. The reason is that the syntactic structure of the En
k is judi-

ciously chosen in such a way that they behave atomically under second-order
syntactic matching. More specifically, in every solution of an equation w(ỹ) =
En

k [z̃] for rank m variable w and process variables ỹ = y1, y2, . . . , ym and z̃ =
z0, z1, . . . , zn−1, the context En

k must either be contained wholesale in w or in
some yi, rather than be split across w and ỹ.

Proposition 2. Let θ be a free instantiation such that θ(w)[θ(ỹ)] ≡ En
k [Ũ]

for rank m variable w, process variables ỹ = y1, y2, . . . , ym and schemes Ũ =
U0, U1, . . . , Un−1. Then, either ∃i. θ(yi) ≡ En

k [Ũ], or ∃ rank m contexts Ṽ =
V0, V1, . . . , Vn−1 such that θ(w) ≡ En

k [Ṽ] and Vi[θ(ỹ)] ≡ Ui, for 0 ≤ i ≤ n− 1.

As an example, consider how the expression E3
2 [a1.0, a2.0, x0] ≡ μx1. (a1.0 +

τ. μx2. (a2.0 + τ. (x0 + (x1 + x2)))) may be matched against the pattern w(ỹ)
with some instantiation θ. Recalling E3

2 [a1.0, a2.0, x0]
 E3
3 [ã], let us further

assume that θ is free for E3
3 [ã], i.e., θ(w) must not have variable x0 free. This

means that E3
2 [a1.0, a2.0, x0] cannot be generated from a rank 0 pattern w.

In rank 1 there is exactly one nontrivial solution to match the pattern w(y),
namely θ(w)=df E

3
2 [a1.0, a2.0, $1] and θ(y)=df x0. Here, ‘nontrivial’ means that

θ(w) uses at least one call-back but is not identical to it. There are more possi-
bilities for the rank 2 pattern w(y1, y2). One of these is θ(w)=df E

3
2 [a1.0, $1, $2],

θ(y1)=df a2.0 and θ(y2)=df x0. Another one is θ(w)=dfE
3
2 [a1.$2, a2. $2, $1], θ(y1)

=df x0 and θ(y2)=df 0. The picture is similar for rank 3 pattern w(y1, y2, y3), in
the sense that the context E3

2 is never broken and the call-back arguments θ(yj)
generate sub-expressions of ai. 0 with the only constraint that one of θ(yi) must
be identical to x0. Now take a look at E3

1 [a2.0, x0, x1]
 E3
3 [ã]. This time, if θ is

to be free for E3
3 [ã] again, there is no way in which E3

1 [a2.0, x0, x1] can match the
rank 1 pattern w(y). Both variables x0 and x1 would have to be introduced by the
call-back θ(y), which is not possible. On the other hand, in rank 2 against pattern
w(y1, y2) we can find a match by setting θ(w)=df μx2. (a2.0+τ. ($1+($2+x2)))),
θ(y1)=df x0 and θ(y2) = x1.

206 M. Mendler and G. Lüttgen

The importance of Prop. 2 is that, if we restrict a scheme G to have at most
rank m variables, then in any matching θ(G) ≡ En

n [Ũ] all the contexts En
k for n−

km must either be fully contained in G or fully instantiated via θ from variables
in G. For example, if we match E3

3 [ã] against a scheme G to find an instantiation
θ (free for G) so that θ(G) ≡ E3

3 [ã] then, depending on G either the context E3
3 is

fully contained in G or some context E3
k, for 0 ≤ k ≤ 3, is fully introduced by θ.

An example of the first kind would be G=dfE
3
3 [y0, a1. y1, a2. y1], θ(y0)=df a0.0

and θ(y1)=df 0. Because of what has been discussed above, if E3
k , for k = 1, 2, 3,

is to be introduced by θ, we need a variable of rank at least 3 − k. For in-
stance, G=df y and θ(y)=dfE

3
3 [ã] would introduce E3

3 wholesale using a rank
0 variable. Further, G=df μx0. (a0.0 + τ.w(x0)) and θ(w)=df E

3
2 [a1.0, a2.0, $1],

where w has rank 1, or G=df μx0. (a0.0+ τ. μx1. w(x1, x0)) with θ(w)=df a1.0+
τ. E3

1 [a2.0, $2, $1] for rank 2, are solutions introducing E3
2 and E3

1 , respectively,
through θ. In other words, under rank restriction, the En

k behave atomically with
respect to second-order matching. In this paper we shall explore this feature of
the indecomposable expressions En

n−1 to prove non-axiomatisability when using
only rank 1 schemes. We believe that the families of expressions En

n−m can be
adapted for obtaining non-axiomatisability with respect to maximal rank m, but
leave this to future work.

To obtain our negative results we must generalise the processes En
n [ã] � An so

that they become robust against attempts to transform them under equational
reasoning for �. This means that we need to express their essential structural
property in slightly more abstract terms. To this end, let Z be a set of variables
of rank n and ξZn the instantiation with domain Z satisfying ξZn (z) = En

n−1,
where n = rank(z). An expression P is called Z-pure if P is of rank 0, i.e., a
process scheme, and if it does not contain any variables other than those in Z.
An action ai is said to be i-guarded in P if each occurrence appears in the i-th
argument Si of some sub-expression z(S1, S2, . . . , Sn)
 P .

Definition 1. An expression P is called an n-pearl in shell variables Z if

(P1) P is Z-pure (and all z ∈ Z have rank n).
(P2) In every sub-expression z(S1, S2, . . . , Sn−1, U)
 P , for z ∈ Z, U has a

free process variable, and all Si are process constants such that Si ≈ ai.0.
(P3) There is at least one occurrence of some z ∈ Z in P , and each action

prefix ai in P , for i ≥ 1, is i-guarded.

An expression S is an n-shell if P
 S for some n-pearl P and ξZn (S) � An. A
process p is an n-noose if there exists an n-shell S such that p ≡ ξzn(S).

Since the size information n can be derived from the shell variables Z we will
simply talk about pearls and shells in Z. Note that (P3) implies that a pearl
can only contain observable actions ai for i ≤ n. Also, ξZn (S) � An means that
shells S can at most have free variables in Z.

By definition, every n-noose p satisfies p � An. The converse does not hold.
Since nooses mix semantic and syntactic properties, they are not in general pre-
served by observational congruence. For instance, E2

2 [a0.0, a1.0] is a 2-noose with

Is Observational Congruence Axiomatisable in Equational Horn Logic? 207

shell (and pearl) S ≡ μx0. (a0.0 + τ. z1(a1.0, x0)) and shell variables Z =df{z1},
while A2 ≡ τ. (a0.0 + a1.0) which is observationally congruent to E2

2 [a0.0, a1.0]
is not a noose. In general, every En

n [ã] � An is an n-noose but An is not. Our
incompleteness result is based on the observation that, although En

n [ã] may be
transformed under equational reasoning, the property of being an n-noose is
hard to break up. Once infected by n-nooses with large n, equational transfor-
mations in rank-restricted Horn theories cannot get rid of them. The reason for
this is that such proofs always factorise through shells which must be preserved
by observational congruence. This is the content of the following propositions.

Proposition 3. Let E and F be two schemes such that θ(E) � θ(F) for all
instantiations θ. Then, E is an n-shell iff F is an n-shell.

Proposition 4. Let E be a scheme of maximal recursion depth rd in which
all free variables have maximal rank rk. Suppose rd < 2 and rk < n − 2, or
rd < n− 1 and rk < 2. Then, every instantiation θ such that θ(E) is an n-noose
can be factorised as θ = ξZn ◦ θ′ for some instantiation θ′ and rank n variables
Z in such a way that θ′(E) is a shell in shell variables Z.

The proofs of Props. 3 and 4 involve various auxiliary results about the prop-
erties of pearls under semantic equivalence transformations and decomposition
by second-order unification. Based on Props. 3 and 4, the non-axiomatisability
result is easily argued using an intensional equivalence p �n q, defined by the
condition that p � q and either both p and q have an n-noose or none of them
has. First, one observes that any rank-restricted equational axiomatisation that
is sound for � must also be sound in the intensional sense for large enough n.

Theorem 2. Let A be a finite second-order equational axiomatisation of maxi-
mal variable rank 1 which is sound for �. Then, there exists a natural number m
such that for all n ≥ m, A 3 p = q implies p �n q.

Proof. Choose m to be larger than the maximal nesting depth of recursions
(or the maximal number of free variables) occurring in sub-expressions of any
equation of A. Since �n is an equivalence, the rules of reflexivity, transitivity
and symmetry are sound for �n. Hence, the statement of Thm. 2 follows directly
by induction on the length of derivations A 3 p = q if we can show that all
equational axioms are sound for �n. To this end, suppose E = F is an axiom
of A and p ≡ θ(E) and q ≡ θ(F) for some instantiation θ. If p is an n-noose,
then, by Prop. 4 and n ≥ m, there exists an instantiation θ′ such that θ′(E) is
an n-shell and θ = ξn ◦ θ′. Since E = F is sound for �, the expression θ′(F) is
observationally congruent to the n-shell θ′(E). This implies θ′(F) is an n-shell
by Prop. 3, whence θ(F) ≡ ξn(θ′(F)) ≡ q is an n-noose. This proves p �n q. ()

Now, for any natural number n, we have En
n [ã] � An. Since En

n [ã] is an n-noose
but An is not, by Thm. 2, the sound equation En

n [ã] = An, for large enough n,
is not derivable in any finite rank 1 equational axiom system. In other words,
any finite system of second-order equational axioms of maximal variable rank 1
which is sound for � is incomplete. This corollary to Thm. 2 is in itself not

208 M. Mendler and G. Lüttgen

surprising since it is already known, e.g., from the work of Sewell [26], that pure
equational logic is not sufficient to finitely axiomatise (strong) bisimulation on
μ-expressions finitely. On the other hand, it is an open problem whether � can
be axiomatised in the more powerful setting of equational Horn logic. As we
have seen in Section 3, this is indeed possible for the guarded fragment.

In the following we use Thm. 2 to derive two negative results, showing that
the two well-known Horn-rules considered by Milner [22] and Bloom/Ésik [6] are
incomplete. This is because these rules maintain the intensional equivalence �n.

Milner’s Rule R2. Consider Milner’s only rule, the folding rule R2, whose
soundness depends on a guardedness side condition:

R2
y = z(y)

y = μx. z(x)
z guarded

Theorem 3. There is no finite rank 1 equational extension of Milner’s R2 rule
(including Milner’s axiomatisation without C4) which is sound and complete
for � on unguarded processes.

Proof. We may assume that any application of R2 instantiates schematic vari-
able z with a nontrivial guarded context, i.e., in which its argument is indeed
called behind observable actions. For any instantiation of R2 in which θ(z) does
not invoke its argument (i.e., does not use call-back $1) we have θ(z)[p] ≡ θ(z),
for any p. One can thus derive μx. θ(z)[x] = θ(z) via the unfolding rule R1,
and from there obtain the conclusion θ(y) = μx. θ(z)[x] via standard equational
reasoning from the premise θ(y) = θ(z)[θ(y)]. In other words, rule R2 becomes
redundant for trivial instantiations. Assuming θ(z) contains $1 we show that R2
can never produce in its conclusion a term that is an n-noose, for any n ≥ 1.

Suppose R2 is used with instantiation θ such that θ(y) is an n-noose. By
soundness, we would have μx. θ(z)[x] � θ(y) � θ(z)[θ(y)]. However, this cannot
be true. The argument θ(y) of θ(z) is guarded by an observable action, say b,
so that the right-hand side θ(z)[θ(y)] has all noose actions ai from the argu-
ment θ(y) accessible behind b. However, the process θ(y) on the left-hand side,
being an n-noose and thus observationally congruent to An, does not perform
two actions in sequence. Thus, rule R2 is never applicable when y is instantiated
with a process that is an n-noose.

Now suppose that R2 is instantiated so that θ(μx. z(x)) ≡ μx. θ(z)[x] is an n-
noose. Since θ(z) must have a guarded call-back, this recursion would be able to
perform an infinite sequence of actions, which is not possible for nooses. Hence,
R2 is sound for �n, from which Thm. 2 obtains Thm. 3. ()

Bloom and Ésik’s “GA-implication” Rule. Bloom and Ésik [6] presented
an implicational axiomatisation using the single rule scheme

GA
μx.w1(x, x) = μx.w2(x, x)

μx.w1(x, x) = μx.w2(x, μy. w1(x, y))

in two rank 2 variables w1 and w2, which is sound and complete for strong
bisimulation. As reported in [26], this theory, together with the usual τ -laws [22],

Is Observational Congruence Axiomatisable in Equational Horn Logic? 209

is also complete for �. Bloom/Ésik’s system is a pure equational theory without
side-conditions. However, it still depends on the infinitary congruence rule C4.
Again, the reason is that GA preserves large nooses.

Proposition 5. If Bloom/Ésik’s rule GA is sound for �, then it is also sound
for �n, for all n ≥ 5.

By Thm. 2, every sound finite rank 1 equational axiom system is sound for �n,
for some large enough n. Since, by Prop. 5, rule GA still preserves �n, no finite
sound equational extension of GA in rank 1 can derive the equality En

n [ã] = An

which is not sound under �n. Thus, the following theorem holds:

Theorem 4. There is no finite rank 1 equational extension of Bloom/Ésik’s rule
GA which is sound and complete for � on unguarded processes.

5 Discussion, Conclusions and Future Work

We studied the logical basis for equational reasoning about observational congru-
ence on μ-expressions. Pure equational logic is too inexpressive for bisimulation
semantics on μ-expressions, while second-order equational Horn logic with its
generic rule schemes seems powerful enough to admit finite axiomatisations. In-
deed, it is well known that finite axiomatisations for this purpose must employ
(second-order) rule schemes [26]. However, this does not mean that those axioma-
tisations are necessarily pure Horn systems. Specifically, as pointed out here, the
congruence rule C4 for the μ-binder is beyond Horn logic. Rule C4 is mostly im-
plicit and taken for granted; however, it breaks the purity of Horn logic and
the straightforward applicability of Prolog-style resolution techniques. In par-
ticular, it makes the convenient identification of object-level process variables
and meta-level schematic variables (“shallow embedding”) impossible. Under the
traditional point of view, perhaps, the formal complications due to C4 may be
considered minimal. Still, the question must be asked whether bisimulation-style
equivalences on μ-expressions can in fact be axiomatised in pure Horn logic and
thus enjoy the pleasant model-theoretic and proof-theoretic properties of this
rather natural logical setting.

This paper undertook some important steps in answering this question. On
the positive side, we showed that observational congruence � can in fact be
axiomatised in pure Horn logic for the fragment of guarded processes. On the
negative side, we proved that Milner’s rule R2 and Bloom/Ésik’s rule GA, which
are known to be complete in the presence of congruence rule C4, cannot be
finitely extended by rank 1 equational axioms for unguarded processes to yield
a complete system for � without C4. The proof turned out to be highly tech-
nical and involved subtle issues in managing second-order unification. However,
the effort is well spent since negative results in the more powerful setting of
equational Horn logic are potentially more interesting than negative results for
pure equational logic. We should mention that we believe that our results do not
depend on the cardinality of the action set: provided there exists one action, we
can replace the distinct actions ai by pairwise non-congruent processes.

210 M. Mendler and G. Lüttgen

Our results suggest that pure equational Horn systems are intrinsically limited
in dealing with unguarded processes, which applies to both strong bisimulation
and observational congruence. For the latter, however, this is more serious since
unguardedness across unobservable actions is nontrivial when these are generated
dynamically from communication (as in CCS [21]) or hiding (as in CSP [17]).
In fact, our work was triggered by failed attempts to obtain a complete axioma-
tisation of observational congruence for regular processes in the timed process
algebras PMC [4] and CSA [10]. In those languages, unguarded processes carry
nontrivial semantic behaviour and thus cannot be ignored in the axiomatisation.
If it turned out that unguardedness cannot be Horn axiomatised, this would ex-
hibit the intrinsically more difficult proof-theoretic nature of deterministically
timed process algebras under observational abstraction.

We believe that the notions of pearls and nooses introduced in this paper can
be extended to obtain a negative result for arbitrary rank k equational schemes.
As currently defined, our En

k contexts would not survive the so-called “diagonal”
or “double iteration” identity μx. μy. w(x, y) = μx.w(x, x) (see, e.g., [12]), which
has rank 2. Using this scheme together with rank 1 axioms μx.(y + z(x)) = y +
μx. z(x+y) and μx. τ. z(x) = τ. μx.z(τ. x) – as well as a finite list of other rank 1
equations for reasoning about processes with a single recursion – would be strong
enough to prove En

n [ã] = An. However, we conjecture that by re-defining the En
k

to rank n−k so that Ei+1
j+1 =df μxi−j .(ai−j . xi−j +τ. Ei+1

j [$1, $2, . . . , $(i-j), xi−j]),
for j ≥ 0, and Ei+2

0 as before in Sec. 4, En
n [ã] = An cannot be proved using rank

2 equations. We leave the general rank k result and the more difficult case of
equational Horn rules other than R2 and GA to future work. Future work shall
also investigate whether categorical languages, such as the one used by Bloom
and Ésik in [7], can help to simplify our technical framework.

References

1. Aceto, L., Chen, T., Fokkink, W., Ingolfsdottir, A.: On the axiomatizability of
priority. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006.
LNCS, vol. 4052, pp. 480–491. Springer, Heidelberg (2006)

2. Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: Finite equational bases in
process algebra: Results and open questions. In: Middeldorp, A., van Oostrom, V.,
van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the
Road to Infinity. LNCS, vol. 3838, pp. 338–367. Springer, Heidelberg (2005)

3. Aceto, L., Jeffrey, A.: A complete axiomatization of timed bisimulation for a class
of timed regular behaviours. TCS 152(2), 251–268 (1995)

4. Andersen, H.R., Mendler, M.: An asynchronous process algebra with multiple
clocks. In: Sannella, D. (ed.) ESOP 1994. LNCS, vol. 788, pp. 58–73. Springer,
Heidelberg (1994)

5. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. Springer, Hei-
delberg (1998)

6. Bloom, S.L., Ésik, Z.: Iteration algebras. Foundations of Computer Science 3(3),
245–302 (1992)

7. Bloom, S.L., Ésik, Z.: Iteration Theories: The Equational Logic of Iterative Pro-
cesses. EATCS Monographs in TCS. Springer, Heidelberg (1993)

Is Observational Congruence Axiomatisable in Equational Horn Logic? 211

8. Bloom, S.L., Ésik, Z.: Iteration algebras are not finitely axiomatizable. In: Gonnet,
G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 367–376. Springer, Hei-
delberg (2000)

9. Chen, T., Fokkink, W.: On finite alphabets and infinite bases III: Simulation. In:
Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 421–434.
Springer, Heidelberg (2006)

10. Cleaveland, R., Lüttgen, G., Mendler, M.: An algebraic theory of multiple clocks.
In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp.
166–180. Springer, Heidelberg (1997)

11. Conway, J.H.: Regular Algebra and Finite Machines. Chapman & Hall, Australia
(1971)

12. Ésik, Z.: The equational theory of fixed points with applications to generalized
language theory. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001.
LNCS, vol. 2295, pp. 21–36. Springer, Heidelberg (2002)

13. Fokkink, W.: A complete equational axiomatization for prefix iteration. Informa-
tion Processing Letters 52(6), 333–337 (1994)

14. Fokkink, W., Zantema, H.: Basic process algebra with iteration: Completeness of
its equational axioms. The Computer J. 37(4), 259–267 (1994)

15. van Glabbeek, R.: The linear time–branching time spectrum. In: Baeten, J.C.M.,
Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidel-
berg (1990)

16. van Glabbeek, R.: A complete axiomatization for branching bisimulation congru-
ence of finite state behaviours. In: Borzyszkowski, A.M., Sokolowski, S. (eds.)
MFCS 1993. LNCS, vol. 711, pp. 473–484. Springer, Heidelberg (1993)

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

18. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inform. & Comp. 110(2), 366–390 (1994)

19. Mendler, M., Lüttgen, G.: Is observational congruence on μ-expressions axiomatis-
able in equational Horn logic? Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik, Techn. Rep. No. 72, Univ. of Bamberg (June 2007)

20. Milner, R.: A complete inference system for a class of regular behaviours. J. of
Computer and System Sciences 28(3), 439–466 (1984)

21. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

22. Milner, R.: A complete axiomatisation for observational congruence of finite-state
behaviours. Inform. & Comp. 81(2), 227–247 (1989)

23. Moller, F.: Axioms for Concurrency. PhD thesis, LFCS, Univ. of Edinburgh (1989),
Also published as ECS-LFCS-89-84.

24. Moller, F.: The nonexistence of finite axiomatisations for CCS congruences. In:
LICS’90, pp. 142–153. IEEE Computer Society Press, Los Alamitos (1990)

25. Nadathur, G., Miller, D.: Higher-order Horn clauses. JACM 37(4), 777–814 (1990)
26. Sewell, P.: Nonaxiomatisability of equivalences over finite state processes. Annals

of Pure and Applied Logic 90, 163–191 (1997)

The Must Preorder Revisited
An Algebraic Theory for Web Services Contracts

Cosimo Laneve1 and Luca Padovani2

1 Department of Computer Science, University of Bologna
2 Information Science and Technology Institute, University of Urbino

Abstract. We define a language for Web services contracts as a parallel-
free fragment of ccs and we study a natural notion of compliance be-
tween clients and services in terms of their corresponding contracts. The
induced contract preorder turns out to be valuable in searching and
querying registries of Web services, it shows interesting connections with
the must preorder, and it exhibits good precongruence properties when
choreographies of Web services are considered. Our contract language
may be used as a foundation of Web services technologies, such as wsdl

and wscl.

1 Introduction

Web services contracts are coarse-grained abstract descriptions to be used in
workflows and business processes implemented in composite applications or por-
tals. These descriptions are intended to be replaced by fine-grained implemen-
tations that provide complex Web services.

Current technologies for describing contracts specify the format of the ex-
changed messages – the schema –, the locations where the interactions are going
to occur – the interface –, the transfer mechanism to be used (i.e. soap-rpc,
or others), and the pattern of conversation of the service – the behavior. For
example, the Web Service Description Language (wsdl) [11,10,9] defines simple
behaviors: one-way (asynchronous) and request/response (synchronous) ones.
The Web Service Conversation Language (wscl) [2] extends wsdl behaviors
by allowing the description of arbitrary, possibly cyclic sequences of exchanged
messages between communicating parties. (Other languages, such as the Ab-
stract business processes in the Web Service Business Execution Language (ws-

bpel) [1], provide even more detailed descriptions because they also define the
subprocess structure, fault handlers, etc. We think that such descriptions are
much too concrete to be used as contracts.)

Documents describing wsdl and wscl contracts can be published in reg-
istries [3,12] so that Web services can be searched and queried. These two basic
operations assume the existence of some notion of contract equivalence. The lack
of a formal characterization of contracts only permits excessively demanding no-
tions of equivalence such as syntactical equality. In fact, it makes perfect sense
to further relax the equivalence into a subcontract preorder (denoted by in this

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 212–225, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Must Preorder Revisited 213

paper), so that Web services exposing “larger” contracts can be safely returned
as results of queries for Web services with “smaller” contracts. The purpose of
this paper is to define precisely what “larger” and “smaller” mean, as well as
to define which safety property we wish to preserve when substituting a service
exposing a contract with a service exposing a larger contract.

In our formalization, contracts are pairs I : σ, where I is the interface, i.e. the
set of names used by the service for responses and requests, and σ is the behavior,
i.e. the conversation pattern (it is intended that the names occurring in σ are
included into I). Our investigation abstracts away from the syntactical details
of schemas as well as from those aspects that are too oriented to the actual
implementations, such as the definition of transmission protocols; all of such
aspects may be easily integrated on top of the formalism. We do not commit to
a particular interpretation of names either: they can represent different typed
channels on which interaction occurs or different types of messages. Behaviors
are sequences of request or response actions at specific names, possibly combined
by means of two choice operators. The external choice “+” means that it is the
interacting part that decides which one of alternative behaviors to carry on; the
internal choice “⊕” means that the it is the part exposing the contract that
decides how to proceed. Recursive behaviors are also admitted. As a matter of
facts, contracts are ccs (without τ ’s) processes that do not manifest internal
moves and the parallel structure [17,19].

To equip our contracts with a subcontract preorder , we commit to a testing
approach. We define client satisfaction as the ability of the client to complete
successfully the interaction with the service; “successfully” meaning that the
client never gets stuck (this notion is purposefully asymmetric as client’s satis-
faction is our main concern). The preorder arises by comparing the sets of clients
satisfied by services. The properties enjoyed by the preorder are particularly
relevant in the context of Web services. For example, a service exposing the con-
tract {a, b, c} : a.c⊕ b.c is one that sends a message on a or on b – the choice is
left to the service – and then waits for a response on c. A client compatible with
such service must be prepared to accept messages from both a and b. Hence,
such a client will also be compatible with services exposing either {a, b, c} : a.c
or {a, b, c} : b.c, which behave more deterministically than the original service,
or even {a, b, c} : a.c+b.c, which leaves the choice to the client. This is expressed
as {a, b, c} : a.c⊕ b.c {a, b, c} : a.c and {a, b, c} : a.c⊕ b.c {a, b, c} : a.c+ b.c.
Notice that {a, b, c} : a.c {a, b, c} : a.c + b.c should not hold. For example a
client with contract {a, b, c} : a.c+ b.a.c successfully completes when interacting
with {a, b, c} : a.c, but it may fail when interacting with {a, b, c} : a.c + b.c.
However, a client interacting with {a, c} : a.c, that is never interacting on b,
cannot fail with {a, b, c} : a.c + b.c. Namely, if a service is extended in width
with new functionalities, the old clients will still complete successfully with the
new service. Similarly, extensions in depth of a service should allow old clients
to complete: {a, c} : a.c {a, b, c} : a.c.b.c. To the best of our knowledge,
there is no process semantics corresponding to in the literature. However, the

214 C. Laneve and L. Padovani

restriction of to contracts with the same interface is a well-known semantics:
the must-testing preorder [18,19,15].

Our investigation about a semantics for contracts also addresses the problem
of determining, given a client exposing a certain behavior, the smallest (according
to) service contract that satisfies the client – the principal dual contract.
This contract, acting like a principal type in type systems, guarantees that a
query to a Web services registry is answered with the largest possible set of
compatible services in the registry’s databases. Technically, computing the dual
contract is not trivial because it cannot be reduced to a swapping of requests
and responses, and external and internal choices. For example, applying this
swapping to the contracts {a, b, c} : a.b+a.c and {a, b, c} : a.(b⊕c), which happen
to be equivalent according to , would produce the contracts {a, b, c} : a.b⊕ a.c
and {a, b, c} : a.(b+ c), respectively, but only the latter one does actually satisfy
the clients exposing one of the two original contracts. As another example, the
dual contract of {a} : a cannot simply be {a} : a, because a service with contract
{a} : a⊕ (a+a) satisfies the original contract and yet {a} : a
 {a} : a⊕ (a+a).

We also study the application of our theory of contracts to choreographies of
Web services [16]. A choreography is an abstract specification of several services
that run in parallel and communicate with each other by means of private names.
(Actually, the behavior of each service may be synthesized out of a global de-
scription [5,4]). We show that is robust enough so that, replacing an abstract
specification with an implementation that is related to the specification by means
of , the observable features of the choreography as a whole are preserved.

Related work. This research was inspired by “ccs without τ ’s” [19] and by
Hennessy’s model of acceptance trees [14,15]. Our contracts are an alternative
representation of acceptance trees. The use of formal models to describe commu-
nication protocols is not new (see for instance the exchange patterns in ssdl [21],
which are based on csp and the π-calculus), nor is it the use or ccs processes
as behavioral types (see [20] and [8]). However, to the best of our knowledge the
subcontract relation is original. Although it resembles the must preorder (and
it reduces to the must preorder when the interfaces are large enough), arises
from a notion of compliance that significantly differs from the notion of “pass-
ing a test” in the testing framework [18] and that more realistically describes
well-behaved clients of Web services. The width extension property enjoyed by
 is closely related to subtyping in object-oriented programming languages.
The works that are more closely related to ours are by Carpineti et al. [6], by
Castagna et al. [7] and the ones on session types, especially [13] by Gay and
Hole. In [6] the subcontract relation (over finite contracts) exhibits all of the
desirable properties illustrated in the introduction. Unfortunately, such relation
turns out to be non transitive as the preorder arises as a syntactic notion. Tran-
sitivity, while not being strictly necessary as far as querying and searching are
concerned (in fact, the coinductive notion of compliance defined in [6] would
suffice) has two main advantages: on the practical side it allows databases of
Web services contracts to be organized in accordance with the subcontract re-
lation, so as to reduce the run time spent for executing queries. The transitive

The Must Preorder Revisited 215

closure of a query can be precomputed when a new service is registered. On the
theoretical side, it is a fundamental prerequisite when contracts are considered
as (behavioral) types for typing processes: the subcontract relation is just the
subsumption rule. The transitivity problem has been also addressed in [7] in a
more general way. However, the authors of [7] must introduce a rather powerful
construct (the filter) which prevents potentially dangerous interactions. Roughly
speaking, a filter actively mediates the client/service interaction at run time, by
dynamically changing the interface of the service as it is seen from the client.
With respect to [13] our contract language is much simpler and it can express
more general forms of interaction. While the language defined in [13] supports
first-class sessions and name passing, it is purposefully tailored so that the tran-
sitivity problems mentioned above are directly avoided at the language level.
This restricts the subcontract relation in such a way that internal and external
choices can never be related (hence, {a, b} : a⊕ b {a, b} : a+ b does not hold).

Structure of the paper. In Section 2 we formally define our language for con-
tracts, the corresponding transition relation and the compliance of a client with
a service. In Section 3 we study the subcontract preorder and its relationship
with the must preorder. In Section 4 we analyze the problem of determining
the principal dual contract. In Section 5 we discuss the application of the sub-
contract preorder to choreographies. Section 6 discusses the expressivity of our
contracts by showing the encoding of a wscl conversation into our language, it
draws our conclusions, and hints at future work.

2 The Contract Language

The syntax of contracts uses an infinite set of names N ranged over by a, b,
c, . . . , and a disjoint set of co-names N ranged over by a, b, c, We use
the term action for referring to names and co-names without distinction. We let
a = a, we use α, β, . . . to range over N ∪ N , and we use ϕ, ψ, . . . to range over
(N ∪ N)∗. Contracts are pairs I : σ where I, called interface, is a finite subset
of N representing the set of names on which interaction occurs, whereas σ, called
behavior, is defined by the following grammar:

σ ::=
| 0 (null)
| α.σ (prefix)
| x (variable)
| σ + σ (external choice)
| σ ⊕ σ (internal choice)
| rec x.σ (recursion)

The behavior 0 defines the empty conversation; the behavior a.σ defines a conver-
sation protocol whose initial activity is to accept a request on a and continuing
as σ; the behavior a.σ defines a conversation protocol whose initial activity is
to send a response to a and continuing as σ. Behaviors σ + σ′ and σ ⊕ σ′ define

216 C. Laneve and L. Padovani

conversation protocols that follow either the conversation σ or σ′; in σ + σ′ the
choice is left to the remote party, in σ⊕ σ′ the choice is made locally. For exam-
ple, Login.(Continue+End) describes the conversation protocol of a service that
is ready to accept Logins and will Continue or End the conversation according
to client’s request. This contract is different from Login.(Continue⊕End) where
the decision whether to continue or to end is taken by the service. The behavior
rec x.σ defines a possibly recursive conversation protocol whose recurrent pat-
tern is σ. A (free) occurrence of the variable x in σ stands for the whole rec x.σ.
In the following we write Ω for rec x.x.

Let names(σ) be the set of names a such that either a or a occur in σ. We
always assume that names(σ) ⊆ I holds for every I : σ. With an abuse of notation
we write names(ϕ) for the set of names occurring in ϕ.

Behaviors retain a transition relation that is inductively defined by the rules

α.σ
α−→ σ σ1 ⊕ σ2 −→ σ1

σ1
α−→ σ′1

σ1 + σ2
α−→ σ′1

σ1 −→ σ′1

σ1 + σ2 −→ σ′1 + σ2

rec x.σ −→ σ{rec x.σ/x}

plus the symmetric rules for ⊕ and +. This operational semantics is exactly
the same as ccs without τ ’s [19]. In particular, the rules for ⊕ say that the
behavior σ1⊕σ2 may exhibit σ1 or σ2 through an internal, unlabeled transition.
The behavior σ1 + σ2 may exhibit σ1 or σ2 only after performing a visible,
labeled transition of σ1 or σ2, respectively; internal transitions do not modify
the external choice. A recursive behavior rec x.σ unfolds to σ{rec x.σ/x} with an
internal transition. We write =⇒ for the reflexive and transitive closure of −→;
σ

α=⇒ σ′ for σ =⇒ α−→=⇒ σ′; σ α1···αn=⇒ σ′ if σ α1=⇒ · · · αn=⇒ σ′; σ
ϕ

=⇒ if there
exists σ′ such that σ

ϕ
=⇒ σ′. We write σ↑ if σ has an infinite internal computation

σ = σ0 −→ σ1 −→ σ2 −→ · · · and σ↓ if not σ↑. We write σ↓ϕ if σ
ϕ

=⇒ σ′ implies
σ′↓. Finally, we write σ ↑ ϕ if σ

ϕ
=⇒ σ′ and σ′↑ for some σ′. For example Ω↑,

rec x.a+ x↑, and rec x.(a.x+ b.x) ↓ ϕ for every ϕ ∈ {a, b}∗. Let init(σ) def= {α |
σ

α=⇒}.
A basic use of contracts is to verify whether a client protocol is consistent

with a service protocol. This consistency, called behavioral compliance in the
following, requires two preliminary definitions: that of communicating behaviors
and that of matching:

– The notion of communicating behaviors extends the transition relation −→
to pairs of behaviors as follows:

ρ −→ ρ′

ρ | σ −→ ρ′ | σ
σ −→ σ′

ρ | σ −→ ρ | σ′
ρ

α−→ ρ′ σ
α−→ σ′

ρ | σ −→ ρ′ | σ′

– The notion of matching is modeled using a special name e for denoting the
successful termination of a party (“e” stands for end). By “success” we mean
the ability to always reach a state in which e can be emitted.

The Must Preorder Revisited 217

Definition 1 (Behavioral compliance). Let e /∈ names(σ). The (client) be-
havior ρ is compliant with the (service) behavior σ, written ρ 4 σ, if ρ | σ =⇒
ρ′ | σ′ implies

1. if ρ′ | σ′ �−→, then {e} ⊆ init(ρ′);
2. if σ′↑, then {e} = init(ρ′).

According to the notion of behavioral compliance, if the client-service conversa-
tion terminates, then the client is in a successful state (it will emit an e-name).
For example, a.e+ b.e 4 a⊕ b and a.e⊕ b.e 4 a+ b but a.e⊕ b.e
4 a⊕ b because
of the computation a.e ⊕ b.e | a ⊕ b =⇒ a.e | b �−→ where the client waits for
an interaction on a in vain. Similarly, the client must reach a successful state if
the conversation does not terminate but the divergence is due to the service. In
this case, however, the compliance relation takes into account the subtleties that
divergence implies. In particular, the client is constrained to autonomously reach
a state where the only possible action is e. The practical justification of such
a notion of compliance derives from the fact that connection-oriented commu-
nication protocols (like those used for interaction with Web services) typically
provide for an explicit end-of-connection signal. Consider for example the client
e + a.e. Intuitively this client tries to send a request on the name a, but it can
also succeed if the service rejects the request. So e + a.e 4 0 because the client
can detect the fact that the service is not ready to interact on a. The same client
interacting with a diverging service would have no way to distinguish a service
that is taking a long time to accept the request from a service that is perpetually
performing internal computations, hence e + a.e
4 Ω. On the theoretical side,
we will see that such a notion of compliance makes Ω the “smallest service” (the
one a client can make the least number of assumptions on), and this property
will be fundamental in the definition of principal dual contract in Section 4.

Our notion of behavioral compliance enjoys the following “subject reduction”
property, stating that given two compliant behaviors ρ and σ, every residual
behaviors ρ′ and σ′ are also compliant.

Proposition 1. If ρ 4 σ and ρ | σ −→ ρ′ | σ′, then ρ′ 4 σ′.

3 The Subcontract Relation

The behavioral compliance is actually a basic test for investigating services.
Following De Nicola and Hennessy’s approach to process semantics [18], this
test induces a preorder on services on the basis of the set of clients that comply
with a given service.

Definition 2 (Contract semantics). Let �I : σ�
def= {J : ρ | J ⊆ I and ρ 4

σ}. A contract I : σ is a subcontract of I ′ : σ′, written I : σ I ′ : σ′, if and
only if �I : σ� ⊆ �I ′ : σ′�. Let . be ∩ +.

For example, �∅ : Ω� = {∅ : e, ∅ : rec x.e + x, . . .} and �{a, b} : a ⊕ b� = {∅ :
e, ∅ : rec x.e+x, {a} : e, {b} : e, {a, b} : e, {a, b} : a.e+ b.e, . . .}. It turns out that

218 C. Laneve and L. Padovani

clients in �∅ : Ω� comply with every other service, hence the service ∅ : Ω is the
smallest one. As usual it is easier to figure out inequalities: {a, b} : a
 {a, b} : a.b
because a.(e+b) 4 a but a.(e+b)
4 a.b; {a, b} : a
 {a, b} : a+b because e+b 4 a
but e + b
4 a+ b.

The next proposition states the desirable properties listed in Section 1 in
a formal way. Notice that for most of them it would be possible to weaken
the premises, but we prefer this presentation as it highlights more clearly the
relevant features of . The proofs are are relatively easy (see the alternative
characterization of in Definition 3).

Proposition 2. Let I : σ and I ′ : σ′ be contracts such that I ∩ I ′ = ∅. Then:

1. if J : ρ I ∪ I ′ : σ and J : ρ I ∪ I ′ : σ′, then J : ρ I ∪ I ′ : σ ⊕ σ′;
2. if σ↓ and σ′↓, then I ∪ I ′ : σ I ∪ I ′ : σ + σ′;
3. if σ′↓, then I ∪ I ′ : σ{0/x} I ∪ I ′ : σ{σ′

/x};
4. I : σ I ∪ I ′ : σ.

Item 1 states that I ∪ I ′ : σ ⊕ σ′ is the largest contract that satisfies the clients
that are compliant with both I∪I ′ : σ and I∪I ′ : σ′. Namely, �I∪I ′ : σ�∩�I∪I ′ :
σ′� = �I ∪ I ′ : σ ⊕ σ′�. Item 2 gives sufficient conditions for width extensions of
Web services: a Web service may be upgraded to offer additional functionalities
without affecting the set of clients it satisfies, so long as such new functionalities
regard names that were not present in the original service. In fact, it suffices to
require init(σ′)∩I = ∅ to establish the result. Contrary to item 1, I∪I ′ : σ+σ′

is not the smallest contract that satisfies the clients that are compliant with
either I ∪ I ′ : σ or I ∪ I ′ : σ′. For example, {a, b} : a.e ⊕ b.e ∈ �{a, b} : a + b�
but {a, b} : a.e ⊕ b.e
∈ �{a, b} : a� and {a, b} : a.e ⊕ b.e
∈ �{a, b} : b�, hence
�I ∪ I ′ : σ� ∪ �I ∪ I ′ : σ′� � �I ∪ I ′ : σ + σ′�. Item 3 states a similar result, but
for depth extensions, that is the ability to extend the conversation offered by
a service, provided that the additional conversation occurs on names that were
not present in the original service. The premises can be weakened as for item 2.
In fact, item 2 can be seen as a special case of item 3, if we consider the contract
I ∪ I ′ : σ+x. Item 4 shows that merely increasing the names that a Web service
can interact on does not affect the clients it satisfies.

As usual with testing semantics, it is hard to establish a relationship between
two contracts because the sets �I : σ� are infinite. A direct definition of the
preorder is therefore preferred.

Definition 3. Let σ ⇓ r if and only if σ =⇒ σ′ and r = init(σ′). A coinductive
subcontract is a relation R such that if (I : ρ, J : σ) ∈ R, then I ⊆ J and
whenever ρ↓ then

1. σ↓, and
2. σ ⇓ r implies ρ ⇓ r

′ and r
′ ⊆ r, and

3. α ∈ I and σ
α=⇒ σ′ imply ρ

α=⇒ ρ1, . . . , ρ
α=⇒ ρn for some n ≥ 1 and

(I :
⊕

1≤i≤n ρi, J : σ′2) ∈ R.

The Must Preorder Revisited 219

By this definition, a contract I : ρ such that ρ↑ is the smallest one with in-
terface I. When ρ↓, condition 1 constrains the larger contract J : σ to con-
verge as well, since clients might rely on the convergence of ρ to complete
successfully. Condition 2 states that J : σ must exhibit a more deterministic
behavior: the lesser the number of ready sets is, the more deterministic the
contract is. Furthermore, J : σ should expose at least the same capabilities as
the smaller one (r′ ⊆ r). Condition 3 is perhaps the most subtle one, as it
deals with all the possible derivatives of the smaller contract. The point is that
{a, b, c} : a.b+ a.c . {a, b, c} : a.(b ⊕ c) since, after interacting on a, a client of
the service on the left side of . is not aware of which state the service is in (it
can be either b or c). Hence, we have to consider all of the possible derivatives
after a, thus reducing to verifying ({a, b, c} : (b+ c)⊕ b⊕ c, {a, b, c} : b⊕ c) ∈ R
which trivially holds.

Theorem 1. is the largest coinductive subcontract relation.

The proof is standard and heavily relies on the “unzipping” of a derivation
ρ | σ ϕ

=⇒ ρ′ | σ′, which results into two sequences ψ and ψ′ of actions such

that ρ
ψ

=⇒ ρ′ and σ
ψ′

=⇒ σ′. Intuitively, ψ and ψ′ contain (a subset of) the
actions in ϕ interspersed with the actions on which (the derivatives of) ρ and σ
have synchronized. When ϕ is empty, then ψ = ψ′, where ψ is the co-sequence
obtained from ψ by swapping names and co-names. By “zipping” we mean the

inverse process whereby two or more derivations such as ρ
ψ

=⇒ ρ′ and σ
ψ′

=⇒ σ′

are combined to produce ρ | σ ϕ
=⇒ ρ′ | σ′. See [15] for a more detailed discussion.

We are not aware of any process semantics corresponding to in the litera-
ture. However, if we restrict to contracts with the same interface, we retrieve
a well-known semantics: the must-testing preorder [15]. We recall the definition
of the must preorder for the behaviors in Section 2.

Definition 4 (Must preorder [19]). A sequence of transitions σ0 | ρ0 −→
σ1 | ρ1 −→ · · · is a maximal computation if either it is infinite or the last term
σn | ρn is such that σn | ρn �−→.

Let e /∈ names(σ). Let σ must ρ if, for every maximal computation σ | ρ = σ0 |
ρ0 −→ σ1 | ρ1 −→ · · ·, there exists n ≥ 0 such that ρn

e−→. We write σ �must σ
′

if and only if, for every ρ, σ must ρ implies σ′ must ρ.

Before showing the precise relationship between and �must, let us comment
on the differences between ρ 4 σ and σ must ρ. The must relation is such that
σ must e+ρ holds for every σ, so that the observers of the form e+ρ are useless
for discriminating between different (service) behaviors in �must. However this
is not the case for . For example e+ a
4 a (whilst a must e+ a). In our setting
it makes no sense to declare that e+ a is compliant with a with the justification
that, at some point in a computation starting from e + a | a, the client can
emit e. When a client and a service interact, actions cannot be undone. On the
other hand we have e ⊕ e 4 Ω and Ω must/ e ⊕ e. That is a (client) behavior
compliant with a divergent (service) behavior is such that it is compliant with

220 C. Laneve and L. Padovani

every (service) behavior, hence it is useless for discriminating between different
(service) behaviors in . Historically, Ω must/ e ⊕ e has been motivated by the
fact that the divergent process may prevent the observer from performing the one
internal reduction that leads to success. In a distributed setting this motivation
is no longer sustainable, since client and service will usually run independently
on different processors. Finally, consider a divergent (client) behavior ρ. In the
must relation such observer never succeeds unless ρ e−→. In the 4 relation such
observer is compliant so long as all of its finite computations lead to a successful
state. So, for example, the client behaviors rec x.a.e + x and a.e have the same
discriminating power as far as is concerned.

Theorem 2. Let I = names(σ). I : σ I : τ if and only if σ �must τ .

4 Dual Contracts

We now turn our attention to the problem of querying a database of Web services
contracts. The basic idea is that given a client I : ρ we wish to find all the service
contracts J : σ such that I ⊆ J and ρ 4 σ. We can partly simplify the problem by
computing one particular service contract J0 : σ0 such that I ⊆ J0 and ρ 4 σ0
and then by taking all the services in the registry that are larger than this
one. Actually, in order to maximize the number of service contracts returned as
answer to the query, the dual operator of a (client) contract I : ρ should compute
a behavior ρ⊥, so that I : ρ⊥ is smallest service contract that satisfies the client
contract I : ρ. We call such contract the principal dual contract of I : ρ.

It is convenient to restrict the definition of dual to those behaviors ρ that never
lead to 0 without emitting e. For example, the behavior a.e+b.0 describes a client
that succeeds if the service proposes a, but that fails if the service proposes b.
As far as querying is concerned, such behavior is completely equivalent to a.e.
As another example, the degenerate client behavior 0 is such that no service will
ever satisfy it. In general, if a client is unable to handle a particular action, like
b in the first example, it should simply omit that action from its behavior. We
say that a (client) contract I : ρ is canonical if, whenever ρ

ϕ
=⇒ ρ′ is maximal,

then ϕ = ϕ′e and e /∈ names(ϕ′). For example {a} : a.e, {a} : rec x.a.x, and
∅ : Ω are canonical; {a, b} : a.e + b.0 and {a} : rec x.a+ x are not canonical.

To ease the definition of the dual we introduce a countable set of behavior
names, called dual(I, ρ), which are defined by equations dual(I, ρ) def= σ, where I
is finite and σ is a behavior containing behavior names dual(I ′, ρ′) instead of
variables. In order for the definition to be well founded, we need to prove a
preliminary finiteness result.

Proposition 3. Continuations of prefixes in behaviors are finite. Namely, for
every σ the set {σ′ | there exist ϕ, α such that σ

ϕ
=⇒ α−→ σ′} is finite.

Notice that the set {σ′ | σ =⇒ σ′} may be infinite. This is the case when
σ = rec x.a + x. However, the set {σ′ | rec x.a + x =⇒ a−→ σ′} is finite and it
is {0}. An immediate consequence of Proposition 3 is that behaviors are image
finite. Namely, for every σ and α, the set {σ′ | σ =⇒ α−→ σ′} is finite.

The Must Preorder Revisited 221

Definition 5 (Dual contract). Let I : ρ be a canonical contract. Let co(I) def=
{a | a ∈ I}. The dual of ρwith respect to I, written dual(I, ρ), is defined as follows:

dual(I, ρ) def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω, if init(ρ) = {e}

∑
ρ⇓r,r\{e}�=∅

(
0⊕︸︷︷︸

if e ∈ r

⊕
ρ=⇒α∈r\{e}−→ ρ′

α.dual(I, ρ′)
)

+
(
0⊕

⊕
α∈(I∪co(I))\init(ρ) α.Ω

)
︸ ︷︷ ︸

if (I ∪ co(I)) \ init(ρ) �= ∅

, otherwise

The behavior dual(I, ρ) is well defined because the summands are always finite:
the external summand is finite because behaviors manifest finitely many different
ready sets; the internal summand is finite because of Proposition 3. It follows
that from every equation dual(I, ρ) def= σ it is possible to reach a finite set
of behavior constants. It is folklore to transform such equations into recursive
behaviors, thus conforming with the syntax of Section 2.

Few comments about dual(I, ρ), when init(ρ)
= {e}, follow. In this case, the
behavior ρ may autonomously transit to different states, each one offering a par-
ticular ready set. Thus the dual behavior leaves the choice to the client: this is the
reason for the external choice in the second line. Once the state has been chosen,
the client offers to the service a spectrum of possible actions: this is the reason
for the internal choice in the first line (of the “otherwise” clause). The second line
covers all the cases of actions that are allowed by the interface and that are not
offered by the client. The point is that the dual operator must compute the prin-
cipal (read, the smallest) service contract that satisfies the client, and the small-
est convergent behavior with respect to a (finite) interface I is

⊕
α∈I∪co(I) α.

The external choice in the second line distributes the proper dual contract over
the internal choice of all the actions not allowed by the interface. The 0 sum-
mand accounts for the possibility that none of the actions not allowed by the
interface is present. For example, dual({a}, a.e) = a.Ω + (0 ⊕ a.Ω). The dual
of a divergent (canonical) client is also well defined: dual({a}, rec x.a.e + x) =
a.Ω + (0 ⊕ a.Ω). We notice that the definition also covers duals of nontermi-
nating clients: dual({a}, rec x.a.x) = a.dual({a}, rec x.a.x)+ (0⊕ a.Ω), namely
dual({a}, rec x.a.x) . rec x.(a.x+ (0⊕ a.Ω)).

Theorem 3. Let I : ρ be a canonical contract. Then:

1. ρ 4 dual(I, ρ);
2. if ρ 4 σ and names(σ) ⊆ I, then I : dual(I, ρ) I : σ.

5 Choreographies

A choreography is meant to describe the parallel composition of n services (called
participants) that communicate with each other by means of private names
and with the external world by means of public names. Standard languages for

222 C. Laneve and L. Padovani

describing choreographies, such as the Web Service Choreography Description
Language (ws-cdl [16]), describe choreography activities, communications, and
their mutual dependencies from a global perspective. From such descriptions it
is possible to synthesize the so-called end-point projections, namely the behav-
ioral specifications of the single participants, provided that the global description
respects some fundamental constraints (see for example [5] and [4]).

In this work, we identify a choreography with the composition of its end-point
projections, which are represented as contracts. Formally, a choreography is a term

Σ ::= (I1 : σ1 | · · · | In : σn) \ L
where L is a finite subset of names representing the private names of the chore-
ography. We write Σ[i �→ J : ρ] for the choreography that is the same as Σ
except that (the contract of) the i-th participant has been replaced by J : ρ. We
also write ΣL whenever we want to recall the private ports of the choreography.

The transition relation of choreographies is defined using that of behaviors by
the following rules:

σ
α−→ σ′ names(α) /∈ L

ΣL[i �→ I : σ] α−→ ΣL[i �→ I : σ′]

σ −→ σ′

ΣL[i �→ I : σ] −→ ΣL[i �→ I : σ′]

i
= j σ
α−→ σ′ ρ

α−→ ρ′ names(α) ∈ L
ΣL[i �→ I : σ][j �→ J : ρ] −→ ΣL[i �→ I : σ′][j �→ J : ρ′]

Having provided choreographies with a transition relation, the notions of con-
vergence, divergence, and ready set can be immediately extended to choreogra-
phies from their previous definitions. Similarly, the notion of behavioral com-
pliance may be extended in order to relate the behavior of a client with (the
behavior of) a choreography, which we denote by ρ 4 Σ. That is, a choreogra-
phy Σ = (I1 : σ1 | · · · | In : σn) \ L is a (complex) service whose interface is
int(Σ) def=

⋃
1≤i≤n Ii \L and whose behavior is the combination of the behaviors

of the participants running in parallel. In this setting, a (client) contract J : ρ
is compliant with the choreography Σ if J ⊆ int(Σ) and ρ 4 Σ.

Definition 6 (Choreography refinement). Let Σ = (I1 : σ1 | · · · | In :
σn) \ L and Σ′ = (I ′1 : σ′1 | · · · | I ′n : σ′n) \ L′. The choreography Σ′ is a
refinement of Σ if and only if the following conditions hold:

1. int(Σ) = int(Σ′);
2. for every 1 ≤ i ≤ n we have Ii : σi I ′i : σ′i;
3. for every 1 ≤ i, j ≤ n with i
= j we have that L′ ∩ (names(σ′i) \ names(σi))∩

(names(σ′j) \ names(σj)) = ∅.
Refinement defines a “safe” replacement of activities in a choreography with
more detailed ones (such as their implementations) still preserving the overall
interface of the choreography (condition 1). The replacing activities may have
more capabilities than those offered by the replaced ones (condition 2) and it
must not be the case that the new activities communicate with each other by

The Must Preorder Revisited 223

means of names that do not occur in the original choreography (condition 3) for
otherwise the original choreography specification would be violated.

We now prove a soundness result for the notion of refinement which represents
a restricted form of precongruence of with respect to the parallel composition.
The result is not based on any particular property (e.g. deadlock freedom) of
the choreography itself. We merely show that, from the point of view of a client
interacting with a choreography as a whole, the refinement of the choreography
does not jeopardize the completion of the client.

Theorem 4. Let I : ρ be compliant with a choreography Σ1 and Σ2 be a refine-
ment of Σ1. Then I : ρ is also compliant with Σ2.

6 Concluding Remarks

In this contribution we have studied a formal theory of Web services contracts.
The subcontract preorder used in the theory arises semantically as in the testing
setting, except that the notion of “passing a test” is essentially different and
reflects more faithfully the interaction of clients and services. We have given two
different characterizations of the subcontract preorder, one directly induced by
the notion of compliance, the other one that is more amenable for an algorithmic
implementation. The subcontract relation is effectively and efficiently applica-
ble in any query-based system for service discovery because it is supported by
a notion of principal dual contract. It is also applicable in choreographies for
replacing contracts with larger ones.

in: Login

out: ValidLogin

out: InvalidLogin

in: Query

out: Catalog in: Purchase

out: Accepted

out: InvalidPayment

out: OutOfStock

in: Logout

��
��
��

��
��
��

���
���
���

���
���
���[ValidLogin]

[OutOfStock]

[InvalidLogin]

[InvalidPayment]

[Accepted]

[OutOfStock]
[InvalidPayment]

Fig. 1. Contract of a simple e-commerce service as a wscl diagram

The theory may be used as a foundation of Web services technologies, such
as wsdl and wscl. In [6] we already discussed how to encode wsdl message-
exchange patterns and acyclic wscl diagrams into the recursion-free fragment
of the contract language. The language in this paper allows us to express also
cyclic wscl conversations by means of recursion. Figure 1 shows a wscl diagram
describing the protocol of a service requiring clients to login before they can issue
a query. After the query, the service returns a catalog. From this point on, the
client can decide whether to purchase an item from the catalog or to logout
and leave. In case of purchase, the service may either report that the purchase
was successful, or that the item is out-of-stock, or that the client’s payment was

224 C. Laneve and L. Padovani

refused. By interpreting names as message types, this e-commerce service can
be encoded in our language by a contract whose behavior is:

rec x.Login.(InvalidLogin.x⊕ ValidLogin.rec y.
Query.Catalog.(y + Logout+ rec z.Purchase.
Accepted⊕ InvalidPayment.(z + Logout)⊕ OutOfStock.(y + Logout)))

We notice the correspondence between unlabeled (respectively, labeled) transi-
tions in Figure 1 and external (respectively, internal) choices in the contract.
We also notice how recursion is used for expressing iteration (the cycles in the
figure) so that the client is given another chance whenever an action fails for
some reason.

Several future research directions stem from this work. On the technical side,
we would like to define and investigate an axiomatic characterization of .
We expect such axiomatization to closely resemble the one for the �must pre-
order [19,15]. On the linguistic side we would like to explore new process con-
structions that could take into account information available with contracts. For
instance, imagine a client that wants to use a service exporting the contract a⊕b;
in the simple language of Section 2 the client cannot specify that it wants to con-
nect on b if available, and on a otherwise, for the choice operators are symmetric.
It is unclear to which extent such constructs affect the preoder over contracts.
The discussion of Proposition 2 suggests that there are interesting connections
between the properties of the preorder and the boolean operators over sets
of compliant clients. We aim to further explore such set-theoretic interpretation
of contracts and to devise a query language for service discovery that provides
primitive operators for union, intersection, and negation for contracts. The au-
thors of [6] provide a type system to extract the contract out of a recursion-free
fragment of ccs-like process calculus. We aim to extend such type system to
full ccs, although the task is not trivial because ccs processes may exhibit a
non-regular behavior. When the behavior cannot be captured accurately by our
contract language, regular under- and over-estimations must be provided. Fi-
nally, a major task is to move our investigation from a ccs-like formalism to a
π-calculus one. This will allow us to generalize the forthcoming version of wsdl

which enables the possibility to describe higher-order Web services, but also to
model callbacks, continuation-passing and dynamically bound Web services.

References

1. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M.,
Goland, Y., Gúızar, A., Kartha, N., Liu, C.K., Khalaf, R., König, D., Marin, M.,
Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web Services Business
Process Execution Language Version 2.0 (January 2007),
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html

2. Banerji, A., Bartolini, C., Beringer, D., Chopella, V., et al.: Web Ser-
vices Conversation Language (WSCL) 1.0 (March 2002), http://www.w3.org/
TR/2002/NOTE-wscl10-20020314

http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html
http://www.w3.org/TR/2002/NOTE-wscl10-20020314
http://www.w3.org/TR/2002/NOTE-wscl10-20020314

The Must Preorder Revisited 225

3. Beringer, D., Kuno, H., Lemon, M.: Using WSCL in a UDDI Registry 1.0, UDDI
Working Draft Best Practices Document (2001), http://xml.coverpages.org/
HP-UDDI-wscl-5-16-01.pdf

4. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Pre-proceedings of 6th Symposium on Software
Composition (2007)

5. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. In: Proceedings of 16th European Symposium on Pro-
gramming, LNCS, Springer, Heidelberg (2007)

6. Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A formal account of contracts
for Web Services. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 148–162. Springer, Heidelberg (2006)

7. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for Web Services. In:
Proceedings of 5th ACM SIGPLAN Workshop on Programming Language Tech-
nologies for XML, pp. 37–48. ACM Press, New York (2007)

8. Chaki, S., Rajamani, S.K., Rehof, J.: Types as models: model checking message-
passing programs. SIGPLAN Not. 37(1), 45–57 (2002)

9. Chinnici, R., Haas, H., Lewis, A.A., Moreau, J.-J., et al.: Web Services
Description Language (WSDL) Version 2.0 Part 2: Adjuncts (March 2006),
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060327

10. Chinnici, R., Moreau, J.-J., Ryman, A., Weerawarana, S.: Web Services De-
scription Language (WSDL) Version 2.0 Part 1: Core Language (March 2006),
http://www.w3.org/TR/2006/CR-wsdl20-20060327

11. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Ser-
vices Description Language (WSDL) 1.1 (2001), http://www.w3.org/TR/2001/
NOTE-wsdl-20010315

12. Colgrave, J., Januszewski, K.: Using WSDL in a UDDI registry, version 2.0.2. Tech-
nical note, OASIS (2004), http://www.oasis-open.org/committees/uddi-spec/
doc/tn/uddi-spec-tc-tn-w sdl-v2.htm

13. Gay, S., Hole, M.: Subtyping for session types in the π-calculus. Acta Informat-
ica 42(2-3), 191–225 (2005)

14. Hennessy, M.: Acceptance trees. JACM: Journal of the ACM 32(4), 896–928 (1985)
15. Hennessy, M.C.B.: Algebraic Theory of Processes. Foundation of Computing, MIT

Press, Cambridge (1988)
16. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.: Web

Services Choreography Description Language 1.0 (2005), http://www.w3.org/TR/
2005/CR-ws-cdl-10-20051109/

17. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1982)
18. Nicola, R.D., Hennessy, M.: Testing equivalences for processes. Theor. Comput.

Sci 34, 83–133 (1984)
19. Nicola, R.D., Hennessy, M.: CCS without τ ’s. In: Ehrig, H., Levi, G., Montanari,

U. (eds.) CAAP 1987 and TAPSOFT 1987. LNCS, vol. 249, pp. 138–152. Springer,
Heidelberg (1987)

20. Nielson, H.R., Nielson, F.: Higher-order concurrent programs with finite communi-
cation topology (extended abstract). In: POPL ’94. Proceedings of the 21st ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 84–
97. ACM Press, New York, NY, USA (1994)

21. Parastatidis, S., Webber, J.: MEP SSDL Protocol Framework (April 2005),
http://ssdl.org

http://xml.coverpages.org/HP-UDDI-wscl-5-16-01.pdf
http://xml.coverpages.org/HP-UDDI-wscl-5-16-01.pdf
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060327
http://www.w3.org/TR/2006/CR-wsdl20-20060327
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-w sdl-v2.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-w sdl-v2.htm
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://ssdl.org

Topology-Dependent Abstractions of
Broadcast Networks

Sebastian Nanz, Flemming Nielson, and Hanne Riis Nielson

Informatics and Mathematical Modelling
Technical University of Denmark
{nanz,nielson,riis}@imm.dtu.dk

Abstract. Broadcast semantics poses significant challenges over point-
to-point communication when it comes to formal modelling and ana-
lysis. Current approaches to analysing broadcast networks have focused
on fixed connectivities, but this is unsuitable in the case of wireless net-
works where the dynamically changing network topology is a crucial
ingredient. In this paper we develop a static analysis that automatically
constructs an abstract transition system, labelled by actions and con-
nectivity information, to yield a mobility-preserving finite abstraction of
the behaviour of a network expressed in a process calculus with asyn-
chronous local broadcast. Furthermore, we use model checking based on
a 3-valued temporal logic to distinguish network behaviour which differs
under changing connectivity patterns.

1 Introduction

Broadcast communication, in contrast to point-to-point message passing, is em-
ployed in a wide range of networking paradigms such as Ethernet and wireless
LAN, mobile telephony, or mobile ad-hoc networks. These can be further distin-
guished into approaches where broadcast is taken to be global, i.e. all nodes of
the network receive a broadcast message, or local, such that only neighbours of
the broadcasting node are able to receive. In order to obtain a formal model for
the latter case, the network topology has to be encoded by the chosen modelling
formalism to express the notion of a neighbourhood. Furthermore, the connec-
tivity may change over time, caused by node mobility or similar changes in
environment conditions which are not controlled by the nodes’ protocol actions.

This mix of broadcast behaviour and mobility has turned out to be a challenge
for automated verification and analysis techniques. For instance, model checking
of mobile ad-hoc networks, in a line of work started by [2], has remained limited
to fixed connectivities. In our previous work on static analysis of mobile ad-hoc
networks [11], topology changes are considered in the modelling, but abstracted
into a fixed representation for the sake of the analysis, hence achieving a safe
description of the network, but losing the ability to expose network behaviour
related to connectivity change.

In this paper we address these deficiencies by defining abstract transition sys-
tems which provide finite abstractions of the behaviour of broadcast networks

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 226–240, 2007.
� Springer-Verlag Berlin Heidelberg 2007

Topology-Dependent Abstractions of Broadcast Networks 227

specified in the broadcast calculus bKlaim, which is also introduced in this paper.
The abstractions preserve mobility in the sense that their transitions depend on
connectivity information, and hence reflect changes in connectivity. We present
a 3-valued interpretation of formulae of Action Computation Tree Logic (ACTL)
[13] on abstract transition systems, which captures the nature of the abstraction
by evaluating to “unknown” whenever the abstraction prevents definite conclu-
sions about the concrete behaviour of the related bKlaim network.

We also show how abstract transition systems can be algorithmically con-
structed from networks specified in bKlaim. This is done using a static analysis,
based on the idea of Monotone Frameworks [14], which also gives us fine-grained
control over the coarseness of the abstraction. This analysis has been imple-
mented, and we show how the complete framework enables us expose the influ-
ence of the network dynamics on the resulting network state.

The remainder of the paper is structured as follows. In �2 we present the syn-
tax and operational semantics of bKlaim. In �3 we introduce abstract transition
systems, and describe 3-valued ACTL and its relation to the concrete transition
system of bKlaim. We develop a Monotone Framework and worklist algorithm
to construct abstract transition systems for bKlaim networks in �4. We conclude
in �5. A technical report [12] contains full proofs.

2 bKlaim

Process calculi of the Klaim family [1] are centred around the tuple space
paradigm in which a system is comprised by a distributed set of nodes that
communicate by placing tuples into and getting tuples from one or more shared
tuple spaces. In this paper we use this basic paradigm to model systems com-
municating via local broadcast, i.e. only nodes within the neighbourhood of the
broadcasting node may receive a sent message tuple; this distinguishes bKlaim
from the broadcast calculus CBS [19], where all broadcast is global. In con-
trast to the standard Klaim semantics, where tuple spaces are shared resources
among all nodes, we instrument this approach for the modelling of local broad-
cast: broadcast messages are output into the tuple spaces of neighbouring nodes
to the sending node, where they can be picked up only by the processes re-
siding at the respective locations; this yields an asynchronous version of local
broadcast, in contrast to the calculi CBS� [11] and CMN [9] which both feature
synchronous behaviour. The notion of neighbourhood is expressed by connectiv-
ity graphs, which specify the locations currently connected with a sender and
may change during the evolution of the network.

2.1 Syntax

The bKlaim calculus comprises three parts: networks, processes, and actions.
Networks give the overall structure in which processes and tuple spaces are
located, and processes execute by performing actions. An overview of the syntax
is shown in Table 1.

228 S. Nanz, F. Nielson, and H.R. Nielson

Table 1. Syntax of a fragment of bKlaim

N ::= l ::P located node
| l ::S located tuple space
| N1 ‖ N2 net composition

P ::= nil null process
| a�.P action prefixing
| P1 | P2 parallel composition
| A process invocation

a� ::= bcst�(t) broadcast output
| out�(t) output
| in�(T) input

T ::= F | F, T templates
F ::= f | !x template fields
t ::= f | f, t tuples
f ::= v | l | x tuple fields

Tuples are finite lists of tuple fields, which comprise values v ∈ Val, locations
l ∈ Loc, and variables x ∈ Var. We assume in general that locations are just
distinguished values, i.e. Loc ⊆ Val. A ground tuple t is an element of Val∗.
Templates are used as patterns to select tuples in a tuple space. They are finite
lists of tuple fields and formal fields !x which are used to bind variables to values;
within a template, x must not occur both as a variable and a formal field, or in
more than one formal field. The set fv(t) containing the free variables of tuple t
are defined as usual, and the definition of fv can be extended to templates, ac-
tions, and processes. Values are free as there are no binding statements for them.

Networks consist of located processes and tuple spaces. In contrast to Klaim,
a tuple space S is taken to be a multiset (rather than a set) of tuples, i.e. a
total map from the set of tuples into N0. We say that a tuple t is in the domain
dom(S) of S if S(t) > 0, and use the following notation to express that a copy
of tuple t is added to or removed from a multiset S:

S[t]↑ = λu.

�
S(u) + 1 if u = t
S(u) otherwise

S[t]↓ = λu.

�
S(u)− 1 if u = t ∧ S(u) > 0
S(u) otherwise

We also introduce below a well-formedness condition which ensures that there
is exactly one tuple space per location. This is because tuple spaces in bKlaim
are not seen as freely shared among nodes, but as private components (stores)
associated with the processes residing at the same location.

A process is either the terminated process nil, a process prefixed with an
action to be executed, a parallel composition, or a process invocation to express
recursive behaviour. Process definitions are of the form A � P , where P is closed,
i.e. contains no free variables. As an abbreviation, we may sometimes use the
notation A(t) � P and have P parameterised in the free variables of t.

Actions are equipped with labels � ∈ Lab which facilitate the analysis in
�4. The action bcst
(t) places a tuple t into the set of tuple spaces belonging
to the current neighbours of the sending node, thus describing local broadcast.
Neighbourhoods are defined at the semantic level via the notion of connectivity
graphs. The action out
(t) models the output of a tuple to the private tuple
space of the node performing this action. Using in
(T), processes retrieve tuples
which match the template T from their private tuple space and remove it. Note
that there is no statement corresponding to Klaim’s creation of new locations
newloc(l) because we want to deal with a given set of located nodes which cannot

Topology-Dependent Abstractions of Broadcast Networks 229

spawn themselves by process actions. Because of space constraints, some actions
contained in the full version of bKlaim (such as process migration) are omitted
in this description. We refer the reader to the companion technical report [12].

Example 1. We describe a simple protocol for information retrieval in mobile
ad-hoc networks. A mobile ad-hoc network is a special kind of wireless network,
where participating nodes form temporary multi-hop connections and may act
as both host and router, i.e. both sending own requests and relaying messages
for others. The protocol is specified in bKlaim as follows:

Snd(x) � bcst1(ask, x).Rec(x)
Rec(x) � in2(has, !l , x , !y).Rec(x)
Prc(l) � in3(ask, !x).(in4(x , !y).bcst5(has, l , x , y) | bcst6(ask, x).Prc(l))
Rel � in7(has, !l , !x , !y).bcst8(has, !l , x , y).Rel

Net � l1 ::Snd(t) ‖ l2 :: (Prc(l2) | Rel) ‖ l2 :: [[t, i2] �→ 1]
‖ l3 :: (Prc(l3) | Rel) ‖ l3 :: [[t, i3] �→ 1]

The protocol is initiated on network Net when node l1 executes the process Snd
to search for information on topic t. Node l1 then enters a state where it waits
for (possibly multiple) answers of the form (has, l , x , y), meaning that the node
at location l sent content y concerning topic x .

Nodes l2 and l3 can process ask-messages using Prc. Upon reception, each of
the nodes check whether they have content available in their tuple spaces which
match topic x . If so, they broadcast a has-message containing this content. In
order to make sure that the ask-message is propagated across the whole of the
network, they also rebroadcast this message, and restart process Prc to be ready
to receive other requests.

Rel is a simple relay process for has-messages. Note further that l2 and l3
have tuple spaces with contents i2 and i3 associated with topic t.

2.2 Operational Semantics

As a prerequisite for defining the operational semantics of bKlaim, we have to
give a notion of connectivity between nodes. A connectivity graph as in [11,10]
is a directed graph G on a subset of the set of locations Loc. As usual, V (G)
denotes the set of vertices of G and E(G) its set of edges. Given a graph G, we
write

G(l) = {l′ : (l, l′) ∈ E(G)}

to denote the neighbourhood of a location l.
In this way, a connectivity graph G gives a straightforward notion of connec-

tivity to a network N : a node at location l′ may receive a message sent by a node
at location l if and only if (l, l′) ∈ E(G). Because the graph is directed, both
unidirectional and bidirectional links can be expressed. Note that by separating
connectivity from process actions (which most readily distinguishes bKlaim from
the bπ-calculus [5] for example) we are able to express the behaviour of a va-
riety of networks in which the connectivity may change through changes in the

230 S. Nanz, F. Nielson, and H.R. Nielson

environment conditions, which are not expressed by process actions. Wireless
networks are one example, where node movements trigger both link failures and
the establishment of new links.

Connectivity graphs provide a snapshot of the network connectivity. In con-
trast, a network topology T is a set of connectivity graphs which share the same
set of vertices. We use network topologies to express the set of possible configu-
rations a particular network may be in.

In order to ensure that a network topology and a network agree, we introduce
a well-formedness condition. We first extend the definition of the vertex function
V from graphs to networks:

V (l ::P) = V (l ::S) = {l} and V (N1 ‖ N2) = V (N1) ∪ V (N2)

We say that the pair (N, T) of a network N and network topology T is well-
formed if there is exactly one located tuple space l ::S for each l ∈ V (N), and if
furthermore T contains only connectivity graphs G with V (G) = V (N).

Example 2. Continuing Example 1, we define the following network topologies
over V (Net):

Network topology T1 Network topology T2

�������	l2 �������	l3

�������	l1

���� ��
��

�������	l2 �������	l3

�������	l1

����
�� ��

�������	l2 �� �������	l3

�������	l1

����
�������	l2 �������	l3

�������	l1

����
�� ��

G1 G2 G3 G2

We give the operational semantics of bKlaim by a reduction relation of the
form T 3 M �−→G N , defined in Table 2, together with a straightforward struc-
tural congruence M ≡ N and template matching semantics in Table 3. Deriva-
tions of a network N via the reduction relation are with respect to a network
topology T where (N, T) are well-formed; the operational semantics ensures that
well-formedness is preserved over all derivations. A derivation is parametrised
with a connectivity graph G ∈ T to express that the derivation holds under
the connectivity expressed by G. We may drop the parameter G and write
T 3M �−→ N when a transition does not depend on the actual choice of G ∈ T .
For the sake of the analysis in �4, transitions are labelled with labels � of the
form (l, �) and (l, �[t]), to express that the action labelled � has executed at loca-
tion l, and – in the case of the in
-action only – that the tuple t has been input
at location l.

The bcst-rule puts a tuple t into all tuple spaces in the current neighbourhood
G(l) of the sender location l, where the current neighbourhood is nondetermin-
istically chosen from the network topology T . Rule out puts a tuple t into the
private tuple space at location l. The in-rule inputs (deletes) a tuple contained in
the private tuple space S if it matches to the template T , and continues with the
process Pσ, where σ captures the bindings introduced by the template matching.

Topology-Dependent Abstractions of Broadcast Networks 231

Table 2. Reduction relation of bKlaim

G ∈ T
T � l ::bcst�(t).P ‖

�
l′∈G(l) l′ ::Sl′

(l,�)−−−→G l ::P ‖
�

l′∈G(l) l′ ::Sl′(t)↑

T � l ::out�(t).P ‖ l ::S
(l,�)−−−→ l ::P ‖ l ::S(t)↑

S(t) > 0 match(T, t) = σ

T � l :: in�(T).P ‖ l ::S
(l,�[t])−−−−→ l ::Pσ ‖ l ::S(t)↓

T � M
�−→ M ′

T � M ‖ N
�−→ M ′ ‖ N

N ≡ M T � M
�−→ M ′ M ′ ≡ N ′

T � N
�−→ N ′

Table 3. Structural congruence and template matching of bKlaim

N1 ‖ N2 ≡ N2 ‖ N1

(N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)
l ::P ≡ l ::P | nil
l ::A ≡ l ::P if A � P

l ::P1 | P2 ≡ l ::P1 ‖ l ::P2

match(v, v) = ε match(!x, v) = [v/x]

match(F, f) = σ1 match(T, t) = σ2

match((F, T), (f, t)) = σ1 ◦ σ2

3 Abstract Transition Systems

For a given network, the operational semantics of bKlaim gives rise to a (possibly
infinite) transition system where the transitions are determined by the actions
performed at each step and the connectivity the network has to abide by when
performing a step. For the sake of analysis, we are interested in transforming
this transition system into a finite one which still preserves the influence of the
network topology on the resulting network states. For this purpose this section
introduces abstract transition systems, and a version of Action Computation
Tree Logic (ACTL) [13] to describe their properties. In order to accommodate
the notion of abstraction in the logic, we use a 3-valued interpretation on ab-
stract transition systems so that a formula evaluates to “unknown” whenever
the abstraction prevents us from obtaining a definite result; when evaluating to
“true” or “false” however, an embedding theorem ensures that the same formula
holds (resp. fails) in its 2-valued interpretation on the concrete transition system.

3.1 Exposed Actions

This section introduces the notion of exposed actions which is used to express
abstract network configurations; abstract transition systems, introduced in the
following section, will then describe transitions between such abstract configu-
rations, which are related to transitions between concrete networks.

An exposed action is an action (or tuple) that may participate in the next in-
teraction. In general, a process may contain many, even infinitely many,

232 S. Nanz, F. Nielson, and H.R. Nielson

occurrences of the same action (all identified by the same label) and it may
be that several of them are ready to participate in the next interaction. To
capture this, we define an extended multiset M as an element of:

M = Loc× (Lab ∪Val∗)→ N ∪ {∞}

The idea is that M(l, �) records the number of occurrences of the label �, and
analogously M(l, t) the number of occurrences of the tuple t, at a location l;
there may be a finite number, in which case M(ll) ∈ N, or an infinite number, in
which case M(ll) =∞ (where ll ranges over (l, �) or (l, t)). The set M is equipped
with a partial ordering ≤M defined by:

M ≤M M ′ iff ∀ ll. M(ll) ≤M ′(ll) ∨M ′(ll) =∞

The domain (M,≤M) is a complete lattice, and in addition to least and greatest
upper bound operators, we shall need operations +M and −M for addition and
subtraction, which can be defined straightforwardly.

To calculate exposed actions, we shall introduce the function E : Net → M
which takes a network and calculates its extended multiset of exposed actions;
this function is defined as follows:

E�N1 ‖ N2� = E�N1� +M E�N2�
E�l ::P � = El�P �
E�l ::S� =

�
M,t ⊥M[(l, t) �→ S(t)]

El�nil� = ⊥M

El�a
�.P � = ⊥M[(l, �) �→ 1]

El�P1 | P2� = El�P1� +M El�P2�

El�A� = El�P � if A � P

Note that in the case for tuple spaces, every tuple t ∈ S is recorded with ac-
cording multiplicity S(t) at location l. In the case of actions a
.P , the label � is
recorded at location l with multiplicity 1. The remaining cases are straightfor-
ward. The operations involved in the definition of E are all monotonic such that
a least fixed point is ensured by Tarski’s fixed point theorem.

Example 3. Continuing Example 1, it is easy to check that

E�Net� = [(l1, 1) �→ 1, (l2, 3) �→ 1, (l2, 7) �→ 1, (l3, 3) �→ 1,
(l3, 7) �→ 1, (l2, [t, i2]) �→ 1, (l3, [t, i3]) �→ 1].

We can show that the exposed actions are invariant under the structural con-
gruence and that they correctly capture the actions that may be involved in the
first reduction step.

Lemma 1. If M ≡ N , then E�M� = E�N�. Furthermore, if T 3M �−→G N and
� = (l, �), then � ∈ dom(E�M�); and if � = (l, �[t]), then (l, �), (l, t) ∈ dom(E�M�).

3.2 Abstract Transition Systems

An abstract transition system is a quadruple (Q, q0, δ,E) with the following com-
ponents: A finite set of states Q where each state q is associated with an extended
multiset E[q] and the idea is that q represents all networksN with E�N� ≤M E[q];
an initial state q0, representing the initial network N0; a finite transition relation
δ, where (qs, (G, �), qt) ∈ δ reflects that starting in state qs, under connectivity
G, the action � may execute and give rise to qt.

Topology-Dependent Abstractions of Broadcast Networks 233

Definition 1. We say that a state denoting the multiset E represents a network
N , written N � E, iff E�N� ≤M E.

Definition 2. We say that an abstract transition system (Q, q0, δ,E) faithfully
describes the evolution of a network N0 if:

M � E[qs] and T 3 N0 →∗ M
�−→G N,

imply that there exists a unique qt ∈ Q such that

N � E[qt] and (qs, (G, �), qt) ∈ δ.

In �4 we shall show how to construct an abstract transition system that faithfully
describes the evolution of a given network N .

Example 4. For the network (Net, T1) of Example 1, the static analysis of �4
generates an abstract transition system with 27 states and 46 transitions. We
look at one of these transitions in detail, namely (q3, (G1, (l2, 4[t, i2])), q6) ∈ δ.
For the states q3 and q6 involved in this transition, it holds that

dom(E[q3]) = {(l1, 2), (l2, 4), (l2, 6), (l2, 7), (l3, 3), (l3, 7), (l2, [t, i2]), (l3, [t, i3])}
dom(E[q6]) = {(l1, 2), (l2, 5), (l2, 6), (l2, 7), (l3, 3), (l3, 7), (l3, [t, i3])}

and therefore state q3 represents a network of the form

l1 :: in2(...).Rec(t) ‖ l2 :: (in4(...).bcst5(...) ... | bcst6(...).Prc(l2)) ‖ l2 :: [(t, i2) �→ 1] ‖ ...

and after a transition under connectivity graph G1 with action (l2, 4[t, i2]) (and
analogously for G2, as label 4 denotes a (local) input action which thus does not
depend on connectivity), we end up in state q6 that represents

l1 :: in2(...).Rec(t) ‖ l2 :: (bcst5(...). ... | bcst6(...).Prc(l2)) ‖ l2 :: [(t, i2) �→ 0] ‖

3.3 Interpretation of ACTL Properties

In order to express properties about a network, we are using a variant of Action
Computation Tree Logic (ACTL) [13], which allows us to utilise the labels (G, �)
on the edges of an abstract transition system to constrain the set of paths we are
interested in; in this way we may for example determine which properties hold
if only node movements specified by a subset T ′ ⊆ T of the original topology
are considered. The following grammar describes the syntax of path formulae φ
and state formulae γ:

φ ::= tt | ll | ¬φ | φ ∧ φ | ∃γ
γ ::= XΩ φ | φ UΩ φ

Here, ll denotes (l, �) or (l, t), ∃ is a path quantifier, Ω is a set of transition
labels (G, �) and will be used to constrain the paths a formula is evaluated on,

234 S. Nanz, F. Nielson, and H.R. Nielson

and XΩ and UΩ are next and until operators, respectively. We shall give two
interpretations of this logic; the first relates to the concrete semantics of �2.

We define two judgements N φ and Π γ for satisfaction of φ by a network
N , and γ by a path Π . A path Π is of the form (N0, (G0, �0), N1, (G1, �1), . . .)
where Π(i) �i−→Gi Π(i+1) for i ≥ 0 (we write Π(i) for Ni, and Π [i] for (Gi, �i)).

N tt N ll iff ll ∈ E�N�
N ¬φ iff N � φ N φ1 ∧ φ2 iff N φ1 ∧N φ2

N ∃γ iff there exists a path Π such that Π(0) = N and Π γ
Π XΩ φ iff Π(1) φ and Π [0] ∈ Ω
Π φ1 UΩ φ2 iff there exists k ≥ 0 such that Π(k) φ2 and for all 0 ≤ i < k :

Π(i) φ1 and Π [i] ∈ Ω

Thus the semantics of formulae closely resembles that of ACTL, with the ex-
ception that for the novel clause ll to evaluate to satisfy network N , ll must be
exposed in N .

Clearly, we cannot directly establish satisfaction of a formula on a network
because the related transition system might be infinite. We therefore propose to
check formulae on the basis of abstract transition systems, and formally relate
the results obtained to the concrete network evolution.

The important question is how to represent the nature of the abstraction. A
natural way to model the uncertainty of whether an abstract edge is present
in the concrete transition system is to use a 3-valued logic. Here the classical
set of truth values {0, 1} is extended with a value 1/2 for expressing the uncer-
tainty. Several choices of 3-valued logics exist and we choose here to use Kleene’s
strongest regular 3-valued logic [7]; this is in line with the developments of [3,20].
Formulae defined over the abstraction may make use of all three truth values,
but unlike e.g. [20,15], the abstraction itself will only make use of the value 0
and 1/2.

A simple way to define conjunction (resp. disjunction) in this logic is as the
minimum (resp. maximum) of its arguments, under the order 0 < 1/2 < 1. We
write min and max for these functions, and extend them to sets in the obvious
way, with min ∅ = 1 and max ∅ = 0. Negation ¬3 maps 0 to 1, 1 to 0, and 1/2
to 1/2. Other operations can be lifted from the classical setting to the 3-valued
setting using the method of [16].

Let L(q, ll) = 0 if ll /∈ E[q], and 1/2 otherwise. Furthermore, let DΩ(qs, qt) = 0
if (qs, (G, �), qt) /∈ δ for all (G, �) ∈ Ω, and 1/2 otherwise. The satisfaction
relations [q 3 φ] and [π 3 γ] for states q and paths π = (q0, (G0, �0), q1, . . .) is
defined as follows:

[q 3 tt] = 1 [q 3 ll] = L(q, ll)
[q 3 ¬φ] = ¬3([q 3 φ]) [q 3 φ1 ∧ φ2] = min([q 3 φ1], [q 3 φ2])
[q 3 ∃γ] = max {[π 3 γ] : π(0) = q}
[π 3 XΩ φ] = min([π(1) 3 φ], DΩ(π(0), π(1)))
[π 3 φ1 UΩ φ2] = max {[π 3 φ1 Uk

Ω φ2] : k ≥ 0}
[π 3 φ1 Uk

Ω φ2] = min(min({[π(k) 3 φ2]} ∪ {[π(i) 3 φ1] : i < k}),
min {DΩ(π(i), π(i + 1)) : i < k})

Topology-Dependent Abstractions of Broadcast Networks 235

We lift the notion of representation � from states to paths by defining:

Π � E[π] iff ∀ i ≥ 0. Π(i) � E[π(i)] ∧Π [i] = π[i]

Furthermore, we define an information order � on truth values by 1/2 � 0,
1/2 � 1, and x � x for all x ∈ {0, 1/2, 1}. Using this, we can formulate an
embedding theorem, which allows us to relate the 2- and 3-valued interpretations
of ACTL:

Theorem 1. Suppose (Q, q0, δ,E) faithfully describes the evolution of network
N0, and T 3 N0 →∗ N . Then:

1. If N � E[q] then [q 3 φ] � [N φ].
2. If Π � E[π] then [π 3 γ] � [Π γ].

Example 5. For the abstract transition system for (Net, T1) of Example 1 and 2,
and an Ω containing all possible transition labels, we have

[q0 3 ¬∃[tt UΩ ((l1, [has, l2, t, i2]) ∧ (l1, [has, l3, t, i3]))]] = 1

while on (Net, T2) we get the result 1/2. Using Theorem 1, this means that
(Net, T1) has no evolution such that both [has, l2, t, i2] and [has, l3, t, i3] are
exposed tuples at location l1. In other words, under topology T1, the node l1
requesting information on topic t cannot get replies from both l2 and l3. For
(Net, T2) the analysis states that the abstraction prevents a definite answer.

4 Constructing Abstract Transition Systems

In this section we develop an algorithm for constructing an abstract transition
system. The development amounts to adapting the approach of [17,18] from
the synchronous language CCS to the asynchronous message-passing language
bKlaim. This involves solving the challenge of how to deal with the name bind-
ings resulting from message passing. We employ a classical Control Flow Analysis
like in [6], using judgements of the form

(ρ̂, Ŝ) G N.

The analysis states that ρ̂ correctly describes the name bindings and Ŝ the
contents of tuple stores that may take place during the execution of the net
N using the connectivity graph G. In the subsequent development we shall not
need the Ŝ component as it will be modelled more precisely using the multisets
of exposed labels. We leave the details to the technical report [12].

4.1 Transfer Functions

The abstraction function E only gives us the information of interest for the initial
network. We shall now present auxiliary functions allowing us to approximate
how the information evolves during the execution of the network.

236 S. Nanz, F. Nielson, and H.R. Nielson

Once an action has participated in an interaction, some new actions may
become exposed and some may cease to be exposed. We shall now introduce two
functions GG

ρ̂ and K approximating this information. The relevant information
will be an element of:

T = Loc× (Lab ∪Val∗)→M

As for exposed actions it is not sufficient to use sets: there may be more than
one occurrence of an action that is either generated or killed by another action.
The ordering ≤T is defined as the pointwise extension of ≤M.

Generated Actions. To calculate generated actions, we shall introduce the func-
tion GG

ρ̂ : Net → T which takes a network N and computes an over -
approximation of which actions might be generated in N :

GG
ρ̂ �N1 ‖ N2� = GG

ρ̂ �N1� �T GG
ρ̂ �N2�

GG
ρ̂ �l ::P � = GG

ρ̂,l�P �

GG
ρ̂ �l ::S� = ⊥T

GG
ρ̂,l�nil� = ⊥T

GG
ρ̂,l�a

�.P � = G̃G
ρ̂,l�a

�.P � �T GG
ρ̂,l�P �

GG
ρ̂,l�P1 | P2� = GG

ρ̂,l�P1� �T GG
ρ̂,l�P2�

GG
ρ̂,l�A� = GG

ρ̂,l�P � if A � P

G̃G
ρ̂,l�bcst�(t).P � = ⊥T[(l, �) �→ El�P � +M (

�
M,l′∈G(l),u∈ρ̂�t� ⊥M[(l′, u) �→ 1])]

G̃G
ρ̂,l�out�(t).P � = ⊥T[(l, �) �→ El�P � +M (

�
M,u∈ρ̂�t� ⊥M[(l, u) �→ 1])]

G̃G
ρ̂,l�in

�(T).P � = ⊥T[(l, �) �→ El�P �]

Note that the function carries two more parameters, namely a connectivity graph
G and the environment ρ̂ which we obtain from the Control Flow Analysis (see
above) and which describes the occurring name bindings. The connectivity graph
G is needed because it determines at which locations tuples are generated when
using broadcast. Likewise, we need ρ̂ to correctly determine which tuples might
be output; it is therefore assumed in the following that (ρ̂, Ŝ)

�
T N0 holds

(where
⊔
T is the graph which contains the edges of all G ∈ T), as it can be

shown to imply (ρ̂, Ŝ) G N0 for all G ∈ T .
All actions a
.P then expose El�P �, i.e. the actions of the continuation pro-

cess. Furthermore, bcst
(t) exposes the tuples u ∈ ρ̂�t� for all locations l′ ∈ G(l)
in the neighbourhood of the sending process; note that ρ̂�t� describes an overap-
proximation of the ground tuples t can evaluate to. The action out
(t) exposes
all u ∈ ρ̂�t� only at location l. Analogous to the case for exposed actions, a least
fixed point of GG

ρ̂ can be obtained.
We can show that the the information computed by GG

ρ̂ is invariant under the
structural congruence and potentially decreases with network reduction:

Lemma 2. Suppose (ρ̂, Ŝ)
�
T M holds. If M ≡ N , then GG

ρ̂ �M� = GG
ρ̂ �N�.

Furthermore, if T 3M �−→G N , then GG
ρ̂ �N� ≤T GG

ρ̂ �M�.

Note that the function GG
ρ̂ is defined on pairs of locations and actions only. It

can be trivially extended to the general label � = (l, �[t]) which is used in the
reduction rule for in by defining GG

ρ̂ �N�(l, �[t]) = GG
ρ̂ �N�(l, �).

Topology-Dependent Abstractions of Broadcast Networks 237

Killed Actions. We define the function K : Net → T which takes a network N
and computes an under -approximation of which actions might be killed in N :

K�N1 ‖ N2� = K�N1� T K�N2�
K�l ::P � = Kl�P �
K�l ::S� = �T

Kl�nil� = �T

Kl�a
�.P � = �T[(l, �) �→⊥M[(l, �) �→ 1]] T Kl�P �

Kl�P1 | P2� = Kl�P1� T Kl�P2�

Kl�A� = Kl�P � if A � P

Note that when actions a
.P execute at location l, it is clear that one occurrence
(l, �) can be killed. A greatest fixed point of K can be obtained.

We can show that the the information computed by K is invariant under the
structural congruence and potentially increases with network reduction:

Lemma 3. If M ≡ N , then K�M� = K�N�. Furthermore, if T 3 M
�−→G N

then K�M� ≤T K�N�.

Analogously to the case of GG
ρ̂ we can define an extension of K by

K�N�(l, �[t]) = K�N�(l, �)+M ⊥M [(l, t) �→ 1]

i.e. an input action additionally removes a tuple t from the tuple space.
We can use GG

ρ̂ and K to obtain a transfer function as in a classical Mono-
tone Framework, where E represents a set of exposed actions, and K�N0�(�)
(resp. GG

ρ̂ �N0�(�)) represent the actions which are no longer (resp. newly) ex-
posed by a transition with label �:

transfer(G,�),ρ̂(E) = (E −M K�N0�(�)) +M GG
ρ̂ �N0�(�)

Example 6. Continuing Example 4, we can calculate that

K�Net�(l2, 4[t, i2]) = [(l2, 4) �→ 1, (l2, [t, i2]) �→ 1]
GG
ρ̂ �Net�(l2, 4[t, i2]) = [(l2, 5) �→ 1]

and hence that E[q6] = (E[q3]−MK�Net�(l2, 4[t, i2])) +M GG
ρ̂ �Net�(l2, 4[t, i2]).

Correctness. The following result states that the transfer function provides safe
approximations to the exposed actions of the resulting network:

Theorem 2. Consider the network let A1 � P1; . . . ;Ak � Pk in N0 and suppose
(ρ̂, Ŝ)

�
T N0. If T 3 N0 →∗ M

�−→G N then E�N� ≤M transfer(G,�),ρ̂(E�M�).

4.2 Worklist Algorithm

We are interested in analysing networks N0 for which we assume in the following
that (ρ̂, Ŝ)

�
T N0 holds. We shall now construct an abstract transition system

which faithfully describes the evolution of N0 as specified in �3.2.
The key algorithm is a worklist algorithm, which starts out from the initial

state and constructs the abstract transition system by adding more and more
states and transitions. The algorithm makes use of several auxiliary operations:

238 S. Nanz, F. Nielson, and H.R. Nielson

– Given a state qs representing some exposed actions, enabled selects those
labels � that represent actions that may interact in the next step.

– Once the labels � have been selected, we can use the function transfer of �4.1.
– Finally, update constructs an appropriate target state qt and records the

transition (qs, (G, �), qt).

The algorithm’s main data structures are: A set Q of the current states; a worklist
W being a subset of Q and containing those states that have yet to be processed;
and, a set δ of the current transitions. The algorithm has the following form:

1 Q := {q0}; E[q0] := E�N0�; W := {q0}; δ := ∅;
2 while W �= ∅ do
3 select qs from W; W := W\{qs};
4 foreach G ∈ T do
5 foreach � ∈ enabled(ρ̂,Ŝ)(E[qs]) do
6 let E = transfer(G,�),ρ̂(E[qs]) in update(qs, (G, �), E)

In line 1 both the set of states and the worklist are initialised to contain the
initial state q0, and q0 is associated with the set of the exposed actions of the
initial network E�N0�. The transition relation δ is empty.

The algorithm then loops over the contents of the worklist W by selecting a qs
it contains, and removing it from W (line 3). For each G ∈ T and enabled action
� ∈ enabled(ρ̂,Ŝ)(E[qs]) (lines 4–5) the procedure transfer(G,�),ρ̂(E[qs]) returns an
extended multiset describing the denotation of the target state. The last step is
to update the automaton to include the new transition step, and this is done in
line 6 by the procedure call update(qs, (G, �), E).

Procedure update. The procedure update is specified as follows:

1 procedure update(qs, (G, �), E)
2 if there exists q ∈ Q with H(E[q]) = H(E) then qt := q
3 else select qt from outside Q; Q := Q ∪ {qt}; E[qt] :=⊥M ;
4 if ¬(E ≤M E[qt]) then E[qt] := E[qt]∇ME; W := W ∪ {qt};
5 δ := δ\{(qs, (G, �), q) : q ∈ Q} ∪ {(qs, (G, �), qt)};

First, the target state qt is determined in lines 2–3, where the reusability of a
state is checked by using a granularity function H , which is described below.

In line 4 it is ensured that the description E[qt] includes the required infor-
mation E by using a widening operator ∇M in such a way that termination of
the overall algorithm is ensured. We shall return to the definition of ∇M below.

The transition relation is updated in line 5. The triple (qs, (G, �), qt) is added,
but we also have to remove any previous transitions from qs with label (G, �),
as its target states may be no longer correct. As a consequence, the automaton
may contain unreachable parts, which can be removed at this point or after the
completion of the algorithm by a simple clean-up procedure for Q, W, and δ.

Granularity Function. The most obvious choice for a granularity function H :
M → H might be the identity function, but it turns out that this choice may
lead to nontermination of the algorithm. A more interesting choice is H(E) =
dom(E), meaning that only the domain of the extended multiset is of interest; we
have used this choice to compute our examples. We can show that termination

Topology-Dependent Abstractions of Broadcast Networks 239

of the algorithm is ensured once H is chosen to be finitary, meaning that H is
finite on all finite sets of labels.

Widening Operator. The widening operator ∇M : M×M →M is defined by:

(M1∇MM2)(ll) =

��
�

M1(ll) if M2(ll) ≤ M1(ll)
M2(ll) if M1(ll) = 0 ∧M2(ll) > 0
∞ otherwise

It will ensure that the chain of values taken by E[qt] in line 8 always stabilises
after a finite number of steps. We refer to [4,14] for a formal definition of widening
and merely note that M1)M M2 ≤M M1∇MM2.

Procedure enabled. Recall that E is the extended multiset of exposed actions
in the state of interest, and remember that (ρ̂, Ŝ)

�
T N0 holds. Then:

enabled(ρ̂,Ŝ)(E) = dom(E) ∩ ({(l, �) : � labels an bcst- or out-action} ∪
{(l, �[t]) : � labels an in(T)-action, t ∈ ρ̂�T � and E(l, t) > 0})

First of all, enabled(ρ̂,Ŝ)(E) shall only contain labels � which are exposed in E,
hence � ∈ dom(E). Furthermore, if � is the label of an bcst- or out-action, then
(l, �) ∈ enabled(ρ̂,Ŝ)(E), because these actions can always execute; and if � is the
label of an in(T)-action, we have to check which tuples t contained in E match
the template T and can be input, and record (l, �[t]) ∈ enabled(ρ̂,Ŝ)(E).

Correctness. We can now establish the main result which implies that we can
use the worklist algorithm to produce abstract transition systems for which the
embedding theorem (Theorem 1) is applicable.

Theorem 3. Suppose (ρ̂, Ŝ)
�
T N0 holds for a network N0 and a network

topology T , and furthermore that the worklist algorithm terminates and produces
an abstract transition system A. Then A faithfully describes the evolution of N0.

5 Conclusion

In this paper, we have dealt with the problem of analysing the behaviour of
broadcast networks under changing network connectivity. For networks modelled
in the calculus bKlaim, we have defined an algorithm which constructs a finite
automaton such that all transition sequences obtained by the evolution of a
network correspond to paths in this automaton. We captured the nature of our
abstraction by defining a 3-valued interpretation of a temporal logic such that
a formula evaluating to a definite truth value on the automaton would imply
the truth or falsity of that formula on the transition system of the concrete
network.

As a main direction for future work, we would like to construct the abstract
transition system as a 3-valued structure itself [8], to model the cases where we
can show that progress is enforced.

240 S. Nanz, F. Nielson, and H.R. Nielson

References

1. Bettini, L., et al.: The Klaim project: theory and practice. In: Priami, C. (ed.) GC
2003. LNCS, vol. 2874, Springer, Heidelberg (2003)

2. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for
distance vector routing protocols. Journal of the ACM 49(4), 538–576 (2002)

3. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999)

4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Principles of Programming Languages (POPL’79). Principles of Programming Lan-
guages, pp. 269–282. ACM Press, New York (1979)

5. Ene, C., Muntean, T.: A broadcast-based calculus for communicating sys-
tems. In: Formal Methods for Parallel Programming: Theory and Applications
(FMPPTA’03) (2001)

6. Hansen, R.R., Probst, C.W., Nielson, F.: Sandboxing in myKlaim. In: Availability,
Reliability and Security (ARES’06), pp. 174–181. IEEE Computer Society Press,
Los Alamitos (2006)

7. Kleene, S.C.: Introduction to Metamathematics. Biblioteca Mathematica, vol. 1.
North-Holland, Amsterdam (1952)

8. Larsen, K.G., Thomsen, B.: A modal process logic. In: Logic in Computer Science
(LICS’88), pp. 203–210. IEEE Computer Society Press, Los Alamitos (1988)

9. Merro, M.: An observational theory for mobile ad hoc networks. In: Mathematical
Foundations of Programming Semantics (MFPS’07). Electronic Notes in Theoret-
ical Computer Science, vol. 173, pp. 275–293 (2007)

10. Nanz, S.: Specification and Security Analysis of Mobile Ad-Hoc Networks. PhD
thesis, Imperial College London (2006)

11. Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks.
Theoretical Computer Science 367(1-2), 203–227 (2006)

12. Nanz, S., Nielson, F., Nielson, H.R.: Topology-dependent abstractions of broadcast
networks. Technical report IMM-TR-2007-11, Technical University of Denmark
(2007)

13. Nicola, R.D., Vaandrager, F.W.: Action versus state based logics for transition
systems. In: Guessarian, I. (ed.) Semantics of Systems of Concurrent Processes.
LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990)

14. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

15. Nielson, F., Nielson, H.R., Sagiv, M.: A Kleene analysis of mobile ambients. In:
Smolka, G. (ed.) ESOP 2000 and ETAPS 2000. LNCS, vol. 1782, pp. 305–319.
Springer, Heidelberg (2000)

16. Nielson, F., Nielson, H.R., Sagiv, M.: Kleene’s logic with equality. Information
Processing Letters 80, 131–137 (2001)

17. Nielson, H.R., Nielson, F.: A monotone framework for CCS. (submitted for publi-
cation, 2006)

18. Nielson, H.R., Nielson, F.: Data flow analysis for CCS. In: Program Analysis and
Compilation. Theory and Practice. LNCS, vol. 4444, Springer, Heidelberg (2007)

19. Prasad, K.V.S.: A calculus of broadcasting systems. Science of Computer Program-
ming 25(2-3), 285–327 (1995)

20. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. In:
Principles of Programming Languages (POPL’99), pp. 105–118. ACM Press, New
York (1999)

On the Expressive Power of Global and Local
Priority in Process Calculi

Cristian Versari, Nadia Busi, and Roberto Gorrieri

Università di Bologna, Dipartimento di Scienze dell’Informazione
Mura Anteo Zamboni 7, 40127 Bologna, Italy
{versari,busi,gorrieri}@cs.unibo.it

Abstract. Priority is a frequently used feature of many computational
systems. In this paper we study the expressiveness of two process algebras
enriched with different priority mechanisms. In particular, we consider
a finite (i.e. recursion-free) fragment of asynchronous CCS with global
priority (FAP, for short) and Phillips’ CPG (CCS with local priority),
and we contrast their expressive power with that of two non-prioritised
calculi, namely the π-calculus and its broadcast-based version, called
bπ. We prove, by means of leader-election-based separation results, that
there exists no encoding of FAP into π-Calculus or CPG, under certain
conditions. Moreover, we single out another problem in distributed com-
puting, we call the last man standing problem (LMS for short), that bet-
ter reveals the gap between the two prioritised calculi above and the two
non prioritised ones, by proving that there exists no parallel-preserving
encoding of the prioritised calculi into the non-prioritised calculi retain-
ing any sincere (complete but partially correct, i.e., admitting divergence
or premature termination) semantics.

1 Introduction

Priority is a frequently used feature of many computational systems. High-
priority processes dispose of more central processing unit time in workstations,
or preempt the execution of low priority processes through hardware/software-
driven interrupt mechanisms. In order to model such systems, many basic process
algebras have been enriched with some priority mechanisms (see, e.g., [1,2,3,4,5]).
Priority is also implicitly used in many stochastic process calculi, where immedi-
ate actions take precedence over timed actions (see, e.g., [6,7,8], or where actions
are equipped with an explicit priority level (e.g., [9]).

In this paper we investigate the expressiveness of priority in (untimed) concur-
rent systems, in order to delineate the expressive power gained by the addition
of priority and to compare the relative expressive power of different priority
mechanisms, by studying a couple of problems in distributed systems.

According to the classification in [4], the basic priority mechanisms reported in
the literature can be divided into two main groups: those based on global priority
(see, e.g., [10,3]) and those based on local priority (see, e.g., [2,5]). The difference
is motivated by the scope of the priority effects on the system: in the case of

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 241–255, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

242 C. Versari, N. Busi, and R. Gorrieri

global priority, a high-priority action is able to preempt any other low-priority
action in the system, so that only higher priority processes are allowed to evolve.
In the case of local priority, this effect is limited to the location of the process,
where a location can be thought as a site on a distributed system and may be
represented by the scope of some name or the guarded choice between actions
with different priorities. An example may be helpful in showing the difference
between the two. Consider the system S composed of five processes

S ≡ a.P
∣∣ a.Q1 + b.Q2

∣∣ b.R ∣∣ c.T1 + d.T2
∣∣ c.V

where the sum operator represents the usual choice between different actions,
output actions are overlined and high-priority actions are underlined. According
to the semantics of CCSsg (CCS with a global notion of priority) and CCSsl

(CCS with local priority) reported in [4], the processes a.Q1 + b.Q2 and b.R are
ready to perform a high-priority action on channel b. In CCSsg semantics this
action is forced to happen before any other low priority transition in S, while in
CCSsl semantics, the action b only preempts the execution of the action a, so
that the synchronisation on c of the last two processes may even happen first. In
other words, with a global priority notion the only possible internal transition
of the system S is

S → a.P
∣∣ Q2

∣∣ R ∣∣ c.T1 + d.T2
∣∣ c.V

while in presence of local priority also the evolution

S → a.P
∣∣ a.Q1 + b.Q2

∣∣ b.R ∣∣ T1
∣∣ V

can happen. In both cases only the reaction on channel a is preempted.
As a basic representative for a calculus with global priority, we consider in this

paper a very minimal fragment, we call FAP, of CCS [11] (without restriction
and recursion, with asynchronous communication), enriched with static priority
and global preemption (like in CCSsg reported in [4]) where only the prefix
operator on inputs is present and the asynchronous output is characterised by
the possibility of assigning different priority to the outgoing messages.

As a representative for a calculus with local priority, we consider in this paper
Phillips’ CCS with priority guards (CPG for short) [5].

Moreover, we consider two well-known unprioritised calculi, namely the π-
calculus [12,13] and its broadcast-based version bπ-Calculus [14], that will be
compared with the two prioritised calculi above.

The two problems in distributed systems we will use to distinguish the ex-
pressive power of these four calculi are the leader-election problem [15], already
used to study expressiveness gap between, e.g., synchronous and asynchronous
π-calculus [16], and an apparently new problem we have called the last man
standing problem (LMS for short), consisting in the capability for processes of
recognising the absence of other processes ready to perform synchronisations
or input/output operations. In other words, the LMS problem is solvable if a
process is able to check that it is the only one active in a network.

On the Expressive Power of Global and Local Priority in Process Calculi 243

1.1 Contribution of This Paper

The first application of the leader election problem to the π-Calculus [16] allowed
to observe the superior expressiveness of mixed-choice with respect to separated-
choice in the π-Calculus. Following the same approach many other separation
results have been obtained, each one based on the capability or impossibility
to solve the leader election under appropriate conditions. An adapted version
was used in [14] to show that the broadcast-based bπ-Calculus, is more expres-
sive than the standard π-Calculus provided with point-to-point communication
primitives. The result is based on the idea that broadcast permits to solve the
leader election problem even without any knowledge of the number of processes
participating to the election.

The same approach was used in [5] to separate CPG from CCS and also from
the π-Calculus by exploiting the broadcast-like power of preemption introduced
by priority, while π-Calculus capability of creating new communication links
between processes is exploited to prove the converse separation from CPG. This
result is the only on the expressiveness of priorities in process algebras we are
aware of.

In this paper we first analyse the expressiveness of global priority, in order to
check if it can be proved to be more expressive than local priority as it would
be natural expecting. In order to represent a global priority model we choose
FAP, a fragment of CCS added with stratified, global priority (a slight variant
of the CCS with static priority and global preemption, CCSsg studied in [4])
where the only operator is the prefix on inputs, while the asynchronous output
models the dispatch of messages with two different levels of priority: the delivery
of high-priority messages is ensured to happen before that of low-priority ones.

We prove that this very simple language (deprived of synchronous communi-
cation, choice, recursion or replication and hence finite) consents to write pro-
grams capable of solving the leader election problem in any connected graph of
processes without knowledge of the number of processes involved in the election.

By applying the idea used in [14,5] we have as corollary that FAP cannot
be distributively encoded into the π-Calculus, but we prove this to remain true
also for partially correct encodings which introduce divergence or failure in their
computations as consequences of livelocked or deadlocked conditions. This result
can also be extended to the translations of bπ-Calculus and CPG into the π-
Calculus, thus relaxing the encoding conditions already stated in [14,5].

Another consequence of the above leader election result in FAP is the impos-
sibility of its encoding into CPG under uniformity and independence-preserving
conditions, which constitutes the expected result on the expressiveness gap be-
tween global and local priority in the chosen process algebra framework. It is
worth considering that the separation between these two prioritised languages
and the π-Calculus is stronger than that between FAP and CPG themselves,
which is a first hint on the expressive power of priority on both global and local
approaches.

In order to strengthen the separation between prioritised and non-prioritised
languages, we then introduce a new setting denoted as the last man standing

244 C. Versari, N. Busi, and R. Gorrieri

π

bπ

CPG

FAP

(1) (2)

(3)

no uniform, independ.-preserving encoding. . .

no uniform encoding. . .

no parallel encoding. . .

. . . retaining a reasonable semantics

. . . retaining a sincere semantics

Fig. 1. Impossibility results: (1) C.Ene, T.Muntean [14]; (2, 3) I. Phillips [5,17]; the
remaining ones are presented in this paper

problem. In this setting a bunch of n processes must realise if there is only one
process participating to the LMS (and in that case, the only process would be
the “last man standing”), i.e. understand if n = 1 or n > 1 in a distributed way.
We prove that it is possible to solve the LMS both in FAP and CPG (but we
claim that it is also possible within other priority approaches like [2,4]), while
it is not possible in non-prioritised languages like the π-Calculus but also the
bπ-Calculus. This result implies that there exist no distributed encodings of FAP
and CPG into the bπ-Calculus, hence showing that the greatest expressiveness
of priority does not derive from the broadcast-like power of preemption, but
from the capability of processes to know if another process is ready to perform a
synchronisation on some channel or not. In non-prioritised calculi it is possible
to know if some process is ready to perform some synchronisation, but it is not
decidable if, on the contrary, the condition does not hold. We show that in a
distributed setting this simple capability is proper of priority (global or local,
stratified or not) and cannot be obtained anyhow even if providing broadcast-like
primitives and admitting divergent or deadlocked computations.

The above results are summarised in figure 1.

1.2 Structure of the Paper

The rest of the paper is structured as follows. In section 2 the four process
algebras involved in the separation results are introduced and a brief explanation
of their main features is given. Section 3 contains a short discussion and the
formal definitions of the properties of an encoding. In Sect. 3.1 and 3.2 the leader
election and LMS problems are formalised. In Sect. 4.1 and 4.2 the respective
separation results are shown, then some conclusive remarks are reported.

2 Calculi

We introduce now the calculi of interest in this paper by giving their syntax
and a short explanation of their functioning while for the respective semantics
we refer to [18,19,14,5,17] for lack of space, except for FAP whose definition is
comprehensive.

2.1 The π-Calculus

The π-Calculus [12,13] is a derivation of CCS [11] where processes interact
through synchronisation over named channels, with the capability of

On the Expressive Power of Global and Local Priority in Process Calculi 245

receiving new channels and subsequently using them for the interaction with
other processes in order to model mobility.

Definition 1. Let N be a set of names on a finite alphabet, x, y, . . . ∈ N . The
syntax of the π-Calculus is defined as

P ::= 0
���
�

i∈I
πi.Pi

��� P
�� Q

��� !P
��� (νx)P

π ::= τ
��� x(y)

��� x〈y〉

where: 0 represents the null process, x(y) expresses the capability of performing
an input on the channel x and receiving a datum which is then bound to the
name y; x〈y〉 expresses the capability of sending the name y on the channel x; τ
is the invisible, uncontrollable action; P

∣∣ Q represents the parallel composition
of processes; !P stands for the unlimited replication of process P ;

∑
i∈I πi.Pi

represents the nondeterministic choice between several input / output commu-
nication capabilities, denoted also as π1.P1 + π2.P2 + . . .; (νx)P represents the
scope restriction of the name x to process P .

In order to define the observables of a π-Calculus process P , we introduce the
notion of barb.

Definition 2. Let P be a π-Calculus process. P exhibits barb α, written P ↓ α,
iff

– P ≡ (νỹ)(x(z).Q+R
∣∣ S), with α = x, x /∈ ỹ or

– P ≡ (νỹ)(x〈z〉.Q+R
∣∣ S), with α = x, x /∈ ỹ.

Each barb α represents one action that P is immediately ready to perform.
For a full treatment we refer to [18,19].

2.2 The bπ-Calculus

The bπ-Calculus [14] is a variant of the π-Calculus where the point-to-point syn-
chronisation mechanism is replaced by broadcast communication. For example,
while the π-Calculus program

S ≡ a〈b〉.P
∣∣ a(x).Q ∣∣ a(y).R ∣∣ a(z).T

can evolve in one step to a system like S1

S → S1 ≡ P
∣∣ Q{b/x} ∣∣ a(y).R ∣∣ a(z).T

where only one of Q,R, S is affected by the performed communication, in bπ-
Calculus the system S directly evolves to S2

S → S2 ≡ P
∣∣ Q{b/x} ∣∣ R{b/y} ∣∣ T {b/z}

where all the processes listening on channel a receive the broadcasted message.

246 C. Versari, N. Busi, and R. Gorrieri

Definition 3. Let N be a set of names on a finite alphabet, x, y, . . . ∈ N . The
syntax of the bπ-Calculus is defined in terms of the following grammar 1

P ::= 0
��� A〈x̃〉

���
�

i∈I
αi.Pi

��� P1
�� P2

��� νxP
��� (rec A〈x̃〉.P)〈ỹ〉

where
αi ::= x(y)

∣∣∣ xy
∣∣∣ νyxy

∣∣∣ τ

As for the π-Calculus, we define the notion of barb in order to express the
observable actions a bπ process is ready to perform.

Definition 4. Let P be a bπ-Calculus process. P exhibits barb α, written P ↓ α,
iff one of

– P ≡
∑

i∈I πi.Pi, πi = x(y) for some i and α = x;
– P ≡

∑
i∈I πi.Pi, πi = x〈y〉 for some i and α = x;

– P ≡ P1
∣∣ P2 and P1 ↓ α ∨ P2 ↓ α;

– P ≡ νaP ′ and P ′ ↓ α, with α, α
= a;
– P ≡ (recA〈x̃〉.P ′)〈ỹ〉 and P ′[(recA〈x̃〉.P ′)/A, ỹ/x̃] ↓ α;

is satisfied.

The original semantics is given in terms of a labelled transition systems: in order
to simplify and uniform the notation, from now on we say that P → Q ⇐⇒
P

xy−→ Q∨P νyxy−−−→ Q∨P τ−→ Q. For a detailed description of bπ-Calculus syntax
and its semantics we refer to [14] for lack of space.

2.3 The CPG Language

The CPG language [5] derives from CCS with the addition of a local notion of
priority over actions. Each action is guarded by a set of names representing the
actions whose availability may prevent its execution. For example, the system S

S ≡ a.P
∣∣ a.Q ∣∣ (a : b.R1 + c : d.R2)

∣∣ b.T ∣∣ d.V
may perform a synchronisation on channel a, but also on channel d because no
action c is available. Instead a communication on b is not possible because it is
prevented by the presence of the action a.

Definition 5. Let N be a set of names on a finite alphabet, x, y, . . . ∈ N . CPG
syntax is defined in terms of the following grammar

P ::= 0
��� A〈x̃〉

���
�

i∈I
Si : αi.Pi

��� P1
�� P2

���

νxP
��� A(x1, . . . , xn)

def
= P

where
αi ::= x

∣∣∣ x
∣∣∣ τ

and Si ⊆ N represents the set of actions whose co-actions availability prevents
the execution of αi.
1 For sake of clarity we maintain bπ original syntax since for its semantics we refer

entirely to [14].

On the Expressive Power of Global and Local Priority in Process Calculi 247

We report the definition of barb for CPG in [17].

Definition 6. Let P be a CPG process. P exhibits barb α, written P ↓ α, iff

– P ≡ (νỹ)(S : x.Q+R
∣∣ T), with α = x, x /∈ ỹ or

– P ≡ (νỹ)(S : x.Q+R
∣∣ T), with α = x, x /∈ ỹ.

For a full treatment of the CPG language we refer to [5,17].

2.4 The FAP Language

As previously outlined, the FAP language is a slight variant of a minimal CCSsg

fragment, that is CCS added with static, global priority [4]: by keeping FAP
minimal the expressive power of global priority can be better isolated. Only two
operators are present in FAP: parallel composition and prefix. The prefix oper-
ation is allowed only after input actions, so that the output can be considered
asynchronous as for the asynchronous π-Calculus (see e.g. [16]). Output actions
are characterised by two priority levels, meaning that high priority output syn-
chronisations are guaranteed to happen before low priority ones. As an example,
consider the system

S ≡ a.P
∣∣ a.Q ∣∣ b.R ∣∣ a ∣∣ a ∣∣ b

The processes a, a, b model messages which must be delivered to the processes
listening on the appropriate channels: The message a has higher priority w.r.t.
any other message in S and hence must be delivered before. Consequently the
only possible transitions of S are

S → P
∣∣ a.Q ∣∣ b.R ∣∣ a ∣∣ b S → a.P

∣∣ Q ∣∣ b.R ∣∣ a ∣∣ b
where the process receiving the message is nondeterministically chosen. After
this transition, either a or b can finally be delivered. In order to simplify the
notation, inputs lack any denotation of priority, but the results presented in this
paper are completely independent of this design choice.

Definition 7. Let N be a set of names on a finite alphabet, x, . . . ∈ N . FAP
syntax is defined in terms of the following grammar

P ::= 0
��� x.P

��� x
��� x

��� P
�� Q

In order to keep it simple as well, we define FAP semantics in terms of a reduction
system in the style of [18].

Definition 8. Structural congruence for FAP is the congruence ≡ generated by
the following equations:

P
∣∣ 0 ≡ P, P

∣∣ Q ≡ Q
∣∣ P, P

∣∣ (Q
∣∣ R) ≡ (P

∣∣ Q)
∣∣ R

248 C. Versari, N. Busi, and R. Gorrieri

Definition 9. FAP operational semantics is given in terms of the reduction
system described by the following rules:

x.P
�� x �→ P x.P

�� x � P

P � P ′

P
�� Q � P ′

�� Q

P �→ P ′ P
�� Q �/ R

P
�� Q �→ P ′

�� Q

P ≡ Q P �→ P ′ P ′ ≡ Q′

Q �→ Q′
P ≡ Q P � P ′ P ′ ≡ Q′

Q � Q′

We say that P → Q ⇐⇒ P �→ Q ∨ P � Q.

Definition 10. For any process in FAP, the function fn is defined as

fn(0) = ∅ fn(x) = {x} fn(x.P) = {x} ∪ fn(P)

fn(x) = {x} fn(P
∣∣ Q) = fn(P) ∪ fn(Q)

As for previous languages, we define the notion of barb.

Definition 11. A FAP process P exhibits barb α, written as P ↓ α, iff

– P ≡ x.Q
∣∣ R, α = x, or

– P ≡ x
∣∣ R, α = x, or

– P ≡ x
∣∣ R, α = x.

Proposition 1. FAP is not Turing-complete.

Proof. Every process P ∈ FAP terminates — FAP lacks any loop operator such
as bang or recursion.

3 Encodings

In order to provide the results previously outlined, we now formalise the encoding
conditions relevant for the expressiveness separation between languages.

We first formalise the notion of observables of a program computation, in the
style of [17].

Definition 12. Let L be a process language and processes P, P0, . . . ∈ L. A
computation C of P is a finite or infinite sequence P = P0 → P1 → · · · . C is
maximal if it cannot be extended.

A computation of a process P is the sequence of states P can reach during its
execution. Each process P may present many different computations due to the
nondeterminism intrinsic in concurrent calculi.

Definition 13. Let L be a process language with names in N and processes
P0, . . . , Pi ∈ L. Let C be a computation P0 → · · · → Pi · · · . Given a set of
intended observables Obs ⊆ N , the observables of C are Obs(C) = {x ∈ Obs :
∃i Pi ↓ x}.

On the Expressive Power of Global and Local Priority in Process Calculi 249

The observables of a computation C are the set of all the external interactions
the process may perform in the states reached during the computation.

Some of the separation results are based on the topology of the network of
processes: for example, the encoding impossibility of the π-Calculus into value-
passing CCS [16] is based on the hypothesis that the encoding does not increase
the connection of the network, that is all the processes independent (not sharing
free names) in the source language must remain independent after the encoding.
The same criterion will be necessary to separate FAP and CPG.

Definition 14. Let L be a process language. Two processes P,Q ∈ L are inde-
pendent if they do not share any free names, that is fn(P) ∩ fn(Q) = ∅.

We now define the conditions an encoding may preserve, in the style of [17].

Definition 15. Let L,L′ be process languages. An encoding
[[
·
]]

: L→ L′ is

1. observation-respecting if ∀P ∈ L,
– for every maximal computation C of P there exists a maximal computa-

tion C′ of
[[
P

]]
such that Obs(C) = Obs(C′);

– for every maximal computation C of
[[
P

]]
there exists a maximal com-

putation C′ of P such that Obs(C) = Obs(C′);
2. weakly-observation-respecting if ∀P ∈ L,

– for every maximal computation C of P there exists a maximal computa-
tion C′ of

[[
P

]]
such that Obs(C) = Obs(C′);

– for every maximal computation C of
[[
P

]]
there exists a maximal com-

putation C′ of P such that Obs(C) ⊆ Obs(C′);
3. distribution-preserving if ∀P1, P2 ∈ L,

[[
P1

∣∣ P2
]]

=
[[
P1

]] ∣∣ [[
P2

]]
;

4. renaming-preserving if for any permutation σ of the source names in L there
exists a permutation θ in L′ such that

[[
σ(P)

]]
= θ(

[[
P

]]
) and the permu-

tations are compatible on observables, that is σ|Obs = θ|Obs;
5. independence-preserving if ∀P,Q ∈ L, if P and Q are independent then[[

P
]]

and
[[
Q

]]
are also independent.

The observation-respecting property is the minimal requirement that any rea-
sonable encoding should preserve: it ensures that some intended observable be-
haviour is preserved by the translation. The weak variant of this condition admits
encodings which introduce divergence or failure deriving from livelocks or dead-
locks. Under certain conditions, like fairness or other hypotheses on scheduling
or execution, the introduction of divergence or failure by the encoding may be
tolerated [20,21] because it would be guaranteed not (or very unlikely) to happen
anyway.

The distribution-preserving is a very important feature of an encoding in a
concurrent framework: it implies its compositionality and above all it guarantees
that the degree of parallelism of the translated system does not decrease.

The renaming-preserving property states that the encoding should not intro-
duce asymmetries in the system, essential condition to preserve when impossi-
bility results on problems such as the leader election are completely based on
the symmetric topology of the network.

250 C. Versari, N. Busi, and R. Gorrieri

Independence-preserving represents the property of not increasing the con-
nection of the network.

According to [16,17], a distribution- and renaming-preserving encoding is
called uniform, and reasonable if it preserves the intended observables over max-
imal computations. We call sincere a weakly-observation-respecting encoding,
which is complete but only weakly correct, in the meaning that it admits diver-
gence or premature termination.

3.1 The Leader Election Problem

An electoral system represents the situation of a bunch of processes (modelling
for example a set of workstations in a network) aiming at reaching a common
agreement, i.e. deciding which one of them (an no other) is the leader. The
modelling of the election problem in process algebras requires that the system
composed of the network of processes will sooner or later signal unequivocally
the result of the election on some channels ωi, which become consequently the
observables of interest on the computations of the system.

Definition 16. Let L be a process language, and processes P1, . . . , Pk ∈ L. A
network Net of size k, with k ≥ 1, is a system Net = P1

∣∣ . . .
∣∣ Pk.

Definition 17. A network Net of size k is an electoral system if for every
maximal computation C of Net ∃i ≤ k : Obs(C) = {ωi}, where Obs = {ωi : i ∈
N}.
In order to keep notation simple, the definition of electoral system reflects the
design choices kept in [16,14,5] which are based on the hypothesis that the system
will never perform external interactions on channel which are not intended to
be observable. As in [5,17], the winner process (the leader) is supposed to signal
the outcome of the election, while all the other processes simply do nothing.

Some additional definitions are given in order to formalise the idea of con-
nected network, in the style of [16].
Definition 18. A hypergraph of size k is a tuple H = 〈N,X, t〉 where N is
a finite set of nodes, |N | = k, X a finite set of edges, and t : X → 2N is a
function which assigns to each x ∈ X a set of nodes, t(x) = {n1, . . . , ni}. Two
nodes n1, n2 ∈ N are neighbours if ∃x ∈ X : {n1, n2} ⊆ t(x).

Definition 19. Given a network Net = P1
∣∣ . . .

∣∣ Pk, the hypergraph associ-
ated to Net is H(Net) = 〈N,X, t〉 with N = {1, . . . , k}, X = fn(P1

∣∣ . . .
∣∣ Pk),

and ∀x ∈ X, t(x) = {n : x ∈ fn(Pn)}.
Definition 20. A hypergraph H = 〈N,X, t〉 is connected if |N | = 1 or ∃n ∈
N, x ∈ X : {n} ⊂ t(x) and H ′ = 〈N ′, X, t′〉 is connected, where N ′ = N \ {n}
and t′(x) = t(x) \ {n}∀x. H is fully connected if |N | = 1 or ∀n1, n2 ∈ N ∃x ∈
X : {n1, n2} ⊂ t(x).

In a connected hypergraph each pair of nodes is connected by a sequence of
hyperedges: Def. 20 concisely represents this condition. Nodes are directly con-
nected by an edge in a fully connected hypergraph. We say that a network is
(fully) connected if the associated hypergraph is (fully) connected.

On the Expressive Power of Global and Local Priority in Process Calculi 251

3.2 The Last Man Standing Problem

The last man standing represents a very simple situation where a bunch of n
processes in a fully connected network must realise if n = 1 or n > 1 in a
distributed way. The possibility or impossibility to solve the LMS problem is
based on the idea that in a given language L a process P may or may not
know if another process Q is ready to perform some intended action on a given
channel. Usually the only way P has to know the presence of Q is to try a
synchronisation on it. Since the input (and often also the output) is blocking, P
results blocked if the condition does not hold, or it follows another computation
without knowledge on the presence of Q. The definition of LMS system follows.

Definition 21. A network Netk of size k is a LMS system if for every maximal
computation C of Netk

– Obs(C) = {y} if k = 1,
– Obs(C) = {n} if k > 1,

where Obs = {y, n}.

The above definition implies that any LMS system is a fully connected network.
It is possible to adapt the definition for not fully connected networks, in order
to better exploit the scoping of local priorities and still the separation results
based on LMS would hold.

4 Separation Results

The separation results previously outlined follow. We first give those based on
the leader election, and then those based on the LMS problem.

4.1 Leader-Election-Based Separation Results

The bπ-Calculus and CPG were proved capable of solving the leader election in
a fully connected network without knowledge of the number of processes. Here
we show that in FAP this is possible in any (not only fully) connected network.

Theorem 1. Let P1, . . . , Pk be FAP processes, Net = P1
∣∣ · · · ∣∣ Pk and H =

〈N,X, t〉 be the hypergraph of size k associated to Net. Let

Pn = mn

∣∣ sn ∣∣ mn.sn.(ωn

∣∣ dn1

∣∣ · · · ∣∣ dnzn
)∣∣ dn1.(sn

∣∣ dn1

∣∣ · · · ∣∣ dnzn
)

...∣∣ dnzn .(sn
∣∣ dn1

∣∣ · · · ∣∣ dnzn
)

where Pi and Ph are neighbours iff ∃j, l : dij = dhl, with ωi, sj ,mh distinct and
ωi
= sj
= mh
= dpq , ∀i, j, h, p, q. If H is connected then Net is an electoral
system.

252 C. Versari, N. Busi, and R. Gorrieri

The following lemma [17] is needed to prove that the above results cannot be
obtained without knowledge of the number of processes in the electoral system
and also to show that the LMS problem is undecidable in the π-Calculus. As
noted in [17], it would also hold for any language having comparable semantics
of the parallel operator, such as Mobile Ambients [22].

Lemma 1. 1. For any π-Calculus processes P1, P2, if Pi has a maximal compu-
tation with observables Oi(i = 1, 2) then P1

∣∣ P2 has a maximal computation
with observables O such that O1 ∪O2 ⊆ O.

Next we state a similar but weaker result for the bπ-Calculus, which is also
needed for the separation from FAP and CPG based on the LMS problem.

Lemma 2. 1. For any bπ-Calculus processes P1, P2, if Pi has a maximal com-
putation with observables Oi(i = 1, 2) then P1

∣∣ P2 has two maximal com-
putations C1, C2 (not necessarily distinct) with respective observables O′1, O

′
2

such that Oi ⊆ O′i.

The next theorem follows the idea in [14,5]. As discussed for the definition of
sincere semantics, here the condition on the preserved observables is weaker than
those considered in [14,5] but it is possible to relax them as well.

Theorem 2. There is no distribution-preserving and weakly-observation-
respecting encoding of FAP into the π-Calculus.

Proof. Consider Pn = mn

∣∣ sn
∣∣ mn.sn.(ωn

∣∣ d)
∣∣ d.(sn

∣∣ d)
for n = 1, 2. By theorem 1, Net1 = P1, Net2 = P2 and Net12 = P1

∣∣ P2 are
electoral systems. Let

[[
·
]]

be a weakly-observation-respecting and distribution-
preserving encoding of FAP into the π-Calculus. Hence

[[
P1

]]
has a

maximal computation C1 with observables Obs(C1) = ω1, because of the weakly-
observation-respecting condition. But also

[[
P2

]]
has a maximal computation

C2 with observables Obs(C2) = ω2.
So we have, for the distribution-preserving property,[[

Net12
]]

=
[[
P1

∣∣ P2
]]

=
[[
P1

]] ∣∣ [[
P2

]]
By lemma 1,

[[
Net12

]]
has a maximal computation C12 with observables

{ω1, ω2} ⊆ Obs(C12), not included in the set of observables of any maximal com-
putation of Net12, which contradicts

[[
·
]]

being weakly-observation-preserving.

Theorem 3. There is no uniform, observation-respecting and independence-
preserving encoding of FAP into CPG.

Proof. (sketch) By theorem 1, it is possible to solve in FAP the leader election
in any symmetric ring. The impossibility result is then the same proved for the
encoding of the π-Calculus into CPG [17]. It is worth remarking that while the
separation between π-Calculus and CPG derives from the capability of com-
municating new names proper of the π-Calculus, the separation between FAP
and CPG is a strict consequence of the different scope of priority in the two
languages.

On the Expressive Power of Global and Local Priority in Process Calculi 253

4.2 LMS-Based Separation Results

In this section the separation results based on the last man standing problem are
formalised. First we show that both in FAP and CPG the LMS can be solved,
and then from this expressive capability we derive the impossibility of encoding
FAP or CPG into π-Calculus or bπ under distribution and weak preservation of
observables hypotheses.

Lemma 3. Let P be a FAP process,

P = m
∣∣ s ∣∣ q ∣∣ k.(s ∣∣ q ∣∣ k) ∣∣ m.s.(s.q.(k ∣∣ n)

∣∣ l ∣∣ l.q.y)
Then Netk = P

∣∣ · · · ∣∣ P︸ ︷︷ ︸
k

is a LMS system of size k, ∀k ≥ 1.

Lemma 4. Let P be a CPG process,

P = a : b.a
∣∣ b.(b : τ.y

∣∣ z : b.(b
∣∣ n ∣∣ z))

Then Netk = P
∣∣ · · · ∣∣ P︸ ︷︷ ︸

k

is a LMS system of size k, ∀k ≥ 1.

The following is an alternative way w.r.t. theorem 2 to prove the separation
between FAP and π-Calculus and act as a template for the next theorems.

Theorem 4. There is no distribution-preserving and weakly-observation-
respecting encoding

[[
·
]]

of FAP into the π-Calculus.

Proof. Suppose
[[
·
]]

is distribution-preserving and weakly-observation-respect-
ing. By lemma 3 ∃P : Netk is a LMS system for any k ≥ 1, where Netk =
P

∣∣ . . .
∣∣ P . By the weakly-observation-respecting condition,

[[
Net1

]]
has a

computation C1 with observables Obs(C1) = {y}. By the distribution-preserving
condition[[

Netk
]]

=
[[
P

∣∣ . . .
∣∣ P]]

=
[[
P

]] ∣∣ . . .
∣∣ [[

P
]]

=
[[

Net1
]] ∣∣ . . .

∣∣ [[
Net1

]]
By lemma 1 then there exists a maximal computation Ck of

[[
Netk

]]
such that

Obs(C1) = {y} ⊆ Obs(Ck), while no computation of Netk contains observable y
for k ≥ 2, which contradicts the weakly-observation-respecting property of the
encoding function

[[
·
]]
.

Theorem 5. There is no distribution-preserving and weakly-observation-
respecting encoding of CPG into the π-Calculus.

Proof. By lemma 4 exactly like for theorem 4.

Theorem 6. There is no distribution-preserving and weakly-observation-
respecting encoding of FAP into the bπ-Calculus.

Proof. By lemmas 2 and 3, exactly like for theorem 4.

Theorem 7. There is no distribution-preserving and weakly-observation-
respecting encoding of CPG into the bπ-Calculus.

Proof. By lemmas 2 and 4, exactly like for theorem 4.

254 C. Versari, N. Busi, and R. Gorrieri

5 Conclusion

We have considered FAP, a finite fragment of CCS added with global priority,
and we have proved, by means of leader-election-based separation results, that
it is not possible to encode it into CPG under uniformity and independence-
preserving conditions on the encoding, thus providing the first expressiveness
separation result between global and local priority within a process algebra
framework. We have then proved that FAP cannot be distributively translated
into the π-Calculus even if allowing partially correct implementations, i.e. en-
codings which may introduce divergence in computations or also premature ter-
mination caused by deadlock.

We have then analysed another setting, called last man standing (LMS) prob-
lem which allows to considerably strengthen the separation between prioritised
(with both global or local priority) languages and non prioritised ones, by show-
ing that even if we equip the language with broadcast-based primitives like the
bπ-Calculus, the expressiveness of priority cannot be obtained under parallel-
preserving conditions.

In conclusion we have showed that, within the context of the process algebras
considered here, it is not possible to have a distribution-preserving encoding of
neither global nor local priority in non-prioritised languages even if we admit
asymmetric translations or divergence/failure in the computation as a conse-
quence of livelocks or deadlocks. This impossibility result does not depend on
the capability of communication of names or values, synchrony or asynchrony
of the output, scope extrusion, choice on the available input/outputs, recursion
or replication, point-to-point or broadcast communication/synchronisation type,
but depends only on the power of instantaneous preemption characteristic of the
prioritised languages considered in this paper. As a consequence we can see that
it is not possible any purely distributed implementation of such kinds of pri-
ority on top of standard process calculi even if admitting good or randomised
encodings like those considered in [20,21] for the implementation of the choice
operator. The strength of the separation suggests also that any encoding trying
to preserve some relaxed condition on the distribution may be affected by severe
performance issues due to the further synchronisations needed to preserve the
constraint of instantaneous preemption.

As future work we plan to analyse process algebras equipped with non-
instantaneous priority (in the style of the expressiveness study on PrioLinCa
[23]) i.e. languages where the effect of preemption is not immediate, in order to
better characterise the expressive power of preemption and to identify prioritised
constructs easier to implement in a parallel, if not distributed, framework.

References

1. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Ready-trace semantics for concrete
process algebra with the priority operator. Comput. J. 30(6), 498–506 (1987)

2. Camilleri, J., Winskel, G.: Ccs with priority choice. Inf. Comput. 116(1), 26–37
(1995)

On the Expressive Power of Global and Local Priority in Process Calculi 255

3. Cleaveland, R., Hennessy, M.: Priorities in process algebras. Inf. Comput. 87(1/2),
58–77 (1990)

4. Cleaveland, R., Lüttgen, G., Natarajan, V.: Priority in process algebra. In:
Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 711–
765. Elsevier, Amsterdam (2001)

5. Phillips, I.: Ccs with priority guards. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR
2001. LNCS, vol. 2154, pp. 305–320. Springer, Heidelberg (2001)

6. Bernardo, M., Gorrieri, R.: Extended markovian process algebra. In: Sassone, V.,
Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer,
Heidelberg (1996)

7. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality. In:
Hermanns, H. (ed.) Interactive Markov Chains. LNCS, vol. 2428, Springer, Heidel-
berg (2002)

8. Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-markov pro-
cesses. Theor. Comput. Sci. 282(1), 5–32 (2002)

9. Bernardo, M., Gorrieri, R.: A tutorial on empa: A theory of concurrent processes
with nondeterminism, priorities, probabilities and time. Theor. Comput. Sci. 202(1-
2), 1–54 (1998)

10. Baeten, J., Bergstra, J., Klop, J.: Syntax and defining equations for an interrupt
mechanism in process algebra. Fundamenta Informaticae IX(2), 127–168 (1986)

11. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

12. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i. Inf. Com-
put. 100(1), 1–40 (1992)

13. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, ii. Inf. Com-
put. 100(1), 41–77 (1992)

14. Ene, C., Muntean, T.: Expressiveness of point-to-point versus broadcast communi-
cations. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 258–268.
Springer, Heidelberg (1999)

15. Bougé, L.: On the existence of symmetric algorithms to find leaders in networks of
communicating sequential processes. Acta Inf. 25(2), 179–201 (1988)

16. Palamidessi, C.: Comparing the expressive power of the synchronous and asyn-
chronous pi-calculi. Mathematical Structures in Computer Science 13(5), 685–719
(2003)

17. Phillips, I.: Ccs with priority guards. Available at
http://wwwhomes.doc.ic.ac.uk/∼iccp/papers/ccspgfullrevised.pdf

18. Milner, R.: The polyadic pi-calculus: a tutorial. In: Bauer, F.L., Brauer, W.,
Schwichtenberg, H. (eds.) Logic and Algebra of Specification, pp. 203–246.
Springer, Heidelberg (1993)

19. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge Uni-
versity Press, New York, NY, USA (1999)

20. Nestmann, U.: What is a “good” encoding of guarded choice? Inf. Comput. 156(1-
2), 287–319 (2000)

21. Palamidessi, C., Herescu, O.M.: A randomized encoding of the pi-calculus with
mixed choice. Theor. Comput. Sci. 335(2-3), 373–404 (2005)

22. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) ETAPS 1998 and
FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

23. Bravetti, M., Gorrieri, R., Lucchi, R., Zavattaro, G.: Quantitative information in
the tuple space coordination model. Theor. Comput. Sci. 346(1), 28–57 (2005)

http://wwwhomes.doc.ic.ac.uk/~iccp/papers/ccspgfullrevised.pdf

A Marriage of Rely/Guarantee and Separation
Logic

Viktor Vafeiadis and Matthew Parkinson

University of Cambridge

Abstract. In the quest for tractable methods for reasoning about con-
current algorithms both rely/guarantee logic and separation logic have
made great advances. They both seek to tame, or control, the complexity
of concurrent interactions, but neither is the ultimate approach. Rely-
guarantee copes naturally with interference, but its specifications are
complex because they describe the entire state. Conversely separation
logic has difficulty dealing with interference, but its specifications are
simpler because they describe only the relevant state that the program
accesses.

We propose a combined system which marries the two approaches. We
can describe interference naturally (using a relation as in rely/guarantee),
and where there is no interference, we can reason locally (as in separation
logic). We demonstrate the advantages of the combined approach by
verifying a lock-coupling list algorithm, which actually disposes/frees
removed nodes.

1 Introduction

Reasoning about shared variable concurrent programs is difficult, because the
interference between the simultaneously executing threads must be taken into
account. Our aim is to find methods that allow this reasoning to be done in a
modular and composable way.

On the one hand, we have rely/guarantee, a well-established method, intro-
duced by Jones [11], that is popular in the derivation and the post-hoc verifica-
tion of concurrent algorithms. RG provides a good way of describing interference
by having two relations, the rely R and the guarantee G, which describe the state
changes performed by the environment or by the program respectively. Its dis-
advantage is that the specification of interference is global : it must be checked
against every state update, even if it is ‘obvious’ that the update cannot inter-
fere with anything else. Even Jones [12] acknowledges this limitation and still
considers the search for a satisfactory compositional approach to concurrency an
‘open problem.’

On the other hand, the recent development of separation logic [19,15] sug-
gests that greater modularity is possible. There, the ∗ operator and the frame
rule are used to carve all irrelevant state out of the specification and focus only
on the state that matters for the execution of a certain component or thread.
This makes specifications local ; two components may interfere, only if they have

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 256–271, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Marriage of Rely/Guarantee and Separation Logic 257

overlapping specifications. Its disadvantage is that, in dealing with concurrent
programs, it took the simplest approach and uses invariants to specify thread in-
teraction. This makes expressing the relational nature of interference often quite
difficult and requires many auxiliary variables [17]. Even O’Hearn acknowledges
the weaknesses of separation logic, and asks if “a marriage between separation
logic and rely-guarantee is also possible” [15].

Here we present such a marriage of rely/guarantee and separation logic, which
combines their advantages and eliminates some of their weaknesses. We split
the state into two disjoint parts: (i) the shared state which is accessible by all
threads, and (ii) the local state which is accessible by a single component. Then,
we use rely/guarantee to deal with the shared state, and separation logic to deal
with the local state. This is best illustrated by our parallel composition rule:

3 C1 sat (p1, R ∪G2, G1, q1) 3 C2 sat (p2, R ∪G1, G2, q2)

3 C1‖C2 sat (p1 ∗ p2, R, G1 ∪G2, q1 ∗ q2)

This rule is identical to the standard rely/guarantee rule except for the use of
∗ instead of ∧ in the pre- and post-conditions. In our specifications, the pre-
conditions (e.g. p1) and the postconditions (e.g. q1) describe both the local and
the shared state. The rely conditions (e.g. R∪G2) and the guarantee conditions
(e.g. G1) describe inter-thread interference: how the shared state gets modified.

The separating conjunction between assertions about both the local and the
shared state splits local state (l) in two parts, but does not divide the shared
state (s).

(p1 ∗ p2)(l, s)
def= ∃l1 l2. l = l1 8 l2 ∧ p1(l1, s) ∧ p2(l2, s)

The parallel composition rules of rely/guarantee and separation logic are special
cases of our parallel composition rule. (1) When the local state is empty, then
p1 ∗ p2 = p1 ∧ p2 and we get the standard rely/guarantee rule. (2) When the
shared state is empty, we do not need to describe its evolution (R and G are
the identity relation). Then p1 ∗ p2 has the same meaning as separation logic
∗, and we get the parallel rule of concurrent separation logic without resource
invariants (see §2.1).

An important aspect of our approach is that the boundaries between the
local state and the shared state are not fixed, but may change as the program
runs. This “ownership transfer” concept is fundamental to proofs in concurrent
separation logic.

In addition, as we encompass separation logic, we can cleanly reason about dy-
namically allocated data structures and explicit memory management, avoiding
the need to rely on a garbage-collector. In §4, we demonstrate this by verifying
a lock-coupling list algorithm, which actually disposes/frees removed nodes.

2 Technical Background

In this paper, we reason about a parallel programming language with pointer
operations. Let x, y and z range over logical variables, and x, y and z over

258 V. Vafeiadis and M. Parkinson

program variables. We assume tid is a special variable that identifies the current
thread. Commands C and expressions e are given by the following grammar,

C ::= x:=e | x:=[e] | [e1]:=e2 | x:=cons(e1, . . . , en) | dispose(e)
| C1; C2 | C1‖C2 | if(b){C1} else{C2} | while(b){C} | atomic(b){C}

e ::= x | x | e + e | n

where b ranges over boolean expressions. Note that expressions e are pure: they
do not refer to the heap. In the grammar, each assignment contains at most one
heap access; assignments with multiple heap accesses can be performed using
multiple assignments and temporary variables to store the intermediate results.

The semantics of atomic are that C will be executed in one indivisible
step. This could be implemented through locking, hardware atomicity, trans-
actional memories, etc. Choosing atomic over a given synchronisation primitive
(e.g. locks) enables our reasoning to be applied at multiple abstraction levels. In
any case, any synchronisation primitive can be encoded using atomic.

2.1 Local Reasoning – Separation Logic

In Hoare logic [9], assertions describe properties of the whole memory, and hence
specifications, e.g. {P} C {Q}, describe a change of the whole memory. This
is inherently global reasoning. Anything that is not explicitly preserved in the
specification could be changed, for example {x = 4} y:=5 {x = 4}. Here y is
allowed to change, even though it is not mentioned in the specification.1

The situation is different in separation logic [19]. Assertions describe prop-
erties of part of the memory, and hence specifications describe changes to part
of the memory. The rest of the memory is guaranteed to be unchanged. This is
the essence of local reasoning, specifications describe only the memory used by
a command, its footprint.

The strength of separation logic comes from a new logical connective: the
separating conjunction, ∗. P ∗ Q asserts the state can be split into two parts,
one described by P and the other by Q. The separating conjunction allows us
to formally capture the essence of local reasoning with the following rules:

{P} C {Q}
(Frame)

{P ∗R} C {Q ∗R}
{P1} C1 {Q1} {P2} C2 {Q2} (Par)
{P1 ∗ P2} C1‖C2 {Q1 ∗Q2}

The first rule says, if P is separate from R, and C transforms P into Q then
if C finishes we have Q and separately still have R. The second rule says that
if two threads have disjoint memory requirements, they can execute safely in
parallel, and the postcondition is simply the composition of the two threads’
postconditions.2

1 ‘Modifies clauses’ solve this problem, but they are neither pretty nor general.
2 Originally, separation logic did not consider global variables as resource; hence the

proof rules had nasty side-conditions. Later, this problem was solved by Bornat et
al. [2]. By disallowing direct assignments to global variables, we avoid the problem.

A Marriage of Rely/Guarantee and Separation Logic 259

Separation logic has the following assertions for describing the heap, h:

P, Q, S ::= false | emp | e = e′ | e �→ e′ | ∃x. P | P ⇒ Q | P ∗Q | P −� Q

We encode ¬,∧,∨, ∀, and true in the classical way. emp stands for the empty
heap; e �→ e′ for the heap consisting of a single cell with address e and contents e′.
Separating conjunction, P ∗Q, is the most important operator of separation logic.
A heap h satisfies P ∗Q, if it can be split in two parts, one of which satisfies P and
the other satisfies Q. There remains one new connective to describe: septraction,
P −�Q.3 Intuitively, P −�Q represents removing P from Q. Formally, it means
the heap can be extended with a state satisfying P , and the extended state
satisfies Q.

h, i SL (P ∗Q) def= ∃h1, h2. (h1 8 h2 = h) ∧ h1, i SL P ∧ h2, i SL Q

h, i SL (P −� Q) def= ∃h1, h2. (h1 8 h = h2) ∧ h1, i SL P ∧ h2, i SL Q

Finally, e �→ e1, . . . , en is a shorthand for (e �→ e1) ∗ . . . ∗ (e + n− 1 �→ en).

3 The Combined Logic

3.1 Describing Interference

The strength of rely/guarantee is the careful description of interference between
parallel processes. We describe interference in terms of actions P 	 Q which
describe the changes performed to the shared state. These resemble Morgan’s
specification statements [13], and P and Q will typically be linked with some
existentially quantified logical variables. (We do not need to mention separately
the set of modified shared locations, because these are all included in P .)

The meaning of an action P 	 Q is that it replaces the part of the state
that satisfies P before the action with a part satisfying Q. Its semantics is the
following relation:

[[P 	 Q]] = {(h1 8 h0, h2 8 h0) | h1, i SL P ∧ h2, i SL Q}

It relates some initial state h1 satisfying the precondition P to a final state h2
satisfying the postcondition. In addition, there may be some disjoint state h0
which is not affected by the action. In the spirit of separation logic, we want
action specifications as ‘small’ as possible, describing h1 and h2 but not h0, and
use the frame rule to perform the same update on a larger state.

The rely and guarantee conditions are simply sets of actions. Their semantics
as a relation is the reflexive and transitive closure of the union of the semantics
of each action in the set. We shall write R for a syntactic rely condition (i.e. a
set of actions) and R for a semantic rely condition (i.e. a binary relation).
3 Sometimes called “existential magic wand”, as it is the dual to “magic wand”: P −�

Q
def= ¬(P −∗ ¬Q). It has been used in the connection with modal logic in [4].

260 V. Vafeiadis and M. Parkinson

3.2 Stability

Rely/guarantee reasoning requires that every pre- and post-condition in a proof
is stable under environment interference. An assertion S is stable under inter-
ference of a relation R if and only if whenever S holds initially and we perform
an update satisfying R then the resulting state still satisfies S.

Definition 1 (Stability). S;R =⇒ S iff for all s, s′ and i such that s, i SL S
and (s, s′) ∈ R, then s′, i SL S

By representing the interference R as a set of actions, we reduce stability to
a simple syntactic check. For a single action [[P 	 Q]], the following separation
logic implication is necessary and sufficient:

Lemma 1. S; [[P 	 Q]] =⇒ S iff SL (P −� S) ∗Q =⇒ S.

Informally, it says that if from a state that satisfies S, we subtract the part of the
state satisfying P , and replace it with some state satisfying Q, then the result
should still satisfy S. When the action cannot fire because there is no substate
of S satisfying P , then P −� S is false and the implication holds trivially.

An assertion S is stable under interference of a set of actions R when it is
stable under interference of every action in R.

Lemma 2. S; (R1 ∪R2)∗ =⇒ S iff S;R1 =⇒ S and S;R2 =⇒ S.

Finally, we define wssaR(Q) to be the weakest assertion that is stronger than Q
and stable under R.

Definition 2 (Weakest stable stronger assertion). (1) wssaR(Q) ⇒ Q,
(2) wssaR(Q);R =⇒ wssaR(Q), and
(3) for all P , if P ;R =⇒ P and P ⇒ Q, then P ⇒ wssaR(Q).

3.3 Local and Shared State Assertions

We can specify a state using two assertions, one describing the local state and
the other the shared state. However, this approach has some drawbacks: speci-
fications are longer, and extending the logic to a setting with multiple disjoint
regions of shared state is clumsy.

Instead, we consider a unified assertion language that describes both the lo-
cal and the shared state. This is done by extending the positive fragment of
separation logic assertions with ‘boxed’ terms. We could use boxes for both
local and shared assertions: for example, P local and P shared. However, since
P local ∗ Q local ⇐⇒ P ∗Q local holds for *, and all the classical operators, we
can omit the local and the “shared” subscript. Hence the syntax of assertions is

p, q, r ::= P | P | p ∗ q | p ∧ q | p ∨ q | ∃x. p | ∀x. p

Semantically, we split the state, σ, of the system into two components: the
local state l, and the shared state s. Each component state may be thought to be

A Marriage of Rely/Guarantee and Separation Logic 261

a partial finite function from locations to values. We require that the domains
of the two states are disjoint, so that the total state is simply the (disjoint)
union of the two states. Assertions without boxes describe purely the local state
l, whereas a boxed assertion P describes the shared state s. Formally, we give
the semantics with respect to a ‘rely’ condition R, a set of actions describing the
environment interference:

l, s, i R P ⇐⇒ l, i SL P
l, s, i R P ⇐⇒ l = ∅ ∧ s, i SL wssa[[R]](P)
l, s, i R p1 ∗ p2 ⇐⇒ ∃l1, l2. (l = l1 8 l2) ∧ (l1, s, i R p1) ∧ (l2, s, i R p2)
l, s, i R p1 ∧ p2 ⇐⇒ (l, s, i R p1) ∧ (l, s, i R p2)
. . .

Note that ∗ is multiplicative over the local state, but additive over the shared
state. Hence, P ∗ Q =⇒ P ∧Q . The semantics of shared assertions, P , could
alternatively be presented without l = ∅. This results in an equally expressive
logic, but the definition above leads to shorter assertions in practice.

We use wssa[[R]]() to make assertions semantically resistant to interference:

Lemma 3. If (l, s, i R p), s′ 8 l defined and [[R]](s, s′) then (l, s′, i R p).

We define an assertion to be syntactically stable if each of the assertions about
the shared state is stable. By construction, any assertion about the local state
of a component is unaffected by other components, because interference can
happen only on the shared state. On the other hand, a boxed assertion S may
be affected.

Definition 3 (Stable assertion). P stable underR always; P stable underR iff
P ; [[R]] =⇒ P ; (p op q) stable underR iff p stable underR and q stable underR; and
(qu x. p) stable underR iff p stable underR where op ::= ∧ | ∨ | ∗ and qu ::= ∀ | ∃.
This syntactic condition allows us to change the interpretation of a formula to
a more permissive rely.

Lemma 4. If (l, s, i R p), [[R]] ⊆ [[R′]] and p stable under R′ then (l, s, i R′ p).

We present a few entailments for formulae involving shared states.

P 3SL Q
P 3 Q

P ∧ Q 3 P ∧Q P ∨ Q 3 P ∨Q P ∗ Q 3 P ∧Q

∀x. P 3 ∀x. P ∃x. P 3 ∃x. P P 3 P ∗ P P 3 emp

3.4 Ownership Transfer

Usually the precondition and postcondition of an action have the same heap
footprint. For example, consider the action saying that x can be incremented:

x �→ M 	 x �→ N ∧N ≥ M (Increment)

If they have a different footprints, this indicates a transfer of ownership between
the shared state and the local state of a thread. Consider a simple lock with

262 V. Vafeiadis and M. Parkinson

� C sat (p, R,G, q)�
(r stable under R ∪G)
∨ (C has no atomics)

�

� C sat (p ∗ r, R,G, q ∗ r)

Q = (P ∗X �→ Y) x /∈ fv(P)

� (x := [e]) sat (Q ∧ e=X,R, G, Q ∧ x=Y)

� C1 sat (p, R, G, q)
� C2 sat (q, R, G, r)

� C1; C2 sat (p, R,G, r)

� C1 sat (p1, R ∪G2, G1, q1) p1 stable under R ∪G1

� C2 sat (p2, R ∪G1, G2, q2) p2 stable under R ∪G2

� C1‖C2 sat (p1 ∗ p2, R,G1 ∪G2, q1 ∗ q2)

� C sat (P1 ∗ P2, {}, {}, Q1 ∗Q2) Q stable under R
y ∩ FV (P2) = ∅ P ⇒ P1 ∗ F Q1 ∗ F ⇒ Q (P1 	 Q1) ⊆ G

� (atomic{C}) sat (∃y. P ∗ P2, R,G, ∃y. Q ∗Q2)

Fig. 1. Proof rules

two operations: (Acq) which changes the lock bit from 0 to 1, and removes the
protected object, list(y), from the shared state; and (Rel) which changes the lock
bit from 1 to 0, and replaces the protected object into the shared state. We can
represent these two operations formally as

(x �→ 0) ∗ list(y) 	 x �→ 1 (Acq) x �→ 1 	 (x �→ 0) ∗ list(y) (Rel)

3.5 Specifications and Proof Rules

The judgement 3 C sat (p, R, G, q) semantically says that any execution of C
from an initial state satisfying p and under interference at most R, (i) does not
fault (e.g. access unallocated memory), (ii) causes interference at most G, and,
(iii) if it terminates, its final state satisfies q.

The key proof rules are presented in Figure 1. The rest can be found in the
technical report [22]. From separation logic, we inherit the frame rule. This rule
says that a program safely running with initial state p can also be executed with
additional state r. As the program runs safely without r, it cannot access r when
it is present; hence, r is still true at the end. The additional premise is needed
because r might mention the shared state and C might modify it in an atomic.

We adopt all of the small axioms for local state from separation logic (not
presented) [14]. Additionally, we have a read axiom (Fig. 1 top right) for shared
state, which allows a non-atomic read from a shared location if we can rely on
its value not changing. Note that we do not need to check stability for this read.

The next rule is that of conditional critical regions atomic(b){C}. For clarity,
we present the rule where the guard b is just true. The general case, where b is
non-trivial and may access the heap, just complicates the essential part of the
rule. A simple rule for critical regions would be the following:

� C sat (P, {}, {}, Q) (P 	 Q) ⊆ G Q stable under R

� (atomic{C}) sat (P , R, G, Q)

A Marriage of Rely/Guarantee and Separation Logic 263

G-Exact
x �→ y 	 x �→ y ⊆ G

P1 	 S ∗Q1 ⊆ G P2 ∗ S 	 Q2 ⊆ G
G-Seq

P1 ∗ P2 	 Q1 ∗Q2 ⊆ G

SL P ′⇒P P 	 Q ⊆ G SL Q′⇒Q
G-Cons

P ′ 	 Q′ ⊆ G

P 	 Q ∈ G
G-Ax

P 	 Q ⊆ G

P 	 Q ⊆ G
G-Sub

P [e/x] 	 Q[e/x] ⊆ G

(P∗F) 	 (Q∗F) ⊆ G
G-CoFrm

P 	 Q ⊆ G

Fig. 2. Rules and axioms for guarantee allows an action

As in RG, we must check that the postcondition is stable under interference from
the environment, and that changing the shared state from P to Q is allowed by
the guarantee G.

This rule is sound, but too weak in two ways. First, it does not allow critical
regions to access any local state, as the precondition P requires that the local
state is empty. Second, it requires that the critical region changes the entire
shared state from P to Q and that the guarantee condition allows such a change.
Thus, we extend the rule by (i) adding a precondition P2 and a postcondition
Q2 for the local state, and (ii) allowing the region to change a part P1 of P into
a part Q1 of Q, ensuring that the rest F does not change. Additionally, we allow
some existential quantifiers, y in the shared state to be pulled out over both the
shared and local state.

A specification, P1 	 Q1 is allowed by a guarantee G if its effect is contained
in G. Fig. 2 provides rules to approximate this definition in proofs. The rule
G-Seq allows actions to be sequenced and builds in a form of framing. Note
that, if S is empty, then the rule is a parallel composition of two actions; if P2
and Q1 are empty, then the rule sequences the actions. It would be simpler, if
we simply included the frame rule however this is unsound. In fact, the coframe
rule G-CoFrm is admissible. G-Cons is similar to the rule of consequence, but
the second implication is reversed, Q ⇒ Q′. Semantically, the property is defined
as follows:

Definition 4. P 	 Q ⊆ G iff [[P 	 Q]] ⊆ [[G]].

There is a side-condition to the atomic rule requiring that Q is a precise assertion.
This is formally defined in §5 (Footnote. 7). This is a technical requirement
inherited from concurrent separation logic. It ensures that the splitting of the
resultant state into local and shared portions is unambiguous.

We reiterate the parallel composition rule from the introduction. As the in-
terference experienced by thread C1 can arise from C2 or the environment of the
parallel composition, we have to ensure that this interference R∪G2 is allowed.
Similarly C2 must be able to tolerate interference from C1 and from the envi-
ronment of the parallel composition. The precondition and postcondition of the
composition are the separating conjunction, ∗, of the preconditions/postcondi-
tions of the individual threads. In essence, this is the conjunction of the shared

264 V. Vafeiadis and M. Parkinson

lock(p) {
atomic(p.lock==0){
p.lock = tid;

//p.oldn = p.next;
}
}
unlock(p) {
atomic(true) {
p.lock = 0;
}
}

locate(e) {
local p,c;
p = Head;
lock(p);
c = p.next;
while(c.value<e){
lock(c);
unlock(p);
p = c;
c = p.next;
}
return (p,c);
}

add(e) {
local x,y,z;
(x,z)=locate(e);
if (z.value!=e){
y = cons(0,e,z);
x.next = y;
}
unlock(x);
}

remove(e) {
local x,y,z;
(x,y)=locate(e);
if (y.value==e){
lock(y);
z = y.next;
x.next = z;
unlock(x); // A
dispose(y);
} else {
unlock(x);
}
}

Fig. 3. Source code for lock coupling list operations. For clarity, we use a field notation,
hence we encode p.lock, x.value, x.next and p.oldn as [p], [x + 1], [x + 2] and [p + 3],
respectively. Commented code is auxiliary, that is, required only for the proof.

state assertions, and the separating conjunction of the local state assertions
(cf. the semantics of ∗ in §3.3).

The proof rules for conditional and iterative commands are completely stan-
dard (See [22].)

4 Example

This section uses the new logic to verify a fine-grained concurrent linked list
implementation of a mutable set data structure (see Fig. 3). It has operations
add which adds an element to the set, and remove which removes an element
from the set.

The algorithm associates one lock per list node rather than have a single lock
for the entire list. Traversing the list uses lock coupling: the lock on one node is
not released until the next node is locked. Somewhat like a person climbing a
rope “hand-over-hand,” you always have at least one hand on the rope.

An element is added to the set by inserting it in the appropriate position, while
holding the lock of its previous node. It is removed by redirecting the previous
node’s pointer, while both the previous and the current node are locked. This
ensures that deletions and insertions can happen concurrently in the same list.
The algorithm makes two assumptions about the list: (1) it is sorted; and (2)
the first and last elements have values −∞ and +∞ respectively. This allows us
to avoid checking for the end of the list.

Node predicates. We use three predicates to represent a node in the list: (1)
Ns(x, v, y), for a node at location x with contents v and tail pointer y and
with the lock status set to s; (2) U (x, v, y) for an unlocked node at location
x withcontents v and tail pointer y; and (3) Lt(x, v, y) for a node locked with
thread identifier t. We use N (x, v, y) for a node that may or may not be locked.

A Marriage of Rely/Guarantee and Separation Logic 265

Ns(x, v, y) def= x �→ s, v ∗
(

(s = 0 ∧ x + 2 �→ y,)
∨ (s
= 0 ∧ x + 3 �→ y)

)
∧ x mod 4 = 0

U (x, v, y) def= N0(x, v, y) Lt(x, v, y) def= Nt(x, v, y) ∧ t > 0

We assume nodes are aligned, x mod 4 = 0, and cons returns aligned nodes.4

The thread identifier parameter in the locked node is required to specify that a
node can only be unlocked by the thread that locked it. The fourth field/cell is
auxiliary. It is used to store the last value of the nodes tail before it was locked.
Once a node is locked its tail field is released to the locking thread, allowing it
to mutate the field outside of critical sections, the auxiliary field is used in the
proof to track the list structure.

Actions. The algorithm does four kinds of actions: (1) lock, which locks a node,
(2) unlock, which unlocks a node, (3) add, which inserts a new node to the
list, and (4) delete, which removes a node from the list. All of these actions
are parameterised with a set of thread identifiers, T . This allows us to use the
actions to represent both relies and guarantees. In particular, we take a thread
with identifier tid to have the guarantee with T = {tid}, and the rely to use the
complement of this set. Let I(T) be the set of these four actions.

The first two actions are straightforward:

t ∈ T ∧ U (x, v, n) 	 Lt(x, v, n) (lock)
t ∈ T ∧ Lt(x, v, n) 	 U (x, v, n) (unlock)

Now, consider adding a node to the list. We begin by describing an action
that ignores the sorted nature of the list:

t ∈ T ∧ Lt(x, u, n) 	 Lt(x, u, m) ∗U (m, v, n)

To add an element to the list, we must have locked the previous node, and then
we can swing the tail pointer to the added node. The added node must have
the same tail as previous node before the update. To preserve the sorted order
of the list, the actual add action must also mention the next node: the inserted
value must be between the previous and the next values.

(t ∈ T) ∧ (u < v < w) ∧ (Lt(x, u, n) ∗Ns(n, w, y))
	 Lt(x, u, m) ∗U (m, v, n) ∗Ns(n, w, y) (add)

The final action we allow is removing an element from the list. We must lock
the node we wish to delete, n, and its previous node, x. The tail of the previous
node must be updated to the deleted node’s tail, m.

(v < ∞) ∧ (t ∈ T) ∧ (Lt(x, u, n) ∗ Lt(n, v, m)) 	 Lt(x, u, m) (delete)

4 Without this restriction a node could be formed by parts of two adjacent nodes.
Instead of assuming alignment, this problem can also be solved by allowing contexts
in actions, for example the node is reachable from the head.

266 V. Vafeiadis and M. Parkinson

List predicate. We use separation to describe the structure of the shared list.
The predicate ls(x, A, y) describes a list segment starting at location x with the
final tail value of y, and with contents A. We use · as a list separator.

ls(x, ∅, x) def= emp ls(x, v·B, y) def= (∃z. x
= y ∧ N (x, v, z) ∗ ls(z, B, y))

Note, as we use separation logic we do not need any reachability predicates,
our predicate is simply a recursively defined predicate. The use of ∗ and the
inequality x
= y ensures the list is acyclic. Removing a node from a list segment
simply gives two list segments.

Proposition 1. (Ns(x, v, y)−� ls(w, A, z)) is equivalent to ∃BC. (A = B·v·C)∧
w
= z ∧

(
ls(w, B, x)�z ∗ ls(y, C, z)�x

)
where P �x

def
= P ∧ ¬(x �→ ∗ true)

The algorithm works on sorted lists with the first and last values being −∞ and
+∞ respectively. s(A) represents this restriction on a logical list A.

srt(+∞·ε) def= emp srt(a·b·A) def= srt(b·A) ∧ a < b s(−∞·A) def= srt(A)

Main proof. Appendix A contains the proof outline for the remove function. The
outline presents the intermediate assertions in the proof. We present one step of
the verification of remove function in detail: the unlock action labelled “A” in
Fig. 3. For simplicity, we inline the unlock body.�
∃AB. ls(Head, A,x)∗Ltid(x, u, y)∗Ltid(y, e, z)∗ls(z, B, nil)∗s(A·u·B) ∗ (x+2�→z)

�
atomic{

�
Ltid(x, u, y) ∗ Ltid(y, e, z) ∗ (x+2�→z)

�
x.lock = 0;

�
U(x, u, z) ∗ Ltid(y, e, z)

�
}�

∃A. ls(Head, A, nil) ∗ s(A) ∗ Ltid(y, e, z)
�

We must prove four things: (1) the body meets its specification; (2) the body’s
specification is allowed by the guarantee; (3) the outer specification’s postcon-
dition is stable; and (4) find a frame, F , that satisfies the two implications.

The first is a simple proof in separation logic. The second follows as:

Ltid(x, u, y) ∗ Ltid(y, e, z) 	 Ltid(x, u, z) ⊆ I({tid})
Ltid(x, u, z) 	 U(x, u, V z) ⊆ I({tid})

G-Seq

Ltid(x, u, y) ∗ Ltid(y, e, z) 	 U(x, u, z) ⊆ I({tid})

Third, to show ∃A. ls(Head, A, nil) ∗ s(A) is stable, we use Lemma 1 for the four
actions in the rely: lock, unlock, add and delete. The proof of stability is long
(hence omitted), but the proof steps are largely automatic. We can automate
these checks [6].

Finally, we define F as ls(Head, A, x)∗ls(z, B, nil)∗s(A·u·B)

Theorem 1. The algorithm in Fig. 3 is safe and keeps the list always sorted.

5 Semantics and Soundness

Our semantics follows the abstract semantics for separation logic of Calcagno,
O’Hearn and Yang [5]. Rather than presenting the semantics with respect to a

A Marriage of Rely/Guarantee and Separation Logic 267

l$s = l1 b(l1) l′$s′ = l2 Q(s′)

(C, (l1, ∅, o))
Emp−−−→∗(skip, (l2, ∅, o′))

(atomicQ(b){C}, (l, s, o)) R−→
p

(skip, (l′, s′, o′))

(C1, σ) R−→
p

(C′
1, σ

′)

(C1‖C2, σ) R−→
p

(C′
1‖C2, σ

′)

A(l, l′) (l′, s, o) ∈ Heaps

(A, (l, s, o)) R−→
p

(skip, (l′, s, o))

(¬∃l′. A(l, l′))

(A, (l, s, o)) R−→
p

fault

R(s, s′) (l, s′, o′) ∈ Heaps

(C, (l, s, o)) R−→
e

(C, (l, s′, o′))

Fig. 4. Abridged operational semantics

particular model of the heap, we use a partial commutative cancellative5 monoid
(M,8, ∅) as an abstract notion of a heap. We use m, l, s and o to range over
elements of M .

Our logic explicitly deals with the separation between a thread’s own local
state (l) and the shared state (s), and hence implicitly the environment’s own
state (o). Our semantics are given with respect to a structured heap, which sepa-
rates these three components.6 This splitting is only used to prove the soundness
of the logic. There is an obvious erasure to a semantics without a splitting.

Definition 5 (Structured heaps). Heaps
def
= {(l, s, o) | {l, s, o} ⊆ M ∧ l 8

s 8 o is defined} and (l1, s1, o1) 8 (l2, s2, o2) defined as (l, s, o), iff s1 = s2 = s,
l1 8 l2 = l, o1 = l2 8 o, and o2 = l1 8 o; otherwise it is undefined.

We use σ to range over these structured heaps. Again following [5], we use
abstract commands, A, and abstract boolean tests, b, for our abstract heap
model. Note that by encoding each primitive command onto a pair of abstract
commands, we can give our language a grainless semantics [20].

Definition 6. (i) Primitive commands A are represented by a subset of M×M ,
satisfying: (1) If A(l1 8 l, l2), then either there exists l′2 such that A(l1, l′2) and
l2 = l 8 l′2, or ¬∃l. A(l1, l); and (2) If ¬∃l2. A(l1 8 l, l2), then ¬∃l2. A(l1, l2).
(ii) Boolean expressions b are represented by M → {true, false, fault}, satisfy-
ing: if b(l1 8 l) = v, then either b(l1) = v or b(l1) = fault.

We present the key rules of the semantics of the abstract programming language
in Figure 4. The rest can be found in the extended version [22]. We define a
reduction step Config1

R−→
λ

Config2, as configuration Config1 makes a reduction

step to Config2 with possible interference R and label λ. The label indicates
whether this is a program action, p, or an environment action, e. Configurations
are either fault or a pair of a command and a structured heap, (C, σ). We use
R−→∗ as the transitive and reflex closure of the reduction relation.
5 If m1 $m = m2 $m, then m1 = m2.
6 The assertions simply ignore the environment.

268 V. Vafeiadis and M. Parkinson

We alter the syntax of atomic to have a postcondition annotation Q, to
specify how the state is split between shared and local on exit from the block. In
CSL the resource invariant does this job, but we do not have a single resource
invariant in this logic. Each of these postconditions must be precise, so there
is a unique splitting.7 Consider the semantics of atomic (Figure 4). The non-
faulting rule (1) combines the thread’s local state with the shared state to create
a new local state, l8s = l1, (2) checks the guard holds of this new state, b(l1),
(3) executes the command with no interference on the shared state (Emp), (4)
splits the resulting local state into a new shared and local state, l′8s′ = l2,
and (5) finally checks the postcondition Q holds of the shared state s′. As Q
is precise, it uniquely specifies the splitting in step (4). There are three more
rules for atomic (not presented) where the program faults on the evaluation of
the body, the evaluation of the guard, or fails to find a splitting to satisfy the
postcondition.

Parallel composition is modelled by interleaving, we just present one of the
rules. The three remaining rules concern abstract commands and environment
transitions. The abstract command A executes correctly, if it runs correctly
by accessing only the local state. Otherwise, A faults. Its execution does not
affect the shared and environment states. An environment transition can happen
anytime and affects only the shared state and the environment state, provided
that the shared-state change describes the rely relation, R; the local state is
unchanged.

We extend the standard separation logic notion of safety with a guarantee
observed by each program action.

Definition 7 (Guarantee). (1) (C, σ,R) guars0 G always holds; and
(2) (C, σ,R) guarsn+1 G iff if (C, σ) R−→

λ
Config then there exist C′ σ′ such that

Config = (C′, σ′); (C′, σ′,R) guarsn G; and if λ = p then (σ, σ′) ∈ G.

Definition 8. |= C sat (p, R, G, q) iff for all R′ ⊆ R and σ R′ (p), then (1)

∀n. (C, σ, [[R′]]) guarsn [[G]]; and (2) if (C, σ)
[[R′]]−−−→∗ (skip, σ′) then σ′ R′ (q).

Theorem 2 (Soundness). If 3 C sat (p, R, G, q), then |= C sat (p, R, G, q)

6 Related Work

Owicki & Gries [16] introduced the concept of non-interference between the
proofs of parallel threads. Their method is not compositional and does not permit
top-down development of a proof because the final check of interference-freedom
may fail rendering the whole development useless.

To address this problem, Jones [11] introduced the compositional rely/guar-
antee method. In the VDM-style, Jones opted for ‘two-state’ postconditions;
other authors [23,18] have chosen single-state postconditions. Several authors
7 P is precise iff for every l ∈ M , there exists at most one lP such that lP SL P and
∃l′. lP $ l′ = l.

A Marriage of Rely/Guarantee and Separation Logic 269

have proved the soundness and relative completeness of rely/guarantee [23,18,7];
Prensa’s proof [18] is machine checked by the Isabelle theorem prover. The com-
pleteness results are all modulo the introduction of auxiliary variables. Abadi and
Lamport [1] have adapted RG to temporal logic and have shown its soundness
for safety specifications.

Separation logic [19,15] takes a different approach to interference by forbidding
it except in critical regions [10]. An invariant, I, is used to describe the shared
state. This is a simple case of our system where the interference specifications
(i.e. R and G) are restricted to a very simple relation, I 	 I. Brookes has shown
concurrent separation logic to be sound [3].

There have been attempts to verify fine-grained concurrent algorithms using
both separation logic and rely/guarantee. Vafeiadis et al. [21] verify several list
algorithms using rely/guarantee. Their proofs require reachability predicates to
describe lists and they cannot deal with the disposal of nodes. Parkinson et
al. [17] verify a non-blocking stack algorithm using concurrent separation logic.
Their proof requires a lot of auxiliary state to encode the possible interference.
With the logic presented in this paper much of the auxiliary state can be re-
moved, and hence the proof becomes clearer.

Concurrently with our work, Feng, Ferreira and Shao [8] proposed a differ-
ent combination of rely/guarantee and separation logic, SAGL. Both our ap-
proach and SAGL partition memory into shared and private parts. However, in
SAGL, every primitive command is assumed to be atomic. Our approach is more
flexible and allows one to specify what is atomic; everything else is considered
non-atomic. By default, non-atomic commands cannot update shared state, so
we only need stability checks when there is an atomic command: in the lock
coupling list only at the lock and unlock operations. On the other hand, SAGL
must check stability after every single command. Moreover, in SAGL, the rely
and guarantee conditions are relations and stability checks are semantic impli-
cations. We instead provide convenient syntax for writing down these relations,
and reduces the semantic implication into a simple logic implication. This al-
lowed us to automated our logic [6], and hence automatically verify the safety
of a collection of fine-grained list algorithms.

SAGL is presented as a logic for assembly code, and is thus hard to apply at
different abstraction levels. It does not contain separation logic as a proper subsys-
tem, as it lacks the standard version of the frame rule [19]. This means that it can-
not prove the usual separation logic specification of procedures such as
copy tree [14]. In contrast, our system subsumes SL [19], as well as the single-
resource variant of CSL [15]: hence, the same proofs there (for a single resource)
go through directly in our system (for procedures see [22]). Of course, the real in-
terest is the treatment of additional examples, such as lock coupling, that neither
separation logic nor rely/guarantee can prove tractably. Our system also includes
a rely-guarantee system, which is why we claim to have produced a marriage of
the two approaches. It may be possible to extend SAGL to include the frame rule
for procedures, but we understand that such extension is by no means obvious.

270 V. Vafeiadis and M. Parkinson

With this all being said, there are remarkable similarities between our work
and SAGL; that they were arrived at independently is perhaps encouraging as
to the naturalness of the basic ideas.

7 Conclusion

We have presented a marriage of rely/guarantee with separation logic. We proved
soundness with respect to an abstract operational semantics in the style of ab-
stract separation logic [5]. Hence, our proof can be reused with different lan-
guages and with different separation logics, e.g. permissions and variables as
resource [2]. Our logic allows us to give a clear and simple proof of the lock-
coupling list algorithm, which includes memory disposal. Moreover, our logic
can be efficiently automated [6].

Acknowledgements. We should like to thank Josh Berdine, Richard Bornat,
Cristiano Calcagno, Joey Coleman, Tony Hoare, Cliff Jones, Xinyu Feng, Alan
Mycroft, Peter O’Hearn, Uday Reddy, John Reynolds and Hongseok Yang for
discussions and feedback on this work. We acknowledge funding from an
RAEng/EPSRC fellowship (Parkinson) and a Gates scholarship (Vafeiadis).

References

1. Abadi, M., Lamport, L.: Conjoining specifications. ACM Trans. Prog. Lang.
Syst. 17(3), 507–534 (1995)

2. Bornat, R., Calcagno, C., Yang, H.: Variables as resource in separation logic.
ENTCS 155, 247–276 (2006)

3. Brookes, S.D.: A semantics for concurrent separation logic. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 16–34. Springer, Hei-
delberg (2004)

4. Calcagno, C., Gardner, P., Zarfaty, U.: Context logic as modal logic: completeness
and parametric inexpressivity. In: POPL, pp. 123–134. ACM Press, New York
(2007)

5. Calcagno, C., O’Hearn, P., Yang, H.: Local action and abstract separation logic.
LICS (to appear, 2007)

6. Calcagno, C., Parkinson, M., Vafeiadis, V.: Modular safety checking for fine-grained
concurrency. In: SAS. LNCS, Springer, Heidelberg (2007)

7. Coleman, J.W., Jones, C.B.: A structural proof of the soundness of rely/guarantee
rules. Technical Report CS-TR-987, Newcastle University (October 2006)

8. Feng, X., Ferreira, R., Shao, Z.: On the relationship between concurrent separation
logic and assume-guarantee reasoning. In: Proceedings of ESOP (2007)

9. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576–580 (1969)

10. Hoare, C.A.R.: Towards a theory of parallel programming. Operating Systems
Techniques (1971)

11. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress, pp.
321–332 (1983)

12. Jones, C.B.: Wanted: a compositional approach to concurrency, pp. 5–15. Springer,
New York (2003)

A Marriage of Rely/Guarantee and Separation Logic 271

13. Morgan, C.: The specification statement. ACM Trans. Program. Lang. Syst. 10(3),
403–419 (1988)

14. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Proceedings of CSL, pp. 1–19 (2001)

15. O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 49–67. Springer, Hei-
delberg (2004)

16. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs. Acta
Informatica 6, 319–340 (1976)

17. Parkinson, M.J., Bornat, R., O’Hearn, P.W.: Modular verification of a non-blocking
stack. In: POPL (2007)

18. Prensa Nieto, L.: The rely-guarantee method in Isabelle/HOL. In: Degano, P. (ed.)
ESOP 2003. LNCS, vol. 2618, pp. 348–362. Springer, Heidelberg (2003)

19. Reynolds, J.C.: Separation logic:A logic for sharedmutable data structures. In: LICS,
Washington,DC,USA,pp.55–74. IEEEComputerSocietyPress,LosAlamitos(2002)

20. Reynolds, J.C.: Toward a grainless semantics for shared-variable concurrency. In:
Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 35–48.
Springer, Heidelberg (2004)

21. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: PPoPP, ACM Press, New York (2006)

22. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic.
Technical Report UCAM-CL-TR-687, University of Cambridge (June 2007),
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-687.html

23. Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying shared
variable concurrent programs. Formal Aspects of Computing 9(2), 149–174 (1997)

A Proof Outline: remove

remove(e) { local x,y,z, t ;�
∃A. ls(Head, A, nil) ∗ s(A) ∧ −∞ < e ∧ e < +∞

�
(x,y) = locate(e);�
∃uv. ∃ZAB. ls(Head, A, x) ∗ Ltid(x, u, y) ∗N(y, v, Z) ∗ ls(Z, B, nil) ∗ s(A·u·v·B)
∗ (x+2�→y) ∧ u < e ∧ e ≤ v ∧ e < +∞

�

t = y.value; if (t == e) {�
∃u. ∃ZAB. ls(Head, A, x) ∗ Ltid(x, u, y) ∗N(y, e, Z) ∗ ls(Z, B, nil) ∗ s(A·u·e·B)
∗ (x+2�→y) ∧ e < +∞

�

lock(y);�
∃uZ. ∃AB. ls(Head, A,x) ∗ Ltid(x, u, y) ∗ Ltid(y, e, Z) ∗ ls(Z, B, nil) ∗ s(A·u·e·B)
∗ (x+2�→y) ∗ (y+2�→Z) ∧ e < +∞

�

z = y.next; x.next = z;�
∃u. ∃AB. ls(Head, A, x) ∗ Ltid(x, u, y) ∗ Ltid(y, e, z) ∗ ls(z, B, nil) ∗ s(A·u·B)
∗(x+2�→z) ∗ (y+2�→z)

�

unlock(x);�
∃A. ls(Head, A, nil) ∗ s(A) ∗ Ltid(y, e, z) ∗ (y+2�→z)

�
dispose(y);

} else { unlock(x); }�
∃A. ls(Head, A, nil) ∗ s(A)

�
}

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-687.html

Fair Cooperative Multithreading�

or

Typing Termination in a Higher-Order Concurrent

Imperative Language

Gérard Boudol

INRIA, 06902 Sophia Antipolis, France

Abstract. We propose a new operational model for shared variable con-
currency, in the context of a concurrent, higher-order imperative lan-
guage à la ML. In our model the scheduling of threads is cooperative,
and a non-terminating process suspends itself on each recursive call. A
property to ensure in such a model is fairness, that is, any thread should
yield the scheduler after some finite computation. To this end, we follow
and adapt the classical method for proving termination in typed for-
malisms, namely the realizability technique. There is a specific difficulty
with higher-order state, which is that one cannot define a realizability
interpretation simply by induction on types, because applying a function
may have side-effects at types not smaller than the type of the function.
Moreover, such higher-order side-effects may give rise to computations
that diverge without resorting to explicit recursion. We overcome these
difficulties by introducing a type and effect system for our language that
enforces a stratification of the memory. The stratification prevents the
circularities in the memory that may cause divergence, and allows us to
define a realizability interpretation of the types and effects, which we
then use to prove the intended termination property.

1 Introduction

This work is concerned with the design of languages for concurrent programming
with shared memory. In the recent past, some new applications have emerged,
like web servers, network games or large scale databases, that are open to many
simultaneous connections or requests, and are therefore inherently massively
concurrent. It has been argued that kernel threads usually supported by oper-
ating systems are too limited and too inefficient to provide a convenient means
for programming such applications, and that a user-level thread facility would
provide better support [2,3,6,33]. More generally, it appears that the preemp-
tive discipline for scheduling threads is not very convenient for programming the

� Work partially supported by the CRE FT-R&D no 46136511, and by the ANR-
SETI-06-010 grant.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 272–286, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Fair Cooperative Multithreading 273

above-mentioned applications, and that an event-driven model, or more generally
a cooperative discipline is better suited for this purpose [1,5,6,23].

In the cooperative programming model, a thread decides, by means of specific
instructions (like yield for instance), when to leave its turn to another concurrent
thread, and the scheduling is therefore distributed among the components. In
this model, there is no data race, and modular programming can be supported,
since using for instance a library function that operates on a shared, mutable
data structure (as this is the case of methods attached to objects) does not
require rewriting the library code. This is the model that we adopt as the basis
for our concurrency semantics.

However, this model also has its drawbacks. A first one is that it does not
support true concurrency, that is, it is not well suited to exploit multi-processor
architectures. We do not address this issue here (for some work in this direction,
see [12,13]). The other flaw of cooperative scheduling is that if the active thread
does not cooperate, failing to yield the scheduler, then the model is broken, in
the sense that no other component will have a chance to execute. In other words,
in cooperative programming, programs must be cooperative, or fair, that is, they
should be guaranteed to either terminate or suspend themselves infinitely often.
In particular, this property should be enforced in programming languages of the
reactive family [10,12,14,21,26,28]. Failing to cooperate may happen for instance
if the active thread performs a blocking i/o, or runs into an error, or raises an
uncaught exception, or diverges. Some efforts have been done to provide a better
support to cooperative scheduling from the operating system [2,3], and to develop
asynchronous versions of system services. From the programming language point
of view, cooperative programming should better be confined to be used in the
framework of a safe language, like ML, where a program does not silently fall
into an error. However, this is not enough: we have to avoid divergence in some
way, while still being able to program non-terminating applications – any server
for instance should conceptually have an infinite life duration, and should not
be programmed to stop after a while.

In order to ensure fairness in cooperative programming, our proposal is to
introduce a specific construct for programming non-terminating processes, the
semantics of which is that a looping process suspends itself on each recursive call.
We are assuming here that calling ordinary recursive functions – like for instance
sorting a list – always terminate. Indeed, non-termination in the evaluation of an
expression is usually the symptom of a programming error1, and it is therefore
worth having a distinguished construct for programming intentionally looping
processes. The idea of suspensive looping is not, however, enough to ensure
fairness in a higher-order imperative programming model à la ML, that we use
as a basis here (some other choices are obviously possible). We have to face a
technical problem, which is that recursion may be encoded in two ways in a
ML-like, or rather, for that matter, a Scheme-like language. Indeed, it is well-
known that one can define a fixpoint combinator in the untyped (call-by-value)

1 There is a lot of work on techniques for ensuring termination of recursive programs
(we refrain from mentioning any paper from the huge literature on this topic), which
is not the issue we are addressing here.

274 G. Boudol

λ-calculus. Moreover, as shown long ago by Landin [19], one can implement
recursion by means of circular higher-order references (this is indeed the way it
is implemented), like in

F = (let f = (ref λxx) in f := λx((! f)x) ; ! f) (1)

% rec f(x)(fx)

where we use ML’s notations (ref V) for creating a reference with initial value V ,
and !u for reading the value of the reference u. The well-known method to recover
from the first difficulty, disallowing the ability to derive fixpoint combinators,
is to use a type system, but this is not enough to ensure termination of non-
recursive programs in an imperative and functional language: in a simple type
system, the expression F above has type (τ → τ) (it can indeed be written in
OCaml for instance), but it diverges when applied to any value. As far as we
can see, nothing has ever been proposed to ensure termination in a higher-order
imperative (and concurrent) language, thus disallowing implicit recursion via the
store. In this work we show that we can use a type and effect system [20] for
this purpose. This is our main technical contribution.

Among the arguments used to show termination in typed higher-order for-
malisms, the realizability method is perhaps the best known, and certainly the
most widely applicable. The realizability technique consists in defining, by induc-
tion on the structure of types2, an interpretation of types as sets of expressions,
so that

1. the interpretation of a type only contains expressions enjoying the intended
computational property (e.g. weak or strong normalizability);

2. typing is sound : a typed expression belongs to the interpretation of its type,
or realizes its type.

The main ingredient in the definition of such an interpretation of types is that
an expression M realizes a functional type (τ → σ) if and only if its application
(MN) to any argument N realizing τ is an expression that realizes σ. A real-
izability interpretation is therefore a special case of a “logical relation” [22,25].
Such a realizability interpretation was first introduced by Kleene for intuitionistic
arithmetic [17], though not for the purpose of proving termination. The tech-
nique was then used by Tait in [30], under the name of “convertibility” (with
no reference to Kleene’s notion of realizability), to show (weak) normalizability
in the simply typed λ-calculus, and subsequently by Girard (see [16]) with his
“candidats de réductibilité”, and by Tait again [31] (who related it to Kleene’s
work) to show strong normalizability in higher-order typed λ-calculi. As a matter
of fact, this technique seems to apply to most type theories – see the textbooks
[4,16,18]. It has also been used for (functional fragments of) higher-order process
calculi, and most notably the π-calculus [27,35].

However, as far as I can see, the realizability technique has not been previously
used for higher-order imperative (and concurrent) languages: the work that is
technically the closest to ours, and which was our main source of inspiration,

2 A more elaborate definition has to be used in the case of recursive types, see [8].

Fair Cooperative Multithreading 275

is the one by Pitts and Stark [24], who introduced logical relations to provide
means to prove observational equivalence of programs (not to prove termination),
but their language is restricted to offer only storable values of basic types (this
has been slightly relaxed in [7]). The program of Example (1) shows the main
difficulty in attempting to define a realizability interpretation for higher-order
imperative languages: to define the interpretation of a type τ , one should have
previously defined the interpretation of the types of values stored in the memory
that an expression of type τ may manipulate, but these types have no reason
to be strictly smaller than τ . As another example, unrelated to divergence, one
may imagine a function, say from lists of integers to integers, that reads from
the memory (or import from a module) a second-order function like map, and
uses it for its own computations.

To preclude the circularities in the memory that may cause recursion-free
divergence, our type and effect system stratifies the memory into regions, in such
a way that functional values stored in a given region may only have a latent
effect, such as reading a reference, in strictly “lower” regions, thus rejecting
(1) for instance. This stratification is also the key to defining a realizability
interpretation, by a sophisticated induction over types and effects. We introduce
such a realizability interpretation, for which our type and effect system is sound.
From this we conclude that any typable program is fair.

The paper is organized as follows: we first define the syntax and operational
semantics of our core language, introducing a “yield-and-loop” construct for
programming non-terminating applications, and a new way of managing threads
over an ML-like language. Then we define our type and effect system, where
the main novelty is the region typing context, introducing a stratification into
the memory. Next we show our type safety result. To this end we introduce
a realizability interpretation of the types and effects, and show that the type
system is sound with respect to this interpretation. We then briefly conclude.

Note. For lack of space, the proofs are omitted. They can be found in the full
version of the paper, available from the author’s web page.

2 Syntax

Our core concurrent programming language is an ML-like language, that is a
call-by-value λ-calculus extended with imperative constructs for creating, read-
ing and updating references in the memory, and enriched with concurrent pro-
gramming constructs. The latter include a thread-spawning construct, and a
“yield-and-loop” value ∇yM , to be run by applying it to a void value (). This
is our main linguistic novelty. This is similar to a recursive function rec y()M ,
but we wish to stress the fact that the semantics is quite different. An expres-
sion (∇yM()) represents a recursive process which yields the scheduler, while
unfolding a copy of M (where y is recursively bound to ∇yM) to be performed
when the scheduler resumes it. This construct is useful to build non-terminating
processes, which should not hold the scheduler forever. This is the only form of
explicit recursion that we shall consider here. In a more realistic language, we

276 G. Boudol

would not only include ordinary recursive functions rec f(x)M , but also consider
synchronization constructs, like the ones of reactive programming for instance
[10,12,21,26,28].

We assume given an infinite set Reg of region names (or simply regions),
ranged over by ρ. We also assume given an infinite set Var of variables, ranged
over by x, y, z . . ., and an infinite set Loc of abstract memory locations. We let
u, v . . . range over Loc. A reference is a pair (u, ρ), that we will always denote by
uρ, of a memory location to which a region is assigned. The set Ref of references
is therefore Loc × Reg . We shall denote Loc × {ρ} as Locρ. The syntax of our
core language is as follows:

M, N . . . ::= V | (MN) expressions

| (refρM) | (!M) | (M := N)

| (threadM)

V, W . . . ::= x | λxM | () | ∇yM | uρ values

We require reference creation (refρM) to occur in an explicitly given region ρ,
although in a type and effect inference approach (see [29]) this could perhaps be
inferred. We denote by Val the set of values. As usual, the variable x is bound in
λxM , and similarly the variable y is bound in ∇yM . We denote by {x �→V }M
the capture-avoiding substitution of the value V for the free occurrences of the
variable x in M . We shall consider expressions up to α-conversion, that is up to
the renaming of bound variables. We use the standard notations for (λxMN),
namely (let x = N in M), and (N ;M) when x is not free in M .

The operational semantics will be defined as a transition relation between
configurations, that involve in particular the current expression to evaluate, and
a pool of threads waiting for execution. In order to get a fair scheduling strategy,
we split this pool of threads into two parts, or more precisely two turns, that are
multisets of expressions. Then a configuration is a tuple C = (δ,M, T, S), where

• δ is the memory,
• M is the currently evaluated expression (the active thread),
• T is the multiset of threads in the current turn of execution,
• S is the multiset of threads waiting for the next turn.
The memory δ in a configuration is a mapping from a finite subset dom(δ) of
Ref to the set Val of values, such that to each memory address is assigned only
one region, that is

uρ0 ∈ dom(δ) & uρ1 ∈ dom(δ) ⇒ ρ0 = ρ1

We shall suppose given a function fresh from the set Pf (Ref) of finite subsets of
Ref to Loc such that fresh(R)ρ
∈ R for all ρ.

As regards multisets, our notations are as follows. Given a set X , a multiset
over X is a mapping E from X to the set N of non-negative integers, indicating
the multiplicity E(x) of an element. We denote by 0 the empty multiset, such
that 0(x) = 0 for any x, and by x the singleton multiset such that x(y) = (if y =
x then 1 else 0). Multiset union E+E′ is given by (E+E′)(x) = E(x)+E′(x). In
the following we only consider multisets of expressions, ranged over by S, T . . .

Fair Cooperative Multithreading 277

(δ,E[(λxMV)]) −→
∅

(δ,E[{x �→V }M], 0, 0)

(δ,E[(refρV)]) −−→
{ρ}

(δ ∪ {uρ �→V }, E[uρ], 0, 0) u = fresh(dom(δ))

(δ,E[(!uρ)]) −−→
{ρ}

(δ,E[V], 0, 0) V = δ(uρ)

(δ,E[(uρ := V)]) −−→
{ρ}

(δ[uρ := V],E[()], 0, 0)

(δ,E[(threadM)]) −→
∅

(δ,E[()], M, 0)

(δ,E[(∇yMV)]) −→
∅

(δ, (), 0,E[{y �→∇yM}M])

Fig. 1. Operational Semantics (Sequential)

The operational semantics consists in reducing the active expression in a con-
figuration into a value, and this, as usual, means reducing a “redex” (reducible
expression) inside an evaluation context (see [34]). Then the last syntactic in-
gredient we have to define is the one of evaluation contexts. This is given by the
following grammar:

E ::= [] | E[F] evaluation contexts

F := ([] N) | (V []) | (refρ[]) | (! []) frames

| ([] := N) | (V := []) | ([]\ρ)

As usual, we shall only consider for execution well-formed configurations. Roughly
speaking, a configuration (δ,M, T, S) is well-formed, written (δ,M, T, S)wf, if
and only if all the references occurring in the configuration are bound to a value
in the memory (we omit the obvious formal definition). We are now ready to
define the operational semantics of our language.

3 Operational Semantics

In order to define the transition relation between configurations, we first define
the sequential evaluation of expressions. This is given by an annotated transition
relation

(δ,M) −→
e

(δ′, M ′, T, S)

where T and S are the multisets (which actually are either empty or a singleton)
of threads spawned at this step, for execution in the current and next turn
respectively, and e is the effect at this step. As usual, (imperative) effects record
the regions in which an expression may operate, either by creating, reading
or udpating a reference. In what follows it will not be necessary to distinguish
different kinds of effects, and therefore an effect is simply a (finite) set of regions.
We denote by Eff the set of effects, that is Eff = Pf (Reg).

The sequential part of the operational semantics is given in Figure 1. This part
is quite standard, except as regards the looping construct ∇yM . An expression
E[(∇yMV)] instantly terminates, returning (), while spawning as a thread the
unfolding {y �→∇yM}M of the loop, in its evaluation context E. One should
notice that the thread E[{y �→∇yM}M] created by means of the looping con-
struct is delayed to be executed at the next turn, whereas with the construct

278 G. Boudol

(δ, M) −→
e

(δ′, M ′, T ′, S′)

(δ,M, T, S) −→
e

(δ′, M ′, T + T ′, S + S′)
(Exec)

(δ, V, N + T, S) −→
∅

(δ,N, T, S)
(Sched 1)

(δ, V, 0, N + T) −→
∅

(δ,N, T, 0)
(Sched 2)

Fig. 2. Operational Semantics (Concurrent)

(threadM) the new thread M is to be executed during the current turn. Then in
order to execute immediately (and recursively) some task M , one should rather
use the following construct:

μyM =def {y �→∇yM}M

For instance one can define (loopM) = μy(M ; (y())), which repeatedly starts
executing M until termination, and then resumes at the next turn. To code a
service (repeatM) that has to execute some task M at every turn, like con-
tinuously processing requests to a server for instance, one would write – using
standard conventions for saving some parentheses:

(repeat M) =def μy.(thread y()) ; M

Anticipating on the concurrency semantics, we can describe the behaviour of
this expression as follows: it spawns a new thread N = (∇y((thread (y())) ;M)())
in the current turn of execution, and starts M . Whenever the thread N comes to
be executed, during the current turn, a thread performing (repeatM) is spawned
for execution at the next turn. Notice that the ability of spawning threads for
execution in the current turn is required for writing such a program.

Our concurrency semantics, which, together with the “yield-and-loop” con-
struct, is the main novelty of this work, is defined in Figure 2, which we now
comment. We see from the rule (Exec) that the active expression keeps exe-
cuting, possibly spawning new threads, till termination. When this expression
is terminated, a scheduling operation occurs: if there is some thread waiting for
execution in the current turn, the value returned by the previously active thread
is discarded, and a thread currently waiting is non-deterministically elected for
becoming active, as stated by rule (Sched 1). Otherwise, by the rule (Sched 2),
one chooses to execute a thread that was waiting for the next turn, if any, and
simultaneously the other “next-turn” threads all become “current-turn” ones. If
there is no waiting thread, the execution stops. (It should be obvious that re-
duction preserves the well-formedness of configurations.) One should notice that
the termination of the active thread may be temporary. This is the case when
the thread is actually performing a looping operation. Indeed, if we define

yield = (∇y()())

then the execution of a thread E[yield] stops, and will resume executing E[()] at
the next turn. That is, we have

(δ,E[yield], T, S) → (δ, (), T, S + E[()])

Fair Cooperative Multithreading 279

To conclude this section we introduce some notations. We shall denote by −→a

the transition relation between configurations that only involves the active ex-
pression, that is, the transition relation defined as −→, but without using the
rules (Sched 1) and (Sched 2). Similarly, we denote by −→c the transitions that
occur in the current turn of execution. This is defined as −→, but without using
(Sched 2). Then the sequences of → transitions can be decomposed into a se-
quence of −→c transitions, then possibly an application of the (Sched 2) rule,
then again a sequence of −→c transitions, and so on. Following the terminology
of synchronous or reactive programming [12,21,28], a maximal sequence of −→c

transitions may be called an instant. Then the property we wish to ensure is
that all the instants in the execution of a program are finite. More precisely, we
define:

Definition (Reactivity) 3.1. A configuration is reactive if all the maximal
sequences of −→c transitions originating from that configuration are finite, and
end up with a configuration of the form (δ, V, 0, S).
Notice that, in particular, a reactive configuration is guaranteed not to spawn
infinitely many threads for execution in the current turn.

For the following technical developments, it will be convenient to introduce
some more notations. First, we define ∗−→

e

a as follows:

C
∗−→
e

a C

C −→
e

a C′′ ∗−→
e′

a C′

C
∗−−−−→

e ∪ e′
a C′

The relation ∗−→
e

c is defined in the same way. Next, in order to show our ter-
mination property, we need to take into account the possible interleavings of
threads in the current turn. More precisely, we observe that in the execution of
(δ,M, T, S), the thread (hereditarily) created by M may be run starting with
a memory that results from executing some threads in T (and possibly threads
hereditarily created by threads in T). Then, given a set M of memories, we
define a transition relation −→c,M which is given as −→c, except that in the case
where a scheduling occurs, the new thread may be started in the context of any
memory from M:

(δ, M) −→
e

(δ′, M ′, T ′, S′)

(δ,M, T, S) −→
e

c,M (δ′, M ′, T + T ′, S + S′)

δ′ ∈M (δ′, N, T, S) wf

(δ, V, N + T, S) −→
∅

c,M (δ′, N, T, S)

We shall also use the relation ∗−→
e

c,M, defined in the same way as ∗−→
e

c.

Definition (M-Convergence) 3.2. Given a set M of memories, a closed ex-
pression M converges w.r.t. M, in notation M⇓M if and only if, for all δ ∈M,
if (δ,M, 0, 0) is well-formed, then there is no infinite sequence of −→c,M transi-
tions from this configuration, and each maximal such sequence ends up with a
configuration of the form (δ′, V, 0, S).

280 G. Boudol

4 The Type and Effect System

The types are
τ, σ, θ . . . ∈ Type ::= 1 | θ refρ | (τ e−→ σ)

The type 1 is also denoted unit (and sometimes improperly void). As usual, in
the functional types (τ e−→ σ) we record the latent effect e, that is the effect a
value of this type may have when applied to an argument. We define the size |τ |
and the set reg(τ) of regions that occur in a latent effect in τ as follows:

|1| = 0 reg(1) = ∅
|θ refρ| = 1 + |θ| reg(θ refρ) = reg(θ)

|τ e−→ σ| = 1 + |τ |+ |σ| reg(τ e−→ σ) = reg(τ) ∪ e ∪ reg(σ)

We shall say that a type τ is pure if it does not mention any imperative effect,
that is reg(τ) = ∅.

In order to rule out from the memory the circularities that may cause diver-
gence in computations, we assign a type to each region, in such a way that the
region cannot be reached by using a value stored in that region. This is achieved,
as in dependent type systems [4], by introducing the notion of a well-formed type
with respect to a type assignment to regions. A region typing context Δ is a se-
quence ρ1 : θ1, . . . , ρn : θn of assignments of types to regions. We denote by
dom(Δ) the set of regions where Δ is defined. Then we define by simultaneous
induction two predicates Δ 3, for “the context Δ is well-formed”, and Δ 3 τ ,
for “the type τ is well-formed in the context of Δ”, as follows:

∅ �

Δ � θ

Δ, ρ : θ �
ρ �∈ dom(Δ)

Δ �

Δ � 1

Δ � Δ(ρ) = θ

Δ � θ refρ

Δ � τ Δ � σ e ⊆ dom(Δ)

Δ � (τ e−→ σ)

For any well-formed region typing context Δ, we denote by ET (Δ) the set of
pairs (e, τ) of an effect and a type such that e ⊆ dom(Δ) and Δ 3 τ . One may
observe that if ρ1 : θ1, . . . , ρn : θn 3 then i
= j ⇒ ρi
= ρj . Moreover, it is easy
to see that

Δ � τ ⇒ reg(τ) ⊆ dom(Δ)

and therefore
Δ � θ refρ ⇒ ρ �∈ reg(θ) (2)

The important clause in the definition of well-formedness is the last one: to be
well-formed in the context of Δ, the type (τ e−→ σ) of a function with side-effects
must be such that all the regions involved in the latent effect e are already
recorded in Δ. (This is vacuously true if there are no such regions, and in par-
ticular if the functional type is pure. Indeed, if τ is pure, we have Δ 3 τ for any
well-formed Δ.) This is the way we will avoid “dangerous” circularities in the
memory. For instance, if Δ 3 (τ e−→ σ) and ρ ∈ e, then the type (τ e−→ σ) refρ is
not well-formed in the context of Δ, thanks to the remark (2) above.

The judgements of the type and effect system for our source language have
the form Δ;Γ 3M : e, τ , where Γ is a typing context in the usual sense, that is

Fair Cooperative Multithreading 281

Δ � Γ Γ (x) = τ

Δ; Γ � x : ∅, τ

Δ; Γ, x : τ � M : e, σ Δ � (τ e−→ σ)

Δ; Γ � λxM : ∅, (τ e−→ σ)

Δ; Γ � M : e, (τ e′′
−−→ σ) Δ; Γ � N : e′, τ

Δ; Γ � (MN) : e ∪ e′ ∪ e′′, σ

Δ; Γ � M : e, θ Δ(ρ) = θ

Δ; Γ � (refρM) : {ρ} ∪ e, θ refρ

Δ; Γ � M : e, θ refρ Δ; Γ � N : e′, θ

Δ; Γ � (M := N) : {ρ} ∪ e ∪ e′, 1

Δ; Γ � M : e, θ refρ

Δ; Γ � (!M) : {ρ} ∪ e, θ

Δ � Γ

Δ; Γ � () : ∅, 1

Δ; Γ � M : e, τ

Δ; Γ � (thread M) : e, 1

Δ; Γ, y : (1 e−→ 1) � M : e, 1

Δ; Γ � ∇yM : ∅, (1 e−→ 1)

Δ � τ Δ; Γ � M : e, σ

Δ; Γ, x : τ � M : e, σ
x �∈ dom(Γ)

Fig. 3. Type and Effect System

a mapping from a finite set dom(Γ) of variables to types. We omit this context
when it has an empty domain, writing Δ;3 M : e, τ in this case. We denote
by Γ, x : τ the typing context which is defined as Γ , except for x, to which is
assigned the type τ . We extend the well-formedness of types predicate to typing
contexts, as follows:

Δ � Γ ⇔def Δ � & ∀x ∈ dom(Γ). Δ � Γ (x)

The rules of the type and effect system are given in Figure 3. The typing rules
are standard, except for the fact that we check well-formedness with respect to
the region typing context Δ. Then our type system conservatively extends the
usual simple type system for pure functions. One can see that some expressions
that read above their type are typable, like ((!uρ)N) where Δ(ρ) = (τ ∅−→ σ) and
N is of type τ (a more interesting example, using constructs for manipulating
lists, was suggested in the Introduction). As a matter of fact, it is always safe to
read functions of a pure type from the memory.

In order to state our Type Safety property, we have to extend the typing to
configurations and, first, to memories:

Δ; Γ � δ ⇔def ∀uρ. uρ ∈ dom(δ) ⇒
�

ρ ∈ dom(Δ) &

Δ; Γ � δ(uρ) : ∅, Δ(ρ)

The typing judgements are also extended to multisets of expressions, as follows:

Δ; Γ � 0 : ∅

Δ; Γ � M : e, τ Δ; Γ � T : e′

Δ; Γ � M + T : e ∪ e′

282 G. Boudol

Then we define

Δ; Γ � (δ,M, T, S) : e ⇔def

���
��

Δ; Γ � δ &

∃e0 ⊆ e. ∃τ. Δ; Γ � M : e0, τ &

∃e1 ⊆ e. ∃e2. Δ; Γ � T : e1 & Δ; Γ � S : e2

5 The Termination Property

In this section we define the realizability predicate which, given a well-formed
region typing context Δ, states that an expression M realizes the effect e and
the type τ in the context of Δ, in notation Δ |= M : e, τ . This is defined by
induction on e and τ , with respect to a well-founded ordering that we now in-
troduce. First, for each region typing Δ and type τ , we define the set RegΔ(τ),
which intuitively is the set of regions in dom(Δ) that are involved in a proof that
τ is well-formed, in the case where Δ 3 τ . This includes in particular the regions
of RegΔ(θ) whenever τ is a functional type, and θ is the type assigned in Δ to
a region that occurs in the latent effect of τ . Then, overloading the notation,
we also define RegΔ(R) for R ⊆ Reg. The definition of RegΔ(τ) and RegΔ(R)
is by simultaneous induction on (the length of) Δ. For any given Δ, RegΔ(τ) is
defined by induction on τ , in a uniform way:

RegΔ(1) = ∅
RegΔ(θ refρ) = RegΔ(θ)

RegΔ(τ e−→ σ) = RegΔ(τ) ∪ RegΔ(σ) ∪ RegΔ(e)

Then RegΔ(R) is given by:

Reg∅(R) = ∅

RegΔ,ρ:θ(R) =

� {ρ} ∪ RegΔ(R− {ρ}) ∪ RegΔ(θ) if ρ ∈R

RegΔ(R) otherwise

It is easy to see that reg(τ) ⊆ RegΔ(τ) ⊆ dom(Δ) if Δ 3 τ , and that R ⊆
RegΔ(R) if R ⊆ dom(Δ). Moreover, if τ is pure, then RegΔ(τ) = ∅. The following
is an equally easy but crucial remark:

Lemma 5.1. If Δ 3 and θ = Δ(ρ), where ρ ∈ dom(Δ), then RegΔ(θ) ⊂
RegΔ({ρ}).
(The proof, by induction on Δ, is trivial, since Δ, ρ : θ 3 implies ρ
∈ dom(Δ)
and Δ 3 θ.) The realizability interpretation is defined by induction on a strict
ordering on the pairs (e, τ), namely the lexicographic ordering on (RegΔ(e) ∪
RegΔ(τ), |τ |). More precisely, we define:

Definition (Effect and Type Strict Ordering) 5.2. Let Δ be a well-formed
region typing context. The relation ≺Δ on ET (Δ) is defined as follows: (e, τ) ≺Δ

(e′, τ ′) if and only if
(i) RegΔ(e) ∪ RegΔ(τ) ⊂ RegΔ(e′) ∪ RegΔ(τ ′), or
(ii) RegΔ(e) ∪ RegΔ(τ) = RegΔ(e′) ∪ RegΔ(τ ′) and |τ | < |τ ′|.

Fair Cooperative Multithreading 283

We notice two facts about this ordering:

1. for pure types, this ordering is the usual one, that is (∅, τ) ≺Δ (∅, σ) if and
only if |τ | < |σ|;

2. the pure types are always smaller than impure ones, that is (∅, τ) ≺Δ (∅, σ)
if reg(τ) = ∅
= reg(σ).

The strict ordering ≺Δ is well-founded, that is, there is no infinite sequence
(en, τn)n∈N in ET (Δ) such that (en+1, τn+1) ≺Δ (en, τn) for all n. Notice that,
by the lemma above, we have in particular (∅, θ) ≺Δ (e, τ) if θ ∈Δ(e).

Our realizability interpretation states that if an expression M realizes a type,
then in particular it converges in the context of suitable memories. As explained
in the Introduction, realizability has to be defined for the types of values that
M may read or modify in the memory, and this is what we mean by “suitable.”
The portion of the memory that has to be “suitable” may be restricted to the
regions where M may have a side-effect (as approximated by the type and effect
system). In the following definition we let, for X ⊆ Reg :

Δ |= δ � X ⇔def ∀ρ ∈X ∩ dom(Δ). ∀uρ ∈ dom(δ). Δ |= δ(uρ) : ∅, Δ(ρ)

Clearly, Δ |= δ �X is vacuously true if X = ∅.

Definition (Realizability) 5.3. The closed expression M realizes e, τ in the
context of Δ, in notation Δ |= M : e, τ , if and only if the following holds, where
we let M = { δ | Δ |= δ � e }:
(i) (e, τ) ∈ ET (Δ);
(ii) M⇓M;

(iii) δ ∈M & (δ,M, 0, 0) ∗−→
e′

c,M (δ′,M ′, T, S) ⇒ δ′ ∈M;

(iv) if δ ∈M and (δ,M, 0, 0) ∗−→
e′

a (δ′, V, T, 0) then

(a) if τ = 1 then V = (),
(b) if τ = θ refρ then V ∈ Locρ,

(c) if τ = (θ e′′
−→ σ) then ∀W. Δ |= W : ∅, θ ⇒ Δ |= (VW) : e′′, σ.

This is extended to open expressions as follows: if fv(M) ⊆ dom(Γ) where Γ =
x1 : τ1, . . . , xn : τn then Δ;Γ |= M : e, τ if and only if

∀i ∀Vi. Δ |= Vi : τi ⇒ Δ |= {x1 �→V1, . . . , xn �→Vn}M : e, τ

Notice that the hypothesis of the item (iv) of the definition means in particular
that reducing M does not end up performing a call to a recursive process ∇yN .
This definition is well-founded3. Indeed, with the statement Δ |= δ � e the def-
inition of Δ |= M : e, τ calls for Δ |= V : ∅, θ where θ = Δ(ρ) for some ρ in e
(if there is any such region), and we have seen that (∅, θ) ≺Δ (e, τ) in this case.

If τ = (θ e′′
−→ σ), the definition calls for Δ |= W : ∅, θ and Δ |= N : e′′, σ. It is

3 In [15], a notion of “imperative realizability” is defined for an ML-like language, with
some restrictions to preclude aliasing, but it is not completely clear to me that this
definition is well-founded. A similar remark seems to apply to [9].

284 G. Boudol

clear that, in this case, (∅, θ) ≺Δ (e, θ e′′
−→ σ) since RegΔ(θ) ⊆ RegΔ(θ e′′

−→ σ)

and |θ| < |θ e′′
−→ σ|. Moreover, since RegΔ(e′′) ⊆ RegΔ(θ e′′

−→ σ), it is obvious

that (e′′, σ) ≺Δ (e, θ e′′
−→ σ).

We can now state our main result, namely a Type Safety theorem, which
improves upon the standard statement:

Theorem (Type Safety) 5.4. If (δ,M, T, S) is a closed, well-formed typable
configuration, that is Δ;3 (δ,M, T, S) : e for some region typing Δ and ef-
fect e, then (δ,M, T, S) is reactive. Moreover, any configuration reachable from
(δ,M, T, S) is reactive.
For lack of space, the proof is omitted (it can be found in the full version of the
paper). To show this result, we establish the soundness of the type system with
respect to the realizability interpretation, namely that if an expression has effect
e and type τ in some context, then in the same context it realizes e and τ (see
[4,18], and also [22], where soundness is called “the Basic Lemma”).

6 Conclusion

We have proposed a way of ensuring fairness in a cooperative, concurrent, higher-
order imperative language, by introducing a specific construct for programming
non-terminating processes. Our main technical contribution consists in designing
a type and effect system for our language, that supports an extension of the clas-
sical realizability technique to show our termination property, namely fairness.

Our study was limited to a very simple core language, and clearly it should be
extended to more realistic ones. The synchronization constructs of synchronous,
or reactive programming for instance [10,12,14,21,26,28] should be added. We
believe this should not cause any difficulty. Indeed, the problem with termina-
tion in a concurrent higher-order imperative language is in the interplay between
functions and store, and between recursion and thread creation. In the full ver-
sion of the paper, we show a way of dealing with ordinary recursive functions: we
prove a result that is stronger than the one we presented here, namely that if a
typable configuration does not perform an infinite number of calls to (ordinary)
recursive functions, then it is reactive, and only leads to reactive configura-
tions. This is achieved using the same realizability technique, with a continuity
argument (cf. [24]) to deal with recursive functions. In the full version of the
paper, we distinguish shared and unshared regions, and we restrict the threads
to have visible effects only in shared regions (relative to which some compiler or
hardware optimizations should be disallowed, like with “volatile” variables). To
compensate for this restriction, we include into the language the effect masking
construct of [20], that is (local ρ in M), binding the region ρ to be used only by
M . This construct allows typing an expression using only local state as “pure”.
Such pure expressions may be executed as processes, in preemptive mode, and
possibly on different processors. The correctness of the typing of effect masking
is shown as part of a standard subject reduction property, using a new method
that differs from the one of [32].

Fair Cooperative Multithreading 285

Another topic that deserves to be investigated is whether the restriction im-
posed by our stratification of the memory is acceptable in practice. We believe
that the restriction we have on the storable functional values is not too severe
(in particular, any pure function can be stored), but obviously our design for
the type system needs to be extended, and experimented on real applications, in
order to assess more firmly this belief. We notice also that our approach does not
seem to preclude the use of cyclic data structures. In OCaml for instance, one
may define cyclic lists like – using standard notations for the list constructors:

(let rec x = cons(1, x) in x)

Such a value, which is a list of integers, does not show any effect, and therefore
it should be possible to extend our language and type and effect system to deal
with such circular data structures.

Finally it would be interesting to see whether showing termination in a concur-
rent, higher-order imperative language may have other applications than the one
which motivated our work (cf. [11]), and whether our realizabity interpretation
could be generalized to logical relations (and to richer notions of type), in order
to prove program equivalences for instance. This is left for further investigations.

References

1. Adya, A., Howell, J., Theimer, M., Bolosky, W.J., Douceur, H.R.: Cooperative task
management without manual stack management or, Event-driven programming is
not the opposite of threaded programming, Usenix ATC (2002)

2. Anderson, T.E., Bershad, B.N., Lazowska, E.D., Levy, H.M.: Scheduler activations:
effective kernel support for the user-level management of parallelism. ACM Trans.
on Computer Systems 10(1), 53–79 (1992)

3. Banga,G.,Druschel,P.,Mogul,J.C.:Betteroperatingsytemfeaturesforfasternetwork
servers. ACM SIGMETRICS Performance Evaluation Review 26(3), 23–30 (1998)

4. Barendregt, H.: Lambda Calculi with Types. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, pp. 117–309.
Oxford University Press, Oxford (1992)

5. von Berhen, R., Condit, J., Brewer, E.: Why events are a bad idea (for highcon-
currency servers). In: Proceedings of HotOS IX (2003)

6. von Berhen, R., Condit, J., Zhou, F., Necula, G.C., Brewer, E.: Capriccio: scalable
threads for Internet services. In: SOSP’03 (2003)

7. Benton, N., Leperchey, B.: Relational reasoning in a nominal semantics for stor-
age. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 86–101. Springer,
Heidelberg (2005)

8. Birkedal, L., Harper, R.: Relational interpretation of recursive types in an opera-
tional setting. Information and Computation 155(1-2), 3–63 (1999)

9. Bohr, N., Birkedal, L.: Relational reasoning for recursive types and references. In:
Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 79–96. Springer, Heidelberg
(2006)

10. Boudol, G.: ULM, a core programming model for global computing. In: Schmidt,
D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 234–248. Springer, Heidelberg (2004)

11. Boudol, G.: On typing information flow. In: Van Hung, D., Wirsing, M. (eds.)
ICTAC 2005. LNCS, vol. 3722, pp. 366–380. Springer, Heidelberg (2005)

286 G. Boudol

12. Boussinot, F.: FairThreads: mixing cooperative and preemptive threads in C. Con-
currency and Computation: Practice and Experience 18, 445–469 (2006)

13. Dabrowski, F., Boussinot, F.: Cooperative threads and preemptive computations.
In: Proceeding of TV’06, Workshop on Multithreading in Hardware and Software:
Formal Approaches to Design and Verification, FLoC’06 (2006)

14. Epardaud, S.: Mobile reactive programming in ULM. In: Proc. of the Fifth ACM
SIGPLAN Workshop on Scheme and Functional Programming, pp. 87–98. ACM
Press, New York (2004)

15. Filliâtre, J.-C.: Verification of non-functional programs using interpretations in
type theory. J. Functional Programming 13(4), 709–745 (2003)

16. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in The-
oretical Computer Science, vol. 7. Cambridge University Press, Cambridge (1989)

17. Kleene, S.C.: On the interpretation of intuitionistic number theory. J. of Symbolic
Logic 10, 109–124 (1945)

18. Krivine, J.-L.: Lambda-Calcul: Types et Modèles, Masson, Paris (1990). English
translation Lambda-Calculus, Types and Models, Ellis Horwood (1993)

19. Landin, P.J.: The mechanical evaluation of expressions. Computer Journal 6, 308–
320 (1964)

20. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: POPL’88, pp. 47–57
(1988)

21. Mandel, L., Pouzet, M.: ReactiveML, a reactive extension to ML. In: PPDP’05,
pp. 82–93 (2005)

22. Mitchell, J.C.: Foundations for Programming Languages. MIT Press, Cambridge
(1996)

23. Ousterhout, J.: Why threads are a bad idea (for most purposes), presentation given
at the 1996 Usenix ATC (1996)

24. Pitts, A., Stark, I.: Operational reasoning for functions with local state. In: Gordon,
A., Pitts, A. (eds.) Higher-Order Operational Techniques in Semantics, pp. 227–
273. Publication of the Newton Institute, Cambridge Univ. Press (1998)

25. Plotkin, G.: Lambda-definability and logical relations. Memo SAI-RM-4, University
of Edinburgh (1973)

26. Pucella, R.: Reactive programming in Standard ML. In: IEEE Intern. Conf. on Com-
puter Languages, pp. 48–57. IEEE Computer Society Press, Los Alamitos (1998)

27. Sangiorgi, D.: Termination of processes. Math. Struct. in Comp. Science 16, 1–39
(2006)

28. Serrano, M., Boussinot, F., Serpette, B.: Scheme fair threads. In: PPDP’04, pp.
203–214 (2004)

29. Talpin, J.-P., Jouvelot, P.: The type and effect discipline. Information and Com-
putation 111, 245–296 (1994)

30. Tait, W.: Intensional interpretations of functionals of finite type I. J. of Symbolic
Logic 32, 198–212 (1967)

31. Tait, W.: A realizability interpretation of the theory of species. Logic Colloquium,
Lecture Notes in Mathematics, vol. 453, pp. 240–251 (1975)

32. Tofte, M., Talpin, J.-P.: Region-based memory management. Information and Com-
putation 132(2), 109–176 (1997)

33. Welsh, M., Culler, D., Brewer, E.: SEDA: an architecture for well-conditioned,
scalable internet services. In: SOSP’01, pp. 230–243 (2001)

34. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Information and
Computation 115(1), 38–94 (1994)

35. Yoshida, N., Berger, M., Honda, K.: Strong normalisation in the π-calculus. Infor-
mation and Computation 191(2), 145–202 (2004)

Precise Fixpoint-Based Analysis of Programs
with Thread-Creation and Procedures

Peter Lammich and Markus Müller-Olm

Institut für Informatik, Fachbereich Mathematik und Informatik
Westfälische Wilhelms-Universität Münster

peter.lammich@uni-muenster.de, mmo@math.uni-muenster.de

Abstract. We present a fixpoint-based algorithm for context-sensitive
interprocedural kill/gen-analysis of programs with thread creation. Our
algorithm is precise up to abstraction of synchronization common in
this line of research; it can handle forward as well as backward prob-
lems. We exploit a structural property of kill/gen-problems that al-
lows us to analyze the influence of environment actions independently
from the local transfer of data flow information. While this idea has
been used for programs with parbegin/parend blocks before in work of
Knoop/Steffen/Vollmer and Seidl/Steffen, considerable refinement and
modification is needed to extend it to thread creation, in particular for
backward problems. Our algorithm computes annotations for all program
points in time depending linearly on the program size, thus being faster
than a recently proposed automata based algorithm by Bouajjani et. al..

1 Introduction

As programming languages with explicit support for parallelism, such as Java,
have become popular, the interest in analysis of parallel programs has increased
in recent years. Most papers on precise analysis, such as [5,13,10,9,3,4], use parbe-
gin/parend blocks or their interprocedural counterpart, parallel procedure calls,
as a model for parallelism. However, this is not adequate for analyzing languages
like Java, because in presence of procedures or methods the thread-creation prim-
itives used in such languages cannot be simulated by parbegin/parend [1]. This
paper presents an efficient, fixpoint-based algorithm for precise kill/gen-analysis
of programs with both thread-creation and parallel calls.

Due to known undecidability and complexity results efficient and precise anal-
yses can only be expected for program models that ignore certain aspects of
behavior. As common in this line of research (compare e.g. [13,10,9,3,4,1]) we
consider flow- and context-sensitive analysis of a program model without syn-
chronization. Note that by a well-known result of Ramalingam [12], context- and
synchronization-sensitive analysis is undecidable. We focus on kill/gen problems,
a practically relevant class of dataflow problems that comprises the well-known
bitvector problems, e.g. live variables, available expressions, etc. Note that only
slightly more powerful analyses, like copy constants or truly live variables are

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 287–302, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

288 P. Lammich and M. Müller-Olm

intractable or even undecidable (depending on the atomicity of assignments) for
parallel programs [10,9].

Extending previous work [5], Seidl and Steffen proposed an efficient, fixpoint-
based algorithm for precise kill/gen-analysis of programs with parallel procedure
calls [13]. Adopting their idea of using a separate analysis of possible interference,
we construct an algorithm that treats thread creation in addition to parallel
call. This extension requires considerable modification. In particular, possible
interference has a different nature in presence of thread creation because a thread
can survive the procedure that creates it. Also backwards analysis is inherently
different from forward analysis in presence of thread creation. As our algorithm
handles both thread creation and parallel procedure calls it strictly generalizes
Seidl and Steffen’s algorithm from [13]. It also treats backwards kill/gen problems
for arbitrary programs, while [13] assumes that every forward reachable program
point is also backwards reachable.

In [1], an automata based approach to reachability analysis of a slightly
stronger program model than ours is presented. In order to compute bitvec-
tor analysis information for multiple program points, which is often useful in
the context of program optimization, this automata based algorithm must be
iterated for each program point, each iteration needing at least linear time in
the program size. In contrast, our algorithm computes the analysis information
for all program points in linear time. Moreover, our algorithm can compute
with whole bitvectors, exploiting efficiently implementable bitvector operations,
whereas the automata based algorithm must be iterated for each bit. To the best
of our knowledge, there has been no precise interprocedural analysis of programs
with thread creation that computes information for all program points in linear
time.

In a preliminary and less general version of this paper [8], we already covered
forward analysis for programs without parallel calls.

This paper is organized as follows: After defining flow graphs and their opera-
tional semantics in Section 2, we define the class of kill/gen analysis problems and
their MOP-solution, using the operational semantics as a reference point (Sec-
tion 3). We then develop a fixpoint-based characterization of the MOP-solution
amenable to algorithmic treatment for both forward and backward problems
(Sections 4 and 5), thereby relying on information about the possible interfer-
ence, whose computation is deferred to Section 6. We generalize our treatment
to parallel procedure calls in Section 7. Section 8 indicates how to construct a
linear-time algorithm from our results and discusses future research.

2 Parallel Flow Graphs

A parallel flowgraph (P, (Gp)p∈P) consists of a finite set P of procedure names,
with main ∈ P . For each procedure p ∈ P , there is a directed, edge annotated fi-
nite graph Gp = (Np, Ep, ep, rp) where Np is the set of control nodes of procedure
p and Ep ⊆ Np×A×Np is the set of edges that are annotated with base, call or
spawn statements: A := {base b | b ∈ B} ∪ {call p | p ∈ P} ∪ {spawn p | p ∈ P}.

Precise Fixpoint-Based Analysis of Programs 289

The set B of base edge annotations is not specified further for the rest of this
paper. Each procedure p ∈ P has an entry node ep ∈ Np and a return node
rp ∈ Np. As usual we assume that the nodes of the procedures are disjoint, i.e.
Np ∩Np′ = ∅ for p
= p′ and define N =

⋃
p∈P Np and E =

⋃
p∈P Ep.

We use M(X) to denote the set of multisets of elements from X . The empty
multiset is ∅, {a} is the multiset containing a once and A8B is multiset union.

We describe the operational semantics of a flowgraph by a labeled transition
system ·−→ ⊆ Conf × L × Conf over configurations Conf := M(N∗) and labels
L := E ∪ {ret}. A configuration consists of the stacks of all threads running in
parallel. A stack is modeled as a list of control nodes, the first element being
the current control node at the top of the stack. We use [] for the empty list,
[e] for the list containing just e and write r1r2 for the concatenation of r1 and
r2. Execution starts with the initial configuration, {[emain]}. Each transition is
labeled with the corresponding edge in the flowgraph or with ret for the return
from a procedure. We use an interleaving semantics, nondeterministically picking
the thread that performs the next transition among all available threads. Thus
we define ·−→ by the following rules:

[base] ({[u]r} 8 c) e−→({[v]r} 8 c) for edges e = (u, base a, v) ∈ E
[call] ({[u]r} 8 c) e−→({[eq][v]r} 8 c) for edges e = (u, call q, v) ∈ E
[ret] ({[rq]r} 8 c) ret−→({r} 8 c) for procedures q ∈ P
[spawn] ({[u]r} 8 c) e−→({[v]r} 8 {[eq]} 8 c) for edges e = (u, spawn q, v) ∈ E

We extend e−→ to finite sequences w ∈ L∗ in the obvious way. For technical
reasons, we assume that every edge e ∈ E of the flowgraph is dynamically

reachable, i.e. there is a path of the form {[emain]}
w[e]−→ (we use as wildcard, i.e.

an anonymous, existentially quantified variable). This assumption is harmless,
as unreachable edges can be determined by a simple analysis and then removed
which does not affect the analysis information we are interested in.

3 Dataflow Analysis

Dataflow analysis provides a generic lattice-based framework for constructing
program analyses. A specific dataflow analysis is described by a tuple (L,�, f)
where (L,�) is a complete lattice representing analysis information and f : L →
(Lmon→L) maps a transition label e to a monotonic function fe that describes how
a transition labeled e transforms analysis information. We assume that only base-
transitions have transformers other than the identity and extend transformers
to finite paths by fe1...en := fen ◦ . . . ◦ fe1 .

In this paper we consider kill/gen-analyses, i.e. we require (L,�) to be dis-
tributive and the transformers to have the form fe(x) = (x (kille)) gene for
some kille, gene ∈ L. Note that all transformers of this form are monotonic and
that the set of these transformers is closed under composition of functions. In
order to allow effective fixpoint computation, we assume that (L,�) has finite
height. As (L,�) is distributive, this implies that the meet operation distributes

290 P. Lammich and M. Müller-Olm

over arbitrary joins, i.e. (
⊔
M) (x =

⊔
{m (x | m ∈ M} for all x ∈ L and

M ⊆ L. Thus, all transformers are positively disjunctive which is important for
precise abstract interpretation.

Kill/gen-analyses comprise classic analyses like determination of live variables,
available expressions or potentially uninitialized variables.

Depending on the analysis problem, one distinguishes forward and backward
dataflow analyses. The analysis information for forward analysis is an abstraction
of the program executions that reach a certain control node, while the backward
analysis information concerns executions that leave the control node.

The forward analysis problem is to calculate, for each control node u ∈ N , the
least upper bound of the transformers of all paths reaching a configuration at
control node u applied to an initial value x0 describing the analysis information
valid at program start. A configuration c ∈ Conf is at control node u ∈ N (we
write atu(c)), iff it contains a stack with top node u. We call the solution of the
forward analysis problem MOPF and define

MOPF[u] := αF(Reach[u])

where Reach[u] := {w | ∃c : {[emain]} w−→c ∧ atu(c)} is the set of paths reaching
u and αF(W) :=

⊔
{fw(x0) | w ∈ W} is the abstraction function from concrete

sets of reaching paths to the abstract analysis information we are interested in.1

The backward analysis problem is to calculate, for each control node u ∈ N ,
the least upper bound of the transformers of all reversed paths leaving reachable
configurations at control node u, applied to the least element of L, ⊥L. We call
the solution of the backward analysis problem MOPB and define

MOPB[u] := αB(Leave[u])

where Leave[u] := {w | ∃c : {[emain]} ∗−→c
w−→ ∧atu(c)} is the set of paths leaving

u, αB(W) :=
⊔
{fwR(⊥L) | w ∈ W} is the corresponding abstraction function

and wR denotes the word w in reverse order, e.g. f(e1...en)R = fe1 ◦ . . . ◦ fen .
Note that we do not use an initial value in the definition of backward analysis,

because we have no notion of termination that would give us a point where to
apply the initial value. This model is adequate for interactive programs that read
and write data while running.

4 Forward Analysis

Abstract interpretation [2,11] is a standard and convenient tool for constructing
fixpoint-based analysis algorithms and arguing about their soundness and preci-
sion. Thus, a natural idea would be to compute the MOPF-solution as an abstract
interpretation of a system of equations or inequations (constraint system) that
characterizes the sets Reach[u].

1 MOP originally stands for meet over all paths. We use the dual lattice here, but stick
to the term MOP for historical reasons.

Precise Fixpoint-Based Analysis of Programs 291

Unfortunately, it follows from results in [1] that no such constraint system
exists in presence of thread creation and procedures (using the natural operators
“concatenation” and “interleaving” from [13]). In order to avoid this problem,
we derive an alternative characterization of the MOP-solution as the join of two
values, each of which can be captured by abstract interpretation of appropriate
constraint systems. In order to justify this alternative characterization, we argue
at the level of program paths. That is, we perform part of the abstraction already
on the path level. More specifically, we classify the transitions of a reaching path
into directly reaching transitions and interfering transitions and show that these
transitions are quite independent. We then show how to obtain the MOP-solution
from the set of directly reaching paths (consisting of directly reaching transitions
only) and the possible interference (the set of interfering transitions on reaching
paths), and how to characterize these sets as constraint systems. The idea of
calculating the MOP-solution using possible interference is used already by [13]
in a setting with parallel procedure calls. However, while in [13] this idea is used
just in order to reduce the size of the constraint system, in our case it is essential
in order to obtain a constraint-based characterization at all, due to results of [1]
mentioned above.

[u]r

[e]main

Fig. 1. Directly reaching
and interfering transitions

The classification of transitions is illustrated by
Fig. 1. The vertical lines symbolize the executions
of single threads, horizontal arrows are thread cre-
ation. The path depicted in this figure reaches the
control node u in one thread. The directly reaching
transitions are marked with thick lines. The other
transitions are interfering transitions, which are ex-
ecuted concurrently with the directly reaching tran-
sitions, so that the whole path is some interleaving
of directly reaching and interfering transitions.

A key observation is that due to the lack of syn-
chronization each potentially interfering transition e
can take place at the very end of some path reach-
ing u; thus, the information at u cannot be stronger
than gene. In order to account for this, we use the
least upper bound of all this gene-values (see Theorem 2 and the definition of
αPI below). This already covers the effect of interfering transitions completely:
the kille-parts have no strengthening effect for the information at u, because
the directly reaching path reaches u without executing any of the interfering
transitions.

In order to formalize these ideas, we distinguish directly reaching from inter-
fering transitions in the operational semantics by marking one stack of a configu-
ration as executing directly reaching transitions. Transitions of unmarked stacks
are interfering ones. If the marked stack executes a spawn, the marker can either
stay with this stack or be transferred to the newly created thread. In Fig. 1 this
corresponds to pushing the marker along the thick lines.

292 P. Lammich and M. Müller-Olm

In the actual formalization, we mark a single control node in a stack instead
of the stack as a whole. This is mainly in order to allow us a more smooth
generalization to the case of parallel procedure calls (Section 7). In a procedure
call from a marked node we either move the marker up the stack to the level
of the newly created procedure or retain it at the level of the calling procedure.
Note that we can move the marker from the initial configuration {[emain]} to
any reachable control node u by just using transitions on control nodes above
the marker. These transitions formalize the directly reaching transitions. The
notation for a node that may be marked is um, with m ∈ {◦, •} and u ∈ N
where u◦ means that the node is not marked, and u• means that the node is
marked. We now define the following rule templates, instantiated for different
values of x below:

[base] ({[um]r} 8 c) e−→x({[vm]r} 8 c) e = (u, base a, v) ∈ E
[call] ({[um]r} 8 c) e−→x({[e◦q][vm]r} 8 c) e = (u, call q, v) ∈ E
[ret] ({[r◦q]r} 8 c)

ret−→x({r} 8 c) q ∈ P
[spawn] ({[um]r} 8 c) e−→x({[vm]r} 8 {[e◦q]} 8 c) e = (u, spawn q, v) ∈ E

Using these templates, we define the transition relations ·−→m and ·−→i. The
relation ·−→m is defined by adding the additional side condition that some node
in [um]r must be marked to the rules [base], [call] and [spawn]. The [ret]-rule
gets the additional condition that some node in r must be marked (in particular,
r must not be empty). The relation ·−→i is defined by adding the condition that
no node in [um]r or r respectively must be marked.

Intuitively, ·−→m describes transitions on marked stacks only, but cannot
change the position of the marker; ·−→i captures interfering transitions. To be
able to push the marker to called procedures or spawned threads, we define the
transition relation ·−→p by the following rules:

[call.push] ({[u•]r} 8 c) e−→p({[e•q][v◦]r} 8 c) e = (u, call q, v) ∈ E
[spawn.push] ({[u•]r} 8 c) e−→p({[v◦]r} 8 {[e•q]} 8 c) e = (u, spawn q, v) ∈ E

According to the ideas described above, we get:

Lemma 1. Given a reaching path {[emain]} w−→{[u]r} 8 c, there are paths w1, w2

with w ∈ w1 ⊗ w2, such that ∃ĉ : {[e•main]}
w1−→mp{[u•]r} 8 ĉ

w2−→i{[u•]r} 8 c.

Here, w1⊗w2 denotes the set of all interleavings of the finite sequences w1 and w2
and ·−→mp := ·−→m ∪ ·−→p executes the directly reaching transitions, resulting
in the configuration {[u•]r} 8 ĉ. The interfering transitions in w2 operate on
the threads from ĉ. These threads are either freshly spawned and hence in their
initial configuration with just the thread’s entry point on the stack, or they
have been left by a transition according to rule [spawn.push] and hence are at
the target node of the spawn edge and may have some return nodes on the
stack.

Precise Fixpoint-Based Analysis of Programs 293

Now we define the set Rop[u] of directly reaching paths to u as

Rop[u] := {w | ∃r, c : {[e•main]}
w−→mp{[u•]r} 8 c}

and the possible interference at u as

PIop[u] := {e | ∃r, c, w : {[e•main]}
∗−→mp{[u•]r} 8 c

w[e]−→i } .

The following theorem characterizes the MOPF-solution based on Rop and PIop:

Theorem 2. MOPF[u] = αF(Rop[u])) αPI(PIop[u])

Here, αPI(E) :=
⊔
{gene | e ∈ E} abstracts sets of edges to the least upper

bound of their gene-values.

Proof. For the �-direction, we fix a reaching path w ∈ Reach[u] and show that
its abstraction fw(x0) is smaller than the right hand side. Using Lemma 1 we
split w into the directly reaching path w1 and the interfering transitions w2, such
that w ∈ w1⊗w2. Because we use kill/gen-analysis over distributive lattices, we
have the approximation fw(x0) � fw1(x0))

⊔
{gene | e ∈ w2} [13]. Obviously,

these two parts are smaller than αF(Rop[u]) and αPI(PIop[u]) respectively, and
thus the proposition follows.

For the 9-direction, we first observe that any directly reaching path is also
a reaching path, hence MOPF[u] 9 αF(Rop[u]). Moreover, for each transition
e ∈ PIop[u] a path w[e] ∈ Reach[u] can be constructed. Its abstraction (fw(x0) (
kille)) gene is obviously greater than gene. Thus, also MOPF[u] 9 αPI(PIop[u]).
Altogether the proposition follows. ()

Constraint systems. In order to compute the right hand side of the equation in
Theorem 2 by abstract interpretation, we characterize the directly reaching paths
and the possible interference as the least solutions of constraint systems. We will
focus on the directly reaching paths here. The constraints for the possible inter-
ference are developed in Section 6, because we can reuse results from backward
analysis for their characterization. In order to precisely treat procedures, we use
a well-known technique from interprocedural program analysis, that first char-
acterizes so called same-level paths and then uses them to assemble the directly
reaching paths. A same-level path starts and ends at the same stack-level, and
never returns below this stack level. We are interested in the same-level paths
starting at the entry node of a procedure and ending at some node u of this proce-
dure. We define the set of these paths as Sop[u] := {w | ∃c : {[e•p]}

w−→m{[u•]}8c}
for u ∈ Np. It is straightforward to show that lfp(S) = Sop for the least solution
lfp(S) of the constraint system S over variables S[u] ∈ P(L∗), u ∈ N with the
following constraints:

[init] S[eq] ⊇ {ε} for q ∈ P
[base] S[v] ⊇ S[u]; e for e = (u, base , v) ∈ E
[call] S[v] ⊇ S[u]; e; S[rq]; ret for e = (u, call q, v) ∈ E
[spawn] S[v] ⊇ S[u]; e for e = (u, spawn q, v) ∈ E

294 P. Lammich and M. Müller-Olm

The operator ; is list concatenation lifted to sets. The directly reaching paths
are characterized by the constraint system R over variables R[u] ∈ P(L∗), u ∈ N
with the following constraints:

[init] R[emain] ⊇ {ε}
[reach] R[u] ⊇ R[ep]; Sop[u] for u ∈ Np

[callp] R[eq] ⊇ R[u]; e for e = (u, call q,) ∈ E
[spawnp] R[eq] ⊇ R[u]; e for e = (u, spawn q,) ∈ E

Intuitively, the constraint [reach] corresponds to the transitions that can be
performed by the ·−→m part of ·−→mp, and the [callp]- and [spawnp]-constraints
correspond to the ·−→p part. It is again straightforward to show lfp(R) = Rop.

Using standard techniques of abstract interpretation [2,11], we can construct
an abstract version R# of R over the domain (L,�) using an abstract version
S# of S over the domain (Lmon→L,�) and show:

Theorem 3. lfp(R#) = αF(lfp(R)).

5 Backward Analysis

For backward analysis, we consider the paths leaving u. Recall that these are
the paths starting at a reachable configuration of the form {[u]r} 8 c. Such a
path is an interleaving of a path from [u]r and transitions originating from c.
The latter ones are covered by the possible interference PIop[u]. It turns out that
in order to come to grips with this interleaving we can use a similar technique
as for forward analysis. We define the directly leaving paths as

Lop[u] := {w | ∃r, c : {[emain]} ∗−→{[u]r} 8 c ∧ {[u]r} w−→ }

and show the following characterization:

Theorem 4. MOPB[u] = αB(Lop[u])) αPI(PIop[u]).

The proof is similar to that of Theorem 2. It is deferred to the appendix of [7]
due to lack of space.

In the forward case, the set of directly reaching paths could be easily described
by a constraint system on sets of paths. The analogous set of directly leaving
paths, however, does not appear to have such a simple characterization, because
the concurrency effects caused by threads created on these paths have to be
tackled. This is hard in combination with procedures, as threads created inside
an instance of a procedure can survive termination of that instance. In order to
treat this effect, we have experimented with a complex constraint system on sets
of pairs of paths. It turned out that this complexity disappears in the abstract
version of this constraint system. In order to give a more transparent justifica-
tion for the resulting abstract constraint systems, we develop – again arguing
on the path level – an alternative characterization of αB(Lop[u]) through a subset

Precise Fixpoint-Based Analysis of Programs 295

of representative paths that is easy to characterize. Thus, again we transfer part
of the abstraction to the path level.

More specifically, we only consider directly leaving paths that execute tran-
sitions of a created thread immediately after the corresponding spawn transi-
tion. From the point of view of the initial thread from which the path is leav-
ing, the transitions of newly created threads are executed as early as possible.
Formally, we define the relation ·=⇒x ⊆ Conf × L∗ × Conf by the following
rules:

c
e=⇒xc

′ if c e−→xc
′ and e is no spawn edge

c
[e]w
=⇒xc

′ if c e−→xc
′ 8 {[ep]}, e = spawn p and {[ep]} w−→

c
w1w2=⇒ xc

′ if ∃ĉ : c w1=⇒xĉ ∧ ĉ
w2=⇒xc

′

Here x selects some set of transition rules, i.e. x = mp means that ·−→mp is used
for ·−→x. If x is empty, the standard transition relation ·−→ is used.

The set of representative directly leaving paths is defined by

Lop
⊆ [u] := {w | ∃r, c : {[emain]} ∗−→{[u]r} 8 c ∧ {[u]r} w=⇒ } .

Exploiting structural properties of kill/gen-functions, we can show:

Lemma 5. For each u ∈ N we have αB(Lop[u]) = αB(Lop
⊆ [u]).

Proof. The 9-direction is trivial, because we obviously have Lop[u] ⊇ Lop
⊆ [u]

and αB is monotonic. For the �-direction we consider a directly leaving path
{[u]r} w−→ with w = e1 . . . en. Due to the distributivity of L, its abstraction
can be written as fwR(⊥L) =

⊔
1≤i≤n(genei

(Ai) with Ai := kille1 (. . . (
killei−1 .

We show for each edge ek that the value genek
(Ak is below αB(Lop

⊆ [u]). For
this, we distinguish whether transition ek was executed in the initial thread
(from stack [u]r) or in some spawned thread. To cover the case of a transition
ek of the initial thread, we consider the subpath w′ ∈ Lop

⊆ [u] of w that makes
no transitions of spawned threads at all. We can obtain w′ by discarding some
transitions from w. Moreover, w′ also contains the transition ek. If we write
fw′R(⊥L) in a similar form as above, it contains a term genek

(A′, and because we
discarded some transitions, we have A′ 9 Ak, and hence fw′R(⊥L) 9 genek

(A′ 9
genek

(Ak.
To cover the case of a transition ej of a spawned thread, we consider the

subpath w′′ ∈ Lop
⊆ [u] of w that, besides directly leaving ones, only contains

transitions of the considered thread. Because ej occurs as early as possible in
w′′, the prefix of w′′ up to ej can be derived from the prefix of w up to ej by
discarding some transitions, and again we get fw′′R(⊥L) 9 genej

(Aj . ()

296 P. Lammich and M. Müller-Olm

We can characterize Lop
⊆ by the following constraint system:

[LS.init] LS[u] ⊇ {ε}
[LS.init2] LS[rp] ⊇ {[ret]} for p ∈ P
[LS.base] LS[u] ⊇ e; LS[v] for e = (u, base , v) ∈ E
[LS.call1] LS[u] ⊇ e; LS[ep] for (u, call p, v) ∈ E
[LS.call2] LS[u] ⊇ e; SB[ep]; ret; LS[v] for (u, call p, v) ∈ E
[LS.spawn] LS[u] ⊇ e; LS[ep]; LS[v] for (u, spawn p, v) ∈ E

[SB.init] SB[rp] ⊇ {ε}
[SB.base] SB[u] ⊇ e; SB[v] for e = (u, base , v) ∈ E
[SB.call] SB[u] ⊇ e; SB[ep]; ret; SB[v] for (u, call p, v) ∈ E
[SB.spawn] SB[u] ⊇ e; LS[ep]; SB[v] for (u, spawn p, v) ∈ E

[L.leave1] L⊆[u] ⊇ SB[u]; L⊆[rp] for u ∈ Np if u reachable
[L.leave2] L⊆[u] ⊇ LS[u] if u reachable
[L.ret] L⊆[rp] ⊇ ret; L⊆[v] for (, call p, v) ∈ E

and p can terminate

The LS part of the constraint system characterizes paths from a single control
node: LSop[u] := {w | {[u]} w=⇒ }. The SB-part characterizes same-level paths
from a control node to the return node of the corresponding procedure: Sop

B [u] :=
{w | ∃c′ : {[u•]} w=⇒m{[r•p]} 8 c′}. It is straightforward to prove lfp(LS) = LSop,
lfp(SB) = Sop

B and lfp(L⊆) = Lop
⊆ . Using abstract interpretation one gets con-

straint systems L⊆# over (L,⊆) and LS#, SB
over (Lmon→L,�) with lfp(L⊆#) =

αB(lfp(L⊆)).

6 Possible Interference

In order to be able to compute the forward and backward MOP-solution, it re-
mains to describe a constraint system based characterization of the possible in-
terference suitable for abstract interpretation. We use the following constraints:

[SP.edge] SP[v] ⊇ SP[u] for (u, base , v) ∈ E or (u, spawn , v) ∈ E
[SP.call] SP[v] ⊇ SP[u] ∪ SP[rq] for (u, call q, v) ∈ E if q can terminate
[SP.spawnt] SP[v] ⊇ αE(LSop[eq]) for (u, spawn q, v) ∈ E

[PI.reach] PI[u] ⊇ PI[ep] ∪ SP[u] for u ∈ Np and u reachable
[PI.trans1] PI[eq] ⊇ PI[u] for (u, call q,) ∈ E
[PI.trans2] PI[eq] ⊇ PI[u] for (u, spawn q,) ∈ E
[PI.trans3] PI[eq] ⊇ αE(Lop

⊆ [v]) for (u, spawn q, v) ∈ E

Here, αE : P(L∗) → P(L) with αE(W) = {e | ∃w, e, w′ : w[e]w′ ∈ W} ab-
stracts sets of paths to the sets of transitions contained in the paths. The con-
straint system PI follows the same-level pattern: SP characterizes the interfering

Precise Fixpoint-Based Analysis of Programs 297

transitions that are enabled by same-level paths. It is straightforward to show

lfp(SP) = SPop, with SPop[u] := {e | ∃c, w : {[e•p]}
∗−→m{[u•]}8 c

w[e]−→i }. The con-
straint [PI.reach] captures that the possible interference at a reachable node u is
greater than the possible interference at the beginning of u’s procedure and the
interference created by same-level paths to u. The [PI.trans1]- and [PI.trans2]-
constraints describe that the interference at the entry point of a called or spawned
procedure is greater than the interference at the start node of the call resp. spawn
edge. The [PI.trans3]-constraint accounts for the interference generated in the
spawned thread by the creator thread continuing its execution. Because the cre-
ator thread may be inside a procedure, we have to account not only for edges
inside the current procedure, but also for edges of procedures the creator thread
may return to. These edges are captured by αE(Lop[v]) = αE(Lop

⊆ [v]).
With the ideas described above, it is straightforward to show lfp(PI) = PIop.

Abstraction of the PI- and SP-systems is especially simple in this case, as the
constraint systems only contain variables and constants. For the abstract versions
SP# and PI#, we have lfp(SP#) = αPI(lfp(SP)) and lfp(PI#) = αPI(lfp(PI)).

Now, we have all pieces to compute the forward and backward MOP-solutions:
Combining Theorems 2, 4 and Lemma 5 with the statements about the abstract
constraint systems we get

MOPF[u] = lfp(R#)[u]) lfp(PI#)[u] and MOPB[u] = lfp(L⊆#)[u]) lfp(PI#)[u] .

The right hand sides are efficiently computable, e.g. by a worklist algorithm [11].

7 Parallel Calls

In this section we discuss the extension to parallel procedure calls. Two proce-
dures that are called in parallel are executed concurrently, but the call does not
return until both procedures have terminated.

Flowgraphs. In the flowgraph definition, we replace the call p annotation by the
pcall p1 ‖ p2 annotation, where p1, p2 ∈ P are the procedures called in parallel.
Note that there is no loss of expressiveness by assuming that all procedure calls
are parallel calls, because instead of calling a procedure p alone, one can call it
in parallel with a procedure q0, where q0 has only a single node eq0 = rq0 with
no outgoing edges. To describe a configuration, the notion of a stack is extended
from a linear list to a binary tree. While in the case without parallel calls, the
topmost node of the stack can make transitions and the other nodes are the
stored return addresses, now the leafs of the tree can make transitions and the
inner nodes are the stored return addresses. We write u for the tree consisting
just of node u, and u(t, t′) for the tree with root u with the two successor trees t
and t′. The notation r[t] denotes a tree consisting of a subtree t in some context
r. The position of t in r is assumed to be fixed, such that writing r[t] and r[t′]
in the same expression means that t and t′ are at the same position in r.

298 P. Lammich and M. Müller-Olm

The rule templates for ·−→m, ·−→i and ·−→p are refined as follows:

[base] ({r[um]} 8 c) e−→x({r[vm]} 8 c) e = (u, base a, v) ∈ E
[pcall] ({r[um]} 8 c) e−→x({r[vm(e◦p, e◦q)]} 8 c) e = (u, pcall p ‖ q, v) ∈ E
[ret] ({r[vm(r◦p, r

◦
q)]} 8 c)

ret−→x({r[vm]} 8 c) p, q ∈ P
[spawn] ({r[um]} 8 c) e−→x({r[vm]} 8 {e◦q} 8 c) e = (u, spawn q, v) ∈ E

[c.pushl] ({r[u•]} 8 c) e−→p({r[v◦(e•p, e◦q)]} 8 c) e = (u, pcall p ‖ q, v) ∈ E
[c.pushr] ({r[u•]} 8 c) e−→p({r[v◦(e◦p, e•q)]} 8 c) e = (u, pcall p ‖ q, v) ∈ E
[sp.push] ({r[u•]} 8 c) e−→p({r[v◦]} 8 {e•q} 8 c) e = (u, spawn q, v) ∈ E

For the ·−→m-relation, we require the position of the processed node um resp.
subtree vm(r◦p, r

◦
q) in r to be below a marked node. For the ·−→i-relation the

position must not be below a marked node. The reference semantics ·−→ on
unmarked configurations is defined by analogous rules.

Forward Analysis. Again we can use the relation ·−→mp to push an initial marker
to any reachable node. Although there is some form of synchronization at pro-
cedure return now, the ·−→m and ·−→i -relations are defined in such a way that
the interfering transitions can again be moved to the end of a reaching path and
in analogy to Lemma 1 we get:

Lemma 6. Given a reaching path {emain} w−→{r[u]}8c, there exists paths w1, w2

with w ∈ w1 ⊗ w2 such that ∃ĉ, r̂ : {e•main}
w1−→mp{r̂[u•]} 8 ĉ

w2−→i{r[u•]} 8 c.

Note that the interfering transitions may work not only on the threads in ĉ, but
also on the nodes of r̂ that are no predecessors of u•, i.e. on procedures called
in parallel that have not yet terminated.

We redefine the directly reaching paths Rop and possible interference PIop

accordingly, and get the same characterization of MOPF as in the case without
parallel calls (Theorem 2). In S and R, we replace the constraints for call edges
with the following constraints for parallel procedure calls:

[call] S[v] ⊇ S[u]; e; (S[rp]⊗ S[rq]); ret for e = (u, pcall p ‖ q, v) ∈ E
[callp1] R[ep] ⊇ R[u]; e for (u, pcall p ‖ q,) ∈ E
[callp2] R[eq] ⊇ R[u]; e for (u, pcall p ‖ q,) ∈ E

The [call]-constraint accounts for the paths through a parallel call, that are all
interleavings of same-level paths through the two procedures called in parallel.
For the abstract interpretation of this constraint, we lift the operator ⊗# :
(Lmon→L) × (Lmon→L) → (Lmon→L) defined by f ⊗# g = f ◦ g) g ◦ f to sets and
use it as precise [13] abstract interleaving operator. The redefined PI constraint
system will be described after the backward analysis.

Backward Analysis. For backward analysis, the concept of directly leaving paths
has to be generalized: In the case without parallel calls, a directly leaving path is

Precise Fixpoint-Based Analysis of Programs 299

a path from some reachable stack. It is complementary to the possible interfer-
ence, i.e. the transitions on leaving paths are either interfering or directly leaving
transitions. In the case of parallel calls, interference is not only caused by parallel
threads, but also by procedures called in parallel. Hence it is not sufficient to
just distinguish the thread that reached the node from the other threads, but we
have to look inside this thread and distinguish between the procedure reaching
the node and the procedures executed in parallel.

v

v’

u

ep

ep

1

2

Fig. 2. Sample tree with
marked node u

For instance, consider the tree s = v(ep1 , v
′(u•,

ep2)) that is visualized in Fig. 2 (the ◦-annotations at
the unmarked nodes are omitted for better readabil-
ity). This tree may have been created by a directly
reaching path to u. The nodes ep1 and ep2 may ex-
ecute interfering transitions. The other transitions,
that are exactly the directly leaving ones, may either
be executed from the node u•, or from the nodes v′

and v, if p1 and p2 have terminated. To describe the
directly leaving transitions separately, we define the
function above, that transforms a tree with a marked
node u• by pruning all nodes that are not predeces-
sors of u• and adding dummy nodes to make the tree binary again. For a subtree
that may potentially terminate, i.e. be transformed to a single return node by
some transition sequence, a dummy return node ur is added. If the pruned sub-
tree cannot terminate, a dummy non-return node un is added. Both ur and un

have no outgoing edges. Assuming, for instance, that procedure p1 cannot ter-
minate and p2 can terminate, we would have above(s) = v(un, v

′(u, ur)). For
technical reasons, above deletes the marker.

With the help of the above-function, we define the directly leaving paths by

Lop[u] := {w | ∃r, c : {e•main}
∗−→mp{r[u•]} 8 c ∧ {above(r[u•])} w−→ }

and show similar to Theorem 4:

Theorem 7. MOPB[u] = αB(Lop[u])) αPI(PIop[u]).

The proof formalizes the ideas discussed above. Due to lack of space it is deferred
to the appendix of [7].

As in the case without parallel calls, we can characterize the directly leaving
paths by a complex constraint system whose abstract version is less complex. So
we again perform part of the abstraction on the path level. As in the case without
parallel calls, we define the ·=⇒ transition relation, to describe those paths that
execute transitions of spawned threads only immediately after the corresponding
spawn transition. Transitions executed in parallel due to parallel calls, however,
may be executed in any order. Formally, the definition of ·=⇒ looks the same as
without parallel calls (we just use trees instead of lists). The definition of Lop

⊆
changes to: Lop

⊆ [u] := {w | ∃r, c : {e•main}
∗−→mp{r[u•]} 8 c ∧ {above(r[u•])} w=⇒ }.

The proof of αB(Lop[u]) = αB(Lop
⊆ [u]) (Lemma 5) does not change significantly.

However, we do not know any simple constraint system that characterizes
Lop
⊆ [u]. The reason is that there must be constraints that relate the leaving paths

300 P. Lammich and M. Müller-Olm

before a parallel call to the paths into or through the called procedures. We
cannot use sequential composition here, because Lop

⊆ contains interleavings of
procedures called in parallel. But we cannot use interleaving either, because
transitions of one parallel procedure might get interleaved arbitrarily with tran-
sitions of a thread spawned by the other parallel procedure, which is prohibited
by ·=⇒. While it is possible to avoid this problem by working with a more com-
plex definition of ·=⇒, there is a simpler way out. We observe that we need not
characterize Lop

⊆ [u] exactly, but only some set lfp(L⊆)[u] between Lop
⊆ [u] and Lop[u],

i.e. Lop[u] ⊇ lfp(L⊆)[u] ⊇ Lop
⊆ [u]. From these inclusions, it follows by monotonicity

of the abstraction function αB, that αB(Lop[u]) 9 αB(lfp(L⊆)[u]) 9 αB(Lop
⊆ [u]) =

αB(Lop[u]), and thus αB(lfp(L⊆)[u]) = αB(Lop[u]).
In order to obtain appropriate constraint systems, we replace in the constraint

systems L⊆, LS and SB the constraints related to call edges as follows:

[LS.init2] dropped
[LS.call1] LS[u] ⊇ e; (LS[ep1]⊗ LS[ep2]) for (u, pcall p1 ‖ p2, v) ∈ E
[LS.call2] LS[u] ⊇ e; (SB[ep1]⊗ SB[ep2]); ret; LS[v] for (u, pcall p1 ‖ p2, v) ∈ E

[SB.call] SB[u] ⊇ e; (SB[ep1]⊗ SB[ep2]); ret; SB[v] for (u, pcall p1 ‖ p2, v) ∈ E
[L.ret] L⊆[rpi] ⊇ ret; L⊆[v] for (, pcall p1 ‖ p2, v) ∈ E

p1, p2 can terminate, i = 1, 2

We have to drop the constraint [LS.init2], because in our generalization to par-
allel calls, the procedure at the root of the tree can never return, while in the
model without parallel calls, the procedure at the bottom of the stack may
return. The constraints [LS.call1], [LS.call2] and [SB.call] account for any inter-
leaving between the paths into resp. through two procedures called in parallel,
even when thereby breaking the atomicity of the transitions of some spawned
thread. With the ideas above, it is straightforward to prove the required inclu-
sions Lop[u] ⊇ lfp(L⊆[u]) ⊇ Lop

⊆ [u]. As these constraint systems do not contain
any new operators, abstract versions can be obtained as usual.

Possible Interference. It remains to modify the constraint system for PI. This is
done by replacing the constraints for call edges with the following ones:

[SP.call] SP[v] ⊇ SP[rp1] ∪ SP[rp2] ∪ SP[u] (u, pcall p1 ‖ p2, v) ∈ E
if p1, p2 can terminate

[PI.trans1] PI[epi] ⊇ PI[u] (u, pcall p1 ‖ p2, v) ∈ E, i = 1, 2
[PI.callmi] PI[epi] ⊇ αE(LSop[ep3−i]) (u, pcall p1 ‖ p2, v) ∈ E, i = 1, 2

The [SP.call]-constraint now accounts for the interference generated by both
procedures called in parallel and [PI.trans1] forwards the interference to both
procedures. The [PI.callmi]-constraint has no correspondent in the original PI-
system. It accounts for the fact that a procedure p3−i generates interference for
pi in a parallel call pcall p1 ‖ p2. Again, the necessary soundness and precision
proofs as well as abstraction are straightforward.

Precise Fixpoint-Based Analysis of Programs 301

8 Conclusion

From the results in this paper, we can construct an algorithm for precise kill/gen-
analysis of interprocedural flowgraphs with thread creation and parallel proce-
dure calls:

1. Generate the abstract versions of the constraint systems R,PI, L⊆ and all
dependent constraint systems from the flowgraph.

2. Compute their least solutions.
3. Return the approximation of the MOPF- and MOPB-solution respectively, as

indicated by Theorem 2, Theorem 4 and Lemma 5.

Let us briefly estimate the complexity of this algorithm: We generate O(|E|+
|P |) constraints over O(|N |) variables. If the height of (L,�) is bounded by h(L)
and a lattice operation (join, compare, assign) needs time O(op), the algorithm
needs time O((|E| ∗ h(L) + |N |) ∗ op) if a worklist algorithm [11] is used in
Step 2. A prototype implementation of our algorithm for forward problems has
been constructed in [6]. The algorithm may be extended to treat local variables
using well-known techniques; see e.g. [13].

Compared to related work, our contributions are the following: Generalizing
[13], we treat thread creation in addition to parallel procedure calls and handle
backward analysis completely. Compared to [1], our analysis computes informa-
tion for all program points in linear time, while the automata based algorithm
of [1] needs at least linear time per program point. Moreover, representing pow-
ersets by bitvectors as usual, we can exploit efficient bitvector operations, while
the algorithm of [1] needs to be iterated for each bit.

Like other related work [5,13,3,4,9,1], we do not handle synchronization such
as message passing. In presence of such synchronization, we still get a correct
(but weak) approximation. There are limiting undecidability results [12], but
further research has to be done to increase approximation quality in presence
of synchronization. Also extensions to more complex domains, e.g. analysis of
transitive dependences as studied in [9] for parallel calls, have to be investigated.

Acknowledgment. We thank Helmut Seidl and Bernhard Steffen for interesting
discussions on analysis of parallel programs and the anonymous reviewers for
their helpful comments.

References

1. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, Springer, Heidelberg (2005)

2. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. of
POPL’77, Los Angeles, California, pp. 238–252. ACM Press, New York (1977)

3. Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-
flow analysis. In: Thomas, W. (ed.) ETAPS 1999 and FOSSACS 1999. LNCS,
vol. 1578, pp. 14–30. Springer, Heidelberg (1999)

302 P. Lammich and M. Müller-Olm

4. Esparza, J., Podelski, A.: Efficient algorithms for pre* and post* on interprocedural
parallel flow graphs. In: Proc. of POPL’00, pp. 1–11. Springer, Heidelberg (2000)

5. Knoop, J., Steffen, B., Vollmer, J.: Parallelism for free: Efficient and optimal bitvec-
tor analyses for parallel programs. TOPLAS 18(3), 268–299 (1996)

6. Lammich, P.: Fixpunkt-basierte optimale Analyse von Programmen mit Thread-
Erzeugung. Master’s thesis, University of Dortmund (May 2006)

7. Lammich, P., Müller-Olm, M.: Precise fixpoint-based analysis of pro-
grams with thread-creation. Version with appendix. Available from http://
cs.uni-muenster.de/u/mmo/pubs/

8. Lammich, P., Müller-Olm, M.: Precise fixed point based analysis of programs with
thread-creation. In: Proc. of MEMICS 2006, pp. 91–98. Faculty of Information
Technology, Brno University of Technology (2006)

9. Müller-Olm, M.: Precise interprocedural dependence analysis of parallel programs.
Theor. Comput. Sci. 311(1-3), 325–388 (2004)

10. Müller-Olm, M., Seidl, H.: On optimal slicing of parallel programs. In: Proc. of
STOC’01, pp. 647–656. ACM Press, New York, NY, USA (2001)

11. Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

12. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. TOPLAS 22(2), 416–430 (2000)

13. Seidl, H., Steffen, B.: Constraint-Based Inter-Procedural Analysis of Parallel Pro-
grams. Nordic Journal of Computing (NJC) 7(4), 375–400 (2000)

http://cs.uni-muenster.de/u/mmo/pubs/
http://cs.uni-muenster.de/u/mmo/pubs/

Automatic Derivation of Compositional Rules in
Automated Compositional Reasoning�

Bow-Yaw Wang

Institute of Information Science
Academia Sinica, Taiwan

bywang@iis.sinica.edu.tw

Abstract. Soundness of compositional reasoning rules depends on com-
putational models and sometimes is rather involved. Verifiers are there-
fore forced to mould their problems into a handful of sound compositional
rules known to them. In this paper, a syntactic approach to establishing
soundness of compositional rules in automated compositional reasoning
is presented. Not only can our work justify all compositional rules known
to us, but also derive new circular rules by intuitionistic reasoning auto-
matically. Invertibility issues are also briefly discussed in the paper.

1 Introduction

One of the most effective techniques to alleviate the state-explosion problem in
formal verification is compositional reasoning. The technique divides composi-
tions and conquers the verification problem by parts. The decomposition how-
ever cannot be done naively. Oftentimes, components function correctly only in
specific contexts; they may not work separately. Assume-guarantee reasoning cir-
cumvents the problem by introducing environmental assumptions. Nevertheless,
making proper environmental assumptions requires clairvoyance. It is so tedious
a task that one would like to do without.

In [4], the problem is solved by a novel application of the L∗ learning algo-
rithm. Consider, for example, the following assume-guarantee rule where M |= P
denotes that the system M satisfies the property P .

M0‖A |= P M1 |= A

M0‖M1 |= P

To apply the rule, the new paradigm constructs an assumption A satisfy-
ing all premises via automated supervised learning. Verifiers need not construe
environmental assumptions in compositional rules anymore.

Nevertheless few compositional rules have been established in automated com-
positional reasoning. Since proofs of their soundness are essentially tedious case
analysis, verifiers may be reluctant to develop new rules lest introducing flaws
� The work is partly supported by NSC grands 95-3114-P-001-002-Y02, 95-2221-E-

001-024-MY3, and the SISARL thematic project of Academia Sinica.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 303–316, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

304 B.-Y. Wang

in the paradigm. Subsequently, all verification tasks must be moulded into a
handful of compositional rules available in automated compositional reasoning.
The effectiveness and applicability of the new paradigm are therefore impeded.

In this paper, a proof-theoretic approach for establishing soundness of rules in
automated compositional reasoning is developed. We simply observe that regular
languages form a Boolean algebra. The proof system LK for classical logic can
hence be used to deduce relations among regular sets syntactically.

But classical logic has its limitation. Consider the following rule [2].

M0‖P1 |= P0 P0‖M1 |= P1

M0‖M1 |= P0‖P1

If we treat compositions and satisfactions as conjunctions and implications re-
spectively, it is easy to see that the rule is not sound in the Boolean domain.
Hence sound proof systems for Boolean algebra cannot derive the circular rule.

Following Abadi and Plotkin’s work in [1], we show that non-empty, prefix-
closed regular languages form a Heyting algebra. Hence the proof system LJ
for intuitionistic logic can be used to deduce relations among them. Moreover, a
circular inference rule in [1] is shown to be sound in our settings. After adding
it to the system LJ , we are able to derive the soundness of the aforementioned
circular compositional rule syntactically.

With the help of modern proof assistants, we can in fact justify composi-
tional rules automatically. For the classical interpretation, the proof assistant
Isabelle [10] is used to establish the soundness of all compositional rules in [4,3].
The proof assistant Coq [11] proves the soundness of the circular compositional
rule [2] and variants of assume-guarantee rules in [4,3] by intuitionistic reason-
ing. The proof search engines in both tools are able to justify all rules without
human intervention. Verifiers are hence liberated from tedious case analysis in
proofs of soundness and can establish their own rules effortlessly.

Many compositional reasoning rules have been proposed in literature (for a
comprehensive introduction, see [5]). The present work focuses on the rules used
in automated compositional reasoning via learning [4,3]. Instead of proposing
new rules for the paradigm, a systematic way to establishing compositional rules
is developed. Since it is impossible to enumerate all rules for various scenarios,
we feel our work could be more useful to practitioners.

Although we are motivated by automated compositional reasoning, our tech-
niques borrow extensively from Abadi and Plotkin [1]. More recently, semantic
analysis of circular compositional reasoning rules and intuitionistic linear tempo-
ral logic have also been investigated in [8,9]. There is, nonetheless, a fundamental
difference from previous works. An automata-theoretic technique is used in the
present work. In addition to algebraic semantics, we give a construction of the
automata for intuitionistic implication. Our construction therefore shows that
the algebraic semantics is not only computable but also closed under all logical
operations. In contrast, computability and closure property are not discussed
previously. They are in fact crucial in automated compositional reasoning be-
cause the L∗ algorithm can only generate descriptions for regular languages.

Automatic Derivation of Compositional Rules 305

The paper is organized as follows. After the preliminaries in Section 2, a classi-
cal interpretation of propositional logic over regular languages and its limitation
are presented in Section 3. The intuitionistic interpretation is then followed in
Section 4. Applications are illustrated in Section 5. We briefly discuss the in-
vertibility issues in Section 6. Finally, we conclude the paper in Section 7.

2 Preliminaries

We begin the definitions of algebraic models and their properties. They are fol-
lowed by the descriptions of proof systems. Elementary results in finite automata
theory are also recalled. For more detailed exposition, please refer to [7,13,6].

A partially ordered set P = (P,≤) consists of a set P and a reflexive, anti-
symmetric, and transitive binary relation ≤ over P . Given a set A ⊆ P , an
element u is an upper bound of A if a ≤ u for all a ∈ A. The element u is a least
upper bound if u is an upper bound of A and u ≤ v for any upper bound v of
A. Lower bounds and greatest lower bounds of A can be defined symmetrically.
Since ≤ is anti-symmetric, it is straightforward to verify that least upper bounds
and greatest lower bounds for a fixed set are unique.

Definition 1. A lattice L = (L,≤,),() is a partially ordered set where the
least upper bound (a) b) and the greatest lower bound (a(b) exist for any {a, b}
with a, b ∈ L.

A lattice L = (L,≤,),() is distributive if a ((b) c) = (a (b)) (a (c) and
a) (b (c) = (a) b) ((a) c) for a, b, c ∈ L. L is bounded if it has a unit 1 ∈ L
and a zero 0 ∈ L such that 0 ≤ a and a ≤ 1 for all a ∈ L.

In a bounded lattice, b is a complement of a if a) b = 1 and a (b = 0.
A bounded lattice is complemented if each element has a complement. It can
be shown that complements are unique in any bounded distributive lattice. A
Boolean algebra is but a complemented distributive lattice.

Definition 2. A Boolean algebra B = (B,≤,),(,−, 0, 1) is a complemented
distributive lattice where

– a) b and a (b are the least upper bound and the greatest lower bound of a
and b respectively;

– −a is the complement of a; and
– 0 and 1 are its zero and unit respectively.

The complement of a can be viewed as the greatest element incompatible with
a (that is, the greatest c such that a (c = 0). The idea can be generalized to
define complements relative to arbitrary elements as follows.

Definition 3. Let L = (L,≤,),() be a lattice. For any a and b in L, a pseudo-
complement of a relative to b is an element p in L such that

for all c, c ≤ p if and only if a (c ≤ b.

306 B.-Y. Wang

Since a lattice is also a partially ordered set, pseudo-complements of a relative to
b are in fact unique. We hence write a ⇒ b for the pseudo-complement of a rela-
tive to b. A lattice is relatively pseudo-complemented if the pseudo-complement
of a relative to b exists for all a and b. It can be shown that the unit exists in any
relatively pseudo-complemented lattice. A Heyting algebra can now be defined
formally as a relatively pseudo-complemented lattice with a zero.

Definition 4. A Heyting algebra H = (H, ≤,), (, ⇒, 0, 1) is a relatively
pseudo-complemented lattice with a zero where

– a) b and a (b are the least upper bound and the greatest lower bound of a
and b respectively;

– a ⇒ b is the pseudo-complement of a relative to b; and
– 0 and 1 are its zero and unit respectively.

The following lemma relates pseudo-complements with the partial order in a
lattice. It is very useful when the syntactic deduction and semantic interpretation
are connected later in our exposition.

Lemma 1. Let L = (L,≤,),() be a relatively pseudo-complemented lattice.
Then a ⇒ b = 1 if and only if a ≤ b.1

We will consider both classical and intuitionistic propositional logics in this
work. Given a set PV of propositional variables and P ∈ PV , the syntax of
propositional formulae is defined as follows.

ϕ = P ⊥ ϕ ∨ ϕ ϕ ∧ ϕ ϕ → ϕ

We will use ϕ, ψ to range over propositional formulae and write ¬ϕ and
ϕ ↔ ϕ′ for ϕ → ⊥ and (ϕ → ϕ′) ∧ (ϕ′ → ϕ) respectively.

Let Γ and Δ be finite sets of propositional formulae. A sequent is of the form
Γ 3• Δ. For simplicity, we write ϕ, Γ 3• Δ, ϕ′ for {ϕ} ∪ Γ 3• Δ ∪ {ϕ′}. An
inference rule in a proof system is represented by

Γ0 3• Δ0 · · · Γn 3• Δn
�

Γ 3• Δ

where � is the label of the rule, Γ0 3• Δ0, . . ., Γn 3• Δn its premises, and Γ 3• Δ
its conclusion. A proof tree for the sequent Γ 3• Δ is a tree rooted at Γ 3• Δ
and constructed according to inference rules in a proof system. Proof systems
offer a syntactic way to derive valid formulae. Gentzen gives the proof system
LK for classical first-order logic. Its propositional fragment LK0 is shown in
Figure 2.2 A proof tree in system LK0 can be found in Figure 1.

Let B = (B,≤,),(,−, 0, 1) be a Boolean algebra. Define a valuation ρ in B
to be a mapping from PV to B. The valuation [[ϕ]]ρK of a propositional formula
ϕ is defined as follows.
1 Readers are referred to [14] for detailed proofs and more examples.
2 Figure 2 is in fact a variant of the system LK0, see [13].

Automatic Derivation of Compositional Rules 307

[[P]]ρK = ρ(P) for P ∈ PV [[⊥]]ρK = 0
[[ϕ ∨ ϕ′]]ρK = [[ϕ]]ρK) [[ϕ′]]ρK [[ϕ ∧ ϕ′]]ρK = [[ϕ]]ρK ([[ϕ′]]ρK

[[ϕ → ϕ′]]ρK = −[[ϕ]]ρK) [[ϕ′]]ρK
Given a Boolean algebra B = (B,≤,),(,−, 0, 1), a valuation ρ in B, a propo-

sitional formula ϕ, and a set of propositional formulae Γ , we define B, ρ |=K ϕ
if [[ϕ]]ρK = 1 and B, ρ |=K Γ if B, ρ |=K ϕ for all ϕ ∈ Γ . Moreover, Γ |=K ϕ if
B, ρ |=K Γ implies B, ρ |=K ϕ for all B, ρ. The following theorem states that the
system LK0 is both sound and complete with respect to Boolean algebra.

Theorem 1. Let Γ be a set of propositional formulae and ϕ a propositional
formula. Γ 3K ϕ if and only if Γ |=K ϕ.

In contrast to classical logic, intuitionistic logic does not admit the law of ex-
cluded middle (ϕ ∨ ¬ϕ). Philosophically, intuitionistic logic is closely related to
constructivism. Its proof system, however, can be obtained by a simple restric-
tion on the system LK: all sequents have exactly one formula at their right-hand
side.3 Figure 3 shows the propositional fragment of the system LJ . A sample
proof tree in system LJ0 is shown in Figure 1.

Let H = (H,≤,),(,⇒, 0, 1) be a Heyting algebra. A valuation η in H is a
mapping from PV to H . Define the valuation [[ϕ]]ηJ as follows.

[[P]]ηJ = η(P) for P ∈ PV [[⊥]]ηJ = 0
[[ϕ ∨ ϕ′]]ηJ = [[ϕ]]ηJ) [[ϕ′]]ηJ [[ϕ ∧ ϕ′]]ηJ = [[ϕ]]ηJ ([[ϕ′]]ηJ

[[ϕ → ϕ′]]ηJ = [[ϕ]]ηJ ⇒ [[ϕ′]]ηJ

Let H = (H,≤,),(,⇒, 0, 1) be a Heyting algebra, η a valuation, ϕ a proposi-
tional formula, and Γ a set of propositional formulae. The following satisfaction
relations are defined similarly: H, ρ |=J ϕ if [[ϕ]]ρ = 1, H, ρ |=J Γ if H, ρ |=J ϕ
for all ϕ ∈ Γ , and Γ |=J ϕ if H, ρ |=J Γ implies H, ρ |=J ϕ for all H, ρ. The
system LJ0 is both sound and complete with respect to Heyting algebra.

Theorem 2. Let Γ be a set of propositional formulae and ϕ a propositional
formula. Γ 3J ϕ if and only if Γ |=J ϕ.

Fix a set Σ of alphabets. A string is a finite sequence a1a2 · · ·an such that
ai ∈ Σ for 1 ≤ i ≤ n. The set of strings over Σ is denoted by Σ∗. Given a string
w = a1a2 · · · an, its length (denoted by |w|) is n. The empty string ε is the string
of length 0. Moreover, the i-prefix of w = a1a2 · · · a|w|, denoted by w ↓i, is the
substring a1a2 · · ·ai. We define w ↓0 to be ε for any w ∈ Σ∗. A language over
Σ is a subset of Σ∗. Let L ⊆ Σ∗ be a language. Define its complement L to be
Σ∗ \ L. L is prefix-closed if for any string w ∈ L, w↓i∈ L for all 0 ≤ i ≤ |w|.

Definition 5. A finite state automaton M is a tuple (Q, q0,−→, F) where

– Q is a non-empty finite set of states;
3 System LJ0 in Figure 3 is again a variant of Gentzen’s system and is not obtained

by the restriction.

308 B.-Y. Wang

A
x

M
0
,A

0
�

K
M

0
A

x
M

0
,A

0
�

K
A

0
R
∧

M
0
,A

0
�

K
M

0
∧

A
0

R
W

M
0
,A

0
�

K
P

,M
0
∧

A
0

A
x

M
0
,A

0
,P

�
K

P
L
→

M
0
∧

A
0
→

P
,M

0
,A

0
�

K
P

LW
M

0
∧

A
0
→

P
,M

0
,M

1
,A

0
�

K
P

LW
M

0
∧

A
0
→

P
,
M

1
∧

A
1
→

P
,
M

0
,M

1
,A

0
�

K
P

R
W

M
0
∧

A
0
→

P
,
M

1
∧

A
1
→

P
,
M

0
,
M

1
,A

0
�

K
⊥

,P
R
→

M
0
∧

A
0
→

P
,M

1
∧

A
1
→

P
,M

0
,M

1
�

K
¬

A
0
,P

. . .
M

0
∧

A
0
→

P
,

M
1
∧

A
1
→

P
,
M

0
,M

1
�

K
¬

A
1
,P

R
∧

M
0
∧

A
0
→

P
,M

1
∧

A
1
→

P
,M

0
,M

1
�

K
¬

A
0
∧
¬

A
1
,
P

A
x

M
0
∧

A
0
→

P
,

M
1
∧

A
1
→

P
,

P
,
M

0
,M

1

�
K

P

L
→

M
0
∧

A
0
→

P
,M

1
∧

A
1
→

P
,¬

A
0
∧
¬

A
1
→

P
,M

0
,M

1
�

K
P

L
∧

M
0
∧

A
0
→

P
,
M

1
∧

A
1
→

P
,
¬

A
0
∧
¬

A
1
→

P
,M

0
∧

M
1
�

K
P

R
→

M
0
∧

A
0
→

P
,
M

1
∧

A
1
→

P
,
¬

A
0
∧
¬

A
1
→

P
�

K
M

0
∧

M
1
→

P

(a
)

A
P

ro
of

T
re

e
in

L
K

0

A
x

M
1
,
P

0
�

J
P

0
A

x
M

1
,
P

0
�

J
M

1
R
∧

M
1
,P

0
�

J
P

0
∧

M
1

A
x

P
1
,M

1
,P

0
�

J
P

1
L
→

P
0
∧

M
1
→

P
1
,M

1
,P

0
�

J
P

1
LW

P
0
∧

M
1
→

P
1
,M

0
,M

1
,P

0
�

J
P

1
LW

M
0
∧

P
1
→

P
0
,P

0
∧

M
1
→

P
1
,M

0
,M

1
,P

0
�

J
P

1
R
→

M
0
∧

P
1
→

P
0
,P

0
∧

M
1
→

P
1
,M

0
,M

1
�

J
P

0
→

P
1

. . .
M

0
∧

P
1
→

P
0
,

P
0
∧

M
1
→

P
1
,

M
0
,
M

1

�
J

P
1
→

P
0

R
∧

M
0
∧

P
1
→

P
0
,P

0
∧

M
1
→

P
1
,M

0
,M

1
�

J
(P

0
→

P
1
)
∧

(P
1
→

P
0
)

A
x

P
0
∧

P
1
,

M
0
∧

P
1
→

P
0
,

P
0
∧

M
1
→

P
1
,

M
0
,M

1

�
J

P
0
∧

P
1

L
→

(P
0
→

P
1
)
∧

(P
1
→

P
0
)
→

P
0
∧

P
1
,M

0
∧

P
1
→

P
0
,P

0
∧

M
1
→

P
1
,M

0
,M

1
�

J
P

0
∧

P
1

L
∧

(P
0
→

P
1
)
∧

(P
1
→

P
0
)
→

P
0
∧

P
1
,M

0
∧

P
1
→

P
0
,P

0
∧

M
1
→

P
1
,M

0
∧

M
1
�

J
P

0
∧

P
1

R
→

(P
0
→

P
1
)
∧

(P
1
→

P
0
)
→

P
0
∧

P
1
,M

0
∧

P
1
→

P
0
,P

0
∧

M
1
→

P
1
�

J
M

0
∧

M
1
→

P
0
∧

P
1

(b
)

A
P

ro
of

T
re

e
in

L
J

0

Fig. 1. Proof Trees in LK0 and LJ0

Automatic Derivation of Compositional Rules 309

Ax P ∈ PV
P, Γ �K Δ, P

L⊥ ⊥, Γ �K
Γ �K Δ

LW
ϕ, Γ �K Δ

Γ �K Δ
RW

Γ �K Δ, ϕ
ϕ, ϕ′, Γ �K Δ

L∧
ϕ ∧ ϕ′, Γ �K Δ

Γ �K Δ, ϕ Γ �K Δ, ϕ′

R∧
Γ �K Δ, ϕ ∧ ϕ′

ϕ, Γ �K Δ ϕ′, Γ �K Δ
L∨

ϕ ∨ ϕ′, Γ �K Δ

Γ �K Δ, ϕ, ϕ′

R∨
Γ �K Δ, ϕ ∨ ϕ′

Γ �K Δ, ϕ ϕ′, Γ �K Δ
L→

ϕ → ϕ′, Γ �K Δ

ϕ, Γ �K Δ, ϕ′

R→
Γ �K Δ, ϕ → ϕ′

Fig. 2. The System LK0

Ax P ∈ PV
P, Γ �J P

L⊥ ⊥, Γ �J ψ
Γ �J ψ

LW
ϕ, Γ �J ψ

ϕ, ϕ′, Γ �J ψ
L∧

ϕ ∧ ϕ′, Γ �J ψ

Γ �J ψ Γ �J ψ′

R∧
Γ �J ψ ∧ ψ′

ϕ, Γ �J ψ ϕ′, Γ �J ψ
L∨

ϕ ∨ ϕ′, Γ �J ψ

Γ �J ψi
R∨ (i = 0, 1)

Γ �J ψ0 ∨ ψ1
Γ �J ϕ ϕ′, Γ �J ψ

L→
ϕ → ϕ′, Γ �J ψ

ϕ, Γ �J ψ
R→

Γ �J ϕ → ψ

Fig. 3. The System LJ0

– q0 ∈ Q is its initial state;
– −→⊆ Q×Σ ×Q is the total transition relation; and
– F ⊆ Q is the accepting states.

We say a finite state automaton is deterministic if −→ is a total function from
Q × Σ to Q. It is known that determinism does not change the expressiveness
of finite state automata [7]. For clarity, we write q

a−→ q′ for (q, a, q′) ∈−→. A
run of a string w = a1a2 · · ·an in M is a finite alternating sequence q0a1q1a2 · · ·
qn−1anqn such that qi

ai+1−→ qi+1 for 0 ≤ i < n; it is accepting if qn ∈ F . We say a
string w is accepted by M if there is an accepting run of w in M . The language
accepted by M , L(M), is the set of strings accepted by M . A language L ⊆ Σ∗

is regular if there is a finite state automaton M such that L = L(M).

Theorem 3. [7] Let L and L′ be regular. Then L∪L′, L∩L′, and L are regular.

3 Classical Interpretation

It is trivial to see that regular languages form a Boolean algebra. More formally,
define R = {L ⊆ Σ∗ : L is regular }. We have the following theorem.

Theorem 4. Let R = (R,⊆,∪,∩, •, ∅, Σ∗). R is a Boolean algebra.

To illustrate the significance of Theorem 4, let us consider the following scenario.
Suppose we are given five regular languages M0, M1, A0, A1, and P . Further,

310 B.-Y. Wang

assume M0∩A0 ⊆ P , M1∩A1 ⊆ P , and A0∩A1 ⊆ P . We can deduce M0∩M1 ⊆
P as follows. First, consider the valuation ρ that assigns propositional variables
to regular languages of the same name. Suppose there is a proof tree for the
following sequent.

M0 ∧A0 → P, M1 ∧A1 → P,¬A0 ∧ ¬A1 → P 3K M0 ∧M1 → P.

Theorem 1 and 4 ensure that if R, ρ |=K M0 ∧A0 → P , R, ρ |=K M1 ∧A1 → P ,
and R, ρ |=K ¬A0 ∧ ¬A1 → P , then R, ρ |=K M0 ∧M1 → P . Lemma 1 gives
exactly what we want in R. Hence the proof tree in Figure 1 (a) suffices to show
M0 ∩M1 ⊆ P . Note that we do not make semantic arguments in the analysis.
Instead, Theorem 1 allows us to derive semantic property M0 ∩ M1 ⊆ P by
manipulating sequents syntactically.

3.1 Limitation of Classical Interpretation

Consider the following circular inference rule proposed in [1].

3 [(E → M) ∧ (M → E)] → M

It is easy to see that the valuation of the conclusion is 0 by taking E = M = 0
in any Boolean algebra. Since the system LK0 is sound for Boolean algebra, we
conclude that the rule is not derivable. But it does not imply that the rule is not
sound in other semantics. To give insights to the intuitionistic interpretation, it
is instructive to see how the rule fails in non-trivial cases.

Consider the automata M and E in Figure 4. Let the valuation ρ be that
ρ(E) = L(E) and ρ(M) = L(M). Observe that the string bd
∈ L(M). Hence
bd ∈ ρ(M → E) = L(M) ∪ L(E). Similarly, bd ∈ ρ(E → M). We have ρ(M →
E) ∩ ρ(E → M) � ρ(M). Hence � [(E → M) ∧ (M → E)] → M by Lemma 1.
Note that both L(M) and L(E) are non-empty and prefix-closed.

In classical interpretation, the valuation of E → M is defined as ρ(E)∪ρ(M).
Hence ρ(M → E) ∩ ρ(E → M) = (ρ(M) ∩ ρ(E)) ∪ (ρ(M) ∩ ρ(E)). The problem
arises exactly when ρ(E)∩ρ(M) is not empty. One may suspect that the valuation

a

(b) The automaton E(a) The automaton M

a,b,c,d a,b,c,d

c,d c,d

d
d

c

c

a,b a,b

ab
b

Fig. 4. Limitation of Classical Interpretation

Automatic Derivation of Compositional Rules 311

of E → M is defined too liberally in classical interpretation and resort to a more
conservative interpretation. This is indeed the approach taken by Abadi and
Plotkin and followed in this work.

4 Interpretation à la Abadi and Plotkin

In order to admit circular compositional rules, an interpretation inspired by [1] is
developed here. Mimicking the definition of relative pseudo-complements in [1],
we show that non-empty, prefix-closed regular languages form a Heyting algebra.
The following lemma gives the zero element and simple closure properties.

Lemma 2. Let K and L be non-empty, prefix-closed regular languages. Then

– ε ∈ L if and only if L
= ∅; and
– K ∩ L and K ∪ L are non-empty, prefix-closed regular languages.

For relative pseudo-complements, we follow the definition in [1]. Note that the
following definition does not allude to closure properties. In order to define a
Heyting algebra, one must show that non-empty, prefix-closed regular languages
are closed under relative pseudo-complementation.

Definition 6. Let K and L be prefix-closed languages. Define

K → L = {w : w↓n∈ K → w↓n∈ L for 0 ≤ n ≤ |w|}.

We first show that the language K → L defined above is indeed the pseudo-
complement of K relative to L.

Proposition 1. Let K, L, and M be prefix-closed languages. Then K ∩M ⊆ L
if and only if M ⊆ K → L.

Next, we show that K → L is non-empty and prefix-closed if both K and L are
non-empty and prefix-closed.

Lemma 3. Let K and L be non-empty, prefix-closed languages. Then K → L
is non-empty and prefix-closed.

It remains to show that regularity is preserved by Definition 6. Given two deter-
ministic finite state automata M and N , we construct a new automaton M → N
such that L(M → N) = L(M) → L(N). Our idea is to use an extra bit to accu-
mulate information. Let B = { false, true } be the Boolean domain. The following
definition gives the construction of M → N .

Definition 7. Let M = (P, p0,−→M , FM) and N = (Q, q0,−→N , FN) be deter-
ministic finite state automata accepting prefix-closed languages. Define the finite
state automaton M → N = (P ×Q× B, (p0, q0, b0),−→, F) as follows.

– b0 =
{

true if p0 ∈ FM → q0 ∈ FN

false otherwise

312 B.-Y. Wang

– (p, q, b) a−→ (p′, q′, b′) if
• p

a−→M p′;
• q

a−→N q′; and

• b′ =
{

true if b = true and p′ ∈ FM → q′ ∈ FN

false otherwise
– F = {(p, q, true) : p ∈ P, q ∈ Q}.

The automaton M → E of the automata M and E in Figure 4 is shown in
Figure 5. Note that the bold states are the products of the unaccepting states in
Figure 4. Any string prefixed by strings in L(M) and followed by those in L(E)
is accepted in the accepting bold state in M → E. But strings prefixed by L(E)
and followed by L(M) reach the other bold state and are not accepted.

To show that L(M → N) = L(M) → L(N), we use the following lemma.

Lemma 4. Let M = (P, p0,−→M , FM) and N = (Q, q0,−→N , FN) be deter-
ministic finite state automata accepting non-empty, prefix-closed languages. Con-
sider any w ∈ Σ∗ and (p0, q0, b0)

w↓n−→ (pn, qn, bn) in M → N for 0 ≤ n ≤ |w|.
Then b|w| is true if and only if pn ∈ FM → qn ∈ FN for 0 ≤ n ≤ |w|.

c

d

b

a

b

d
c

c

a

d

b

c

a

a

a,b,c,d

c

c,d

b

d

a,b

c

d

a,b

a,b,c,d

c,d

a

b

d

b
a

Fig. 5. The automaton M → E

Now we establish L(M → N) = L(M) → L(N) in the following proposition.

Proposition 2. Let M and N be deterministic finite state automata accepting
non-empty, prefix-closed languages. Then L(M) → L(N) = L(M → N).

Since any regular language is accepted by a deterministic finite state automaton,
we immediately have the following proposition.

Proposition 3. Let K and L be non-empty, prefix-closed regular languages.
Then K → L is a non-empty, prefix-closed regular language.

Automatic Derivation of Compositional Rules 313

Define R+ = {L ⊆ Σ∗ : L is non-empty, prefix-closed, and regular }. The
following theorem states that non-empty, prefix-closed regular languages form a
Heyting algebra.

Theorem 5. Let R+ = (R+,⊆,∪,∩,→, {ε}, Σ∗). R+ is a Heyting algebra.

We now turn our attention to circular compositional rules. A modified version
of non-interference in [1] is used in our setting.

Definition 8. Let L be a non-empty, prefix-closed language in Σ∗ and Ξ ⊆ Σ.
We say L constrains Ξ, write L � Ξ, if for any w ∈ L, wa ∈ L for any a
∈ Ξ.

Exploiting non-interference, we show the circular inference rule presented in
Section 3.1 is sound by induction on the length of strings.

Theorem 6. Let K and L be non-empty, prefix-closed languages such that K �
ΞK , L � ΞL, and ΞK ∩ ΞL = ∅. Then (K → L) ∩ (L → K) ⊆ K.

We can in fact characterize the language (K → L) ∩ (L → K) in Theorem 6.
Note that one direction can be obtained by syntactic deduction. It is the other
direction where semantic analysis is needed.

Theorem 7. Let K and L be non-empty, prefix-closed languages such that K �
ΞK , L � ΞL, and ΞK ∩ ΞL = ∅. Then (K → L) ∩ (L → K) = K ∩ L.

5 Applications

A subclass of finite state automata called labeled transition systems (LTS) is used
in automated compositional reasoning [3,4]. In this section, our proof-theoretic
techniques are applied to derive soundness of compositional rules for LTS’s. It
is noted that our formulation is equivalent to those in [4,3].

Definition 9. Let ΣM ⊆ Σ. A deterministic finite state automaton M = (Q,
q0, −→, F) is a labeled transition system (LTS) over ΣM if

1. q
a−→ q for any q ∈ Q and a ∈ Σ \ΣM ; and

2. If qi
ai+1−→ qi+1 for 0 ≤ i < n and qn ∈ F for some n ≥ 0, then qi ∈ F for

0 ≤ i ≤ n.

With our formulation, it is possible to define compositions of two LTS’s by
product automata. Let M = (P, p0,−→M , FM) and N = (Q, q0,−→N , FN)
be two LTS’s over ΣM and ΣN respectively. Define the finite state automaton
M‖N = (P ×Q, (p0, q0),−→, F) as follows.

– (p, q) a−→ (p′, q′) if p
a−→M p′ and q

a−→N q′; and
– F = FM × FN .

It is straightforward to verify the following proposition in our formulation.

314 B.-Y. Wang

Proposition 4. Let M = (P, p0,−→M , FM) and N = (Q, q0,−→N , FN) be
LTS’s over ΣM and ΣN respectively. Then M‖N is an LTS over ΣM ∪ ΣN .
Furthermore, L(M‖N) = L(M) ∩ L(N).

Suppose LTS’s M and P specify the system and the property respectively. If
L(M) ⊆ L(P), we say M satisfies P and denote it by M |= P .

Example 1. Let M0, M1, A0, A1, P be LTS’s. Consider the following assume-
guarantee rule where M denotes the complement automaton of M . Note that
M is not necessarily an LTS [3].

M0‖A0 |= P M1‖A1 |= P L(A0‖A1) ⊆ L(P)
M0‖M1 |= P

By Lemma 1, Proposition 4, Theorem 1, and Theorem 4, we can establish the
soundness of the rule by finding a proof tree for the following sequent.

M0 ∧A0 → P, M1 ∧A1 → P,¬A0 ∧ ¬A1 → P 3K M0 ∧M1 → P

The proof tree is shown in Figure 1 (a). ()
To establish circular compositional rules in our framework, the intuitionistic
interpretation in Section 4 is needed. The following lemma characterizes the
languages accepted by LTS’s and the alphabets constrained by them.

Lemma 5. Let M = (Q, q0,−→, F) be an LTS over ΣM . Then L(M) is non-
empty, prefix-closed, and L(M) � ΣM .

We now prove a circular compositional rule in the following example.

Example 2. Let M0, M1, P0, and P1 be LTS’s. Further, assume P0 and P1 are
over Σ0 and Σ1 respectively with Σ0 ∩ Σ1 = ∅. Consider the following circular
compositional rule [2].

M0‖P1 |= P0 P0‖M1 |= P1

M0‖M1 |= P0‖P1

By Theorem 6, we have

3J (P0 → P1) ∧ (P1 → P0) → (P0 ∧ P1).

Hence the soundness of the circular compositional rule can be established by
finding a proof tree for the following sequent.

(P0 → P1) ∧ (P1 → P0) → (P0 ∧ P1),
M0 ∧ P1 → P0, P0 ∧M1 → P1

3J M0 ∧M1 → P0 ∧ P1

Figure 1 (b) shows the desired proof tree. ()
Proof search in Example 1 and 2 can be automated. Indeed, the proof assistant
Isabelle is able to prove all rules in [3,4] with the tactic auto () automatically.
Meanwhile, Example 2 and intuitionistic variants of the rules in [3,4] are proved
by the tactic intuition in Coq without human intervention.4

4 More precisely, both tools use natural deduction systems equivalent to Gentzen’s
systems [10,11].

Automatic Derivation of Compositional Rules 315

6 On Invertibility

We say an assume-guarantee rule is invertible if it is always possible to satisfy
its premises when its conclusion holds.5 Thanks to Lemma 1, we can formulate
the invertibility of assume-guarantee rules as a proof search problem. However,
it requires the proof systems LK and LJ . We only give an example and leave
technical details in another exposition.

Example 3. Let M0, M1, A0, A1, P0, and P1 be LTS’s. Consider the following
assume-guarantee rule.

M0‖A0 |= P0 M1‖A1 |= P1 M0‖A0 |= A1 M1‖A1 |= A0 L(A0‖A1) = ∅
M0‖M1 |= P0‖P1

To show the rule is invertible, it suffices to find a proof tree for the following
sequent in system LK.

M0 ∧M1 → P0 ∧ P1 3K ∃A0A1.
(M0 ∧A0 → P0) ∧ (M1 ∧A1 → P1) ∧
(M0 ∧A0 → A1) ∧ (M1 ∧A1 → A0) ∧

(¬A0 ∧ ¬A1) ↔ false

Isabelle can in fact find a proof for us. ()

7 Conclusions

Soundness theorems for compositional reasoning rules depend on underlying
computational models and can be very involved. Since it is tedious to develop
new compositional rules, few such rules are available for each computational
model. The situation may impede the usability of automated compositional rea-
soning because verifiers are forced to mould their problems in a handful of com-
positional rules available to them. In this paper, we apply proof theory and
develop a syntactic approach to analyze compositional rules for automated com-
positional reasoning. With publicly available proof assistants, we are able to
establish compositional rules with little human intervention.

Although all compositional rules known to us have been established automat-
ically, it is unclear whether these proof systems are complete with respect to
regular languages. It would also be of great interest if one could generate com-
positional rules to fit different circumstances heuristically. Moreover, although
the classical interpretation can be carried over to ω-regular sets [12], it is unclear
whether the intuitionistic interpretation applies as well.

Research topics combining both model checking and theorem proving are not
unusual. This work may be viewed as another attempt to integrate both tech-
nologies. By exploring their theoretical foundations, another useful connection

5 In compositional reasoning literature, the term completeness is often used. We adopt
the proof-theoretic term here.

316 B.-Y. Wang

is found. The syntactic analysis in theorem proving can indeed automate se-
mantic proofs of compositional reasoning in model checking. More interesting
integrations of both will undoubtedly be revealed if we understand them better.

Acknowledgment. The author would like to thank Edmund Clarke, Orna
Grumberg, Dale Miller, Nishant Sinha, Yih-Kuen Tsay, and anonymous review-
ers for their insightful comments.

References

1. Abadi, M., Plotkin, G.D.: A logical view of composition. Theoretical Computer
Science 114(1), 3–30 (1993)

2. Alur, R., Henzinger, T.: Reactive modules. Formal Methods in System De-
sign 15(1), 7–48 (1999)

3. Barringer, H., Giannakopoulou, D., Păsăreanu, C.S.: Proof rules for automated
compositional verification through learning. In: Workshop on Specification and
Verification of Component-Based Systems, pp. 14–21 (2003)

4. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and
TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

5. de Roever, W.P., de Boer, F., Hanneman, U., Hooman, J., Lakhnech, Y., Poel, M.,
Zwiers, J.: Concurrency Verification: Introduction to Compositional and Noncom-
positional Methods. Cambridge Tracts in Theoretical Computer Science, vol. 54.
Cambridge University Press, Cambridge (2001)

6. Goldblatt, R.: Topoi: The Categorial Analysis of Logic. revised edn., Dover Publi-
cations, Mineola, NY (2006)

7. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading (1979)

8. Maier, P.: Compositional circular assume-guarantee rules cannot be sound and
complete. In: Gordon, A.D. (ed.) ETAPS 2003 and FOSSACS 2003. LNCS,
vol. 2620, pp. 343–357. Springer, Heidelberg (2003)

9. Maier, P.: Intuitionistic LTL and a new characterization of safety and liveness.
In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 295–309.
Springer, Heidelberg (2004)

10. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

11. The Coq Development Team: The Coq Proof Assistant Reference Manual: version
8.0. LogiCal Project (2004)

12. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, vol. B, pp. 133–191. Elsevier Science Publishers,
Amsterdam (1990)

13. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in The-
oretical Computer Science, vol. 43. Cambridge University Press, Cambridge (2000)

14. Wang, B.Y.: Automatic derivation of compositional rules in automated composi-
tional reasoning. Technical Report TR-IIS-07-002, Institute of Information Science,
Academia Sinica (2007)

Compositional Event Structure Semantics
for the Internal π-Calculus�

Silvia Crafa1, Daniele Varacca2, and Nobuko Yoshida3

1 Università di Padova
2 PPS - Université Paris 7 & CNRS

3 Imperial College London

Abstract. We propose the first compositional event structure semantics for a
very expressive π-calculus, generalising Winskel’s event structures for CCS. The
π-calculus we model is the πI-calculus with recursive definitions and summa-
tions. First we model the synchronous calculus, introducing a notion of dynamic
renaming to the standard operators on event structures. Then we model the asyn-
chronous calculus, for which a new additional operator, called rooting, is nec-
essary for representing causality due to new name binding. The semantics are
shown to be operationally adequate and sound with respect to bisimulation.

1 Introduction

Event structures [18] are a causal model for concurrency which is particularly suited
for the traditional process calculi such as CCS, CSP, SCCS and ACP. Event structures
intuitively and faithfully represent causality and concurrency, simply as a partial order
and an irreflexive binary relation. The key point of the generality and applicability of
this model is the compositionality of the parallel composition operator: the behaviour
of the parallel composition of two event structures is determined by the behaviours of
the two event structures. This modularity, together with other algebraic operators such
as summation, renaming and hiding, leads also to a straightforward correspondence be-
tween the event structures semantics and the operational semantics - such as the labelled
transition system - of a given calculus [26].

In this paper we propose the first compositional event structure semantics of a fully
concurrent variant of the π-calculus. The semantics we propose generalises Winskel’s
semantics of CCS [22], it is operationally adequate with respect to the standard labelled
transition semantics, and consequently it is sound with respect to bisimilarity.

The π-calculus we consider is known in the literature as the πI-calculus [20], where
the output of free names is disallowed. The symmetry of input and output prefixes,
that are both binders, simplifies considerably the theory, while preserving most of the
expressiveness of the calculi with free name passing [2,17,19].

In order to provide an event structure semantics of the π-calculus, one has in particu-
lar to be able to represent dynamic creations of new synchronisation channels, a feature

� Work partially supported by MIUR (project 2005015785), Università di Padova (project
CPDA061331), EPSRC (GR/S55538/01, GR/T04724/01 and GR/T03208/01) and ANR
(project ParSec ANR-06-SETI-010-02).

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 317–332, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

318 S. Crafa, D. Varacca, and N. Yoshida

that is not present in traditional process algebras. In Winskel’s event structure seman-
tics of CCS [22], the parallel composition is defined as product in a suitable category
followed by relabelling and hiding. The product represents all conceivable synchroni-
sations, the hiding removes synchronisations that are not allowed, while the relabelling
chooses suitable names for synchronisation events. In CCS one can decide statically
whether two events are allowed to synchronise, whereas in the π-calculus, a synchroni-
sation between two events may depend on which synchronisations took place before.

Consider for instance the π-process a(x).x(u).0 | a(z).z(v).0 where a(x).P is an
input at a, a(z).Q is an output of a new name z to a and 0 denotes the inaction. This
process contains two synchronisations, first along the channel a and then along a private,
newly created, channel z. The second synchronisation is possible only since the names
x and z are made equal by the previous synchronisation along a. To account for this
phenomenon, we define the semantics of the parallel composition by performing hiding
and relabelling not uniformly on the whole event structure, but relative to the causal
history of events.

The full symmetry underlying the πI-calculus theory has a further advantage: it
allows a uniform treatment of causal dependencies. Causal dependencies in the π-
processes arise in two ways [3,11]: by nesting prefixes (called structural or prefix-
ing or subject causality) and by using a name that has been bound by a previous
action (called link or name or object causality). While subject causality is already
present in CCS, object causality is distinctive of the π-calculus. In the synchronous
πI-calculus, object causality always appears under subject causality, as in a(x).x(y).0
or in (νc)a(x).(c(z).0 | c(w).x(y).0), where the input on x causally depends in both
senses from the input on a. As a result, the causality of synchronous πI-calculus can be
naturally captured by the standard prefixing operator of the event structures, as in CCS.

On the other hand, in the asynchronous πI-calculus, the bound output process is no
longer a prefix: in a(x)P , the continuation process P can perform any action α before
the output of x on a, provided that α does not contain x. Thus the asynchronous output
has a looser causal dependency. For example, in (νc)a(x)(c(z).0 | c(w)x(y).0), a(x)
only binds the input at x, and the interaction between c(z) and c(w) can perform before
a(x), thus there exists no subject causality. Representing this output object causality
requires a novel operator on event structures that we call rooting, whose construction is
inspired from a recent study on Ludics [9].

In this paper we present these new constructions, and use them to obtain compo-
sitional, sound and adequate semantics for both synchronous and asynchronous πI-
calculus. Proofs and more explanations can be found in the extended version [8].

2 Internal π-Calculus

This section gives basic definitions of the πI-calculus [20]. This subcalculus captures
the essence of name passing with a simple labelled transition relation. In contrast with
the full π-calculus, only one notion of strong bisimulation exists, and it is a congruence.

Syntax. The syntax of the monadic, synchronous πI-calculus [20] is the following,
where the symbols a, b, . . . , x, y, z range over the infinite set of names denoted by
Names.

Compositional Event Structure Semantics for the Internal π-Calculus 319

Prefixes π ::= a(x) | a(x) Definitions A(x̃ | z) = PA

Processes P,Q ::=
∑

i∈I πi.Pi | P | Q | (νa)P | A〈x̃ | z〉

The syntax consists of the parallel composition, name restriction, finite summation of
guarded processes and recursive definition. In

∑
i∈I πi.Pi, I is a finite indexing set;

when I is empty we simply write 0 and denote with + the binary sum. The two prefixes
a(x) and a(x) represent, respectively, an input prefix and a bound output prefix. A
process a(x).P can perform an input at a and x is the placeholder for the name so
received. The bound output case is symmetric: a process a(x).P can perform an output
of the fresh name x along the channel a. Differently from the π-calculus, where both
bound and free names can be sent along channels, in the πI-calculus only bound names
can be communicated, modelling the so called internal mobility. We often omit 0 and
objects (e.g. write a instead of a(x).0).

The choice of recursive definitions rather than replication for infinite processes is
justified by the fact that the πI-calculus with replication is strictly less expressive [20].
We assume that every constant A has a unique defining equation A(x̃ | z) = PA. The
symbol x̃ denotes a tuple of distinct names, while z represents an infinite sequence of
distinct names N → Names. We denote z(n) as zn. The tuple x̃ contains all free names
of PA and the range of z contains all bound names of PA. The parameter z does not
usually appear in recursive definitions in the literature. The reason we add it is that we
want to maintain the following Assumption:

Every bound name is different from any other name, either bound or free. (1)

In the π-calculus, this policy is usually implicit and maintained along the computation
by dynamic α-conversion: every time the definition A is unfolded, a new copy of the
processPA is created whose bound names must be fresh. This dynamic choice of names
is difficult to interpret in the event structures. Hence our recursive definitions prescribe
all the names that will be possibly used for a precise semantic correspondence. Notice
also that this assumption has no impact on the process behaviour since every π-process
can be α-renamed so that it satisfies (1).

The set of free and bound names of P , written by fn(P) and bn(P), is defined as
usual, for instance fn(a(x).P) = {a} ∪ (fn(P) \ {x}). As for constant processes, the
definition is as follows: fn(A〈x̃ | z〉) = {x̃} and bn(A〈x̃ | z〉) = z(N).

Operational Semantics. The operational semantics is given in the following in terms of
an LTS (in late style) where we let α, β range over the set of labels {τ, a(x), a(x)}.

(IN LATE)

a(x).P
a(x)
−−→ P

(OUT)

a(x).P
a(x)
−−→ P

(COMM)

P
a(x)
−−→ P ′ Q

a(y)
−−→ Q′

P | Q
τ

−−→ (νy)(P ′{y/x} | Q′)

(PAR)

P
α

−−→ P ′

P | Q
α

−−→ P ′ | Q

(SUM)

Pi

α
−−→ P ′

i

�
i∈I Pi

α
−−→ P ′

i

i ∈ I

(RES)

P
α

−−→ P ′

(νa)P
α

−−→ (νa)P ′
a /∈ fn(α)

320 S. Crafa, D. Varacca, and N. Yoshida

(REC)

PA{ỹ/x̃}{w/z}
α

−−→ P ′

A〈ỹ |w〉
α

−−→ P ′
A(x̃ | z) = PA

The rules above illustrate the internal mobility characterising the πI-calculus communi-
cation. In particular, according to (COMM), we have that a(x).P | a(y).Q τ−→
(νy)(P{y/x} | Q) where the fresh name y appearing in the output is chosen as the
“canonical representative” of the private value that has been communicated. In (REC), the
unfolding of a new copy of the recursive process updates the sequence of bound names.
The definition of the substitution {w/z} can be found in [8] and is sketched in the Ap-
pendix. Note also that the use of Assumption 1, makes it unnecessary to have the side
conditions that usually accompany (PAR) and (RES).

Proposition 1. LetP be a process that satisfies Assumption 1. SupposeP
α−→ P ′. Then

P ′ satisfies Assumption 1.

Example 1. Consider A(x | z) = x(z0).A〈z0 | z′〉 | x(z1).A〈z1 | z′′〉, where z′(n) =
z(2n+2) and z′′(n) = z(2n+3). In this case the sequence of names z is partitioned into
two infinite subsequences z′ and z′′ (corresponding to even and odd name occurrences),
so that the bound names used in the left branch of A are different from those used in
the right branch. Intuitively A〈a | z〉 partially “unfolds” to a(z0).(z0(z2).A〈z2 | z′1〉
| z0(z4).A〈z4 | z′2〉) | a(z1).(z1(z3).A〈z3 | z′′1 〉 | z1(z5).A〈z3 | z′′2 〉) with suitable
z′1, z

′
2, z

′′
1 , z

′′
2 .

We end this section with the definition of strong bisimilarity in the πI-calculus.

Definition 1 (πI strong bisimilarity). A symmetric relation R on πI processes is a
strong bisimulation if P R Q implies:

– whenever P
τ

−−→ P ′, there is Q′ s.t. Q
τ

−−→ Q′ and P ′RQ′.

– whenever P
a(x)
−−−→ P ′, there is Q′ s.t. Q

a(y)
−−−→ Q′ and P ′{z/x}RQ′{z/y}.

– whenever P
a(x)
−−−→ P ′, there is Q′ s.t. Q

a(y)
−−−→ Q′ and P ′{z/x}RQ′{z/y}.

with z being any fresh variable. Two processes P,Q are bisimilar, written P ∼ Q, if
they are related by some strong bisimulation.

This definition differs from the corresponding definition in [20] because we do not have
the α-conversion rule, and thus we must allow Q to mimic P using a different bound
name. The relation ∼ is a congruence.

3 Event Structures

This section reviews basic definitions of event structures, that will be useful in Section 4.
Event structures appear in the literature in different forms, the one we introduce here is
usually referred to as prime event structures [10,18,23].

Compositional Event Structure Semantics for the Internal π-Calculus 321

Definition 2 (Event Structure). An event structure is a triple E = 〈E,≤,%〉 s.t.

– E is a countable set of events;
– 〈E,≤〉 is a partial order, called the causal order;
– for every e ∈ E, the set [e) := {e′ | e′ < e}, called the enabling set of e, is finite;
– % is an irreflexive and symmetric relation, called the conflict relation, satisfying

the following: for every e1, e2, e3 ∈ E if e1 ≤ e2 and e1 % e3 then e2 % e3.

The reflexive closure of conflict is denoted by ;. We say that the conflict e2 % e3 is
inherited from the conflict e1 % e3, when e1 < e2. If a conflict e1 % e2 is not inherited
from any other conflict we say that it is immediate. If two events are not causally related
nor in conflict they are said to be concurrent.

Definition 3 (Labelled event structure). Let L be a set of labels. A labelled event
structure E = 〈E,≤,%, λ〉 is an event structure together with a labelling function
λ : E → L that associates a label to each event in E.

Intuitively, labels represent actions, and events should be thought of as occurrences of
actions. Labels allow us to identify events which represent different occurrences of the
same action. In addition, labels are essential when composing two event structures in a
parallel composition, in that they are used to point out which events may synchronise.

In order to give the semantics of a process P as an event structure E , we have to
show how the computational steps of P are reflected into E . This will be formalised
in the Operational Adequacy Theorem 2 in Section 4, which is based on the following
labelled transition systems over event structures.

Definition 4. Let E = 〈E,≤,%, λ〉 be a labelled event structure and let e be one of its
minimal events. The event structure Ee = 〈E′,≤′,%′, λ′〉 is defined by: E′ = {e′ ∈
E | e′
; e}, ≤′=≤|E′ , %′=%|E′ , and λ′ = λE′ . If λ(e) = β, we write E β−→ Ee .

Roughly speaking, Ee is E minus the event e, and minus all events that are in conflict
with e. The reachable LTS with initial state E corresponds to the computations over
E . It is usually defined using the notion of configuration [26]. However, by relying on
the LTS as defined above, the adequacy theorem has a simpler formulation. A precise
correspondence between the two notions of LTS can be easily defined.

Event structures have been shown to be the class of objects of a category [26], whose
morphisms are defined as follows. Let E1 = 〈E1,≤1,%1〉, E2 = 〈E2,≤2,%2〉 be
event structures. A morphism f : E1 → E2 is a partial function f : E1 → E2 such
that (i) f reflects causality: if f(e1) is defined, then

[
f(e1)

)
⊆ f

(
[e1)

)
; (ii) f reflects

reflexive conflict: if f(e1), f(e2) are defined, and if f(e1) ; f(e2), then e1 ; e2.
It is easily shown that an isomorphism in this category is a bijective function that

preserves and reflects causality and conflict. In the presence of labelled event structures
E1 = 〈E1,≤1,%1, λ1〉, E2 = 〈E2,≤2,%2, λ2〉 on the same set of labels L, we will
consider only label preserving isomorphisms, i.e. isomorphisms f : E1 → E2 such that
λ2(f(e1)) = λ1(e1). If there is an isomorphism f : E1 → E2, we say that E1, E2 are
isomorphic, written E1 ∼= E2.

We provide here an informal description of several operations on labelled event struc-
tures, that we are going to use in the next section. See [23] for more details.

322 S. Crafa, D. Varacca, and N. Yoshida

– Prefixing a.E . This operation adds to the event structure a new minimal element,
labelled by a, below every other event in E . Conflict, order, and labels of original
elements remain the same as in E .

– Prefixed sum
∑

i∈I ai.Ei. This is obtained as the disjoint union of copies of the
event structures ai.Ei. The order relation of the new event structure is the disjoint
union of the orders of ai.Ei and the labelling function is the disjoint union of the
labelling functions of ai.Ei. As for the conflict relation, we take the disjoint union
of the conflicts appearing in ai.Ei and we extend it by putting in conflict every pair
of events belonging to two different copies of ai.Ei.

– Restriction (or Hiding) E \X whereX ⊆ L is a set of labels. This is obtained by re-
moving fromE all events with label inX and all events that are above (i.e., causally
depend on) one of those. On the remaining events, order, conflict and labelling are
unchanged.

– Relabelling E [f] where L and L′ are two sets of labels and f : L → L′. This
operation just consists in composing the labelling function λ of E with the function.
The new event structure is labelled over L′ and its labelling function is f ◦ λ.

3.1 The Parallel Composition

The parallel composition of two event structures E1 and E2 gives a new event structure
E ′ whose events model the parallel occurrence of events e1 ∈ E1 and e2 ∈ E2. In par-
ticular, when the labels of e1 and e2 match according to an underlying synchronisation
model, E ′ records (with an event e′ ∈ E′) that a synchronisation between e1 and e2 is
possible, and deals with the causal effects of such a synchronisation.

The parallel composition is defined as the categorical product followed by restriction
and relabelling [26]. The categorical product is unique up to isomorphism, but it can be
explicitly constructed in different ways. We give a brief outline of one such construc-
tion [10,21]. Let E1 := 〈E1,≤1,%1〉 and E2 := 〈E2,≤2,%2〉 be event structures. Let
E∗i := Ei 8 {∗}, where ∗ is a distinguished event. The categorical product is given by
an event structure E = 〈E,≤,%〉 and two morphisms πi : E → Ei (the projections).
The elements of E are of the form (W, e1, e2) where W is a finite subset of E, and
ei ∈ E∗i . Intuitively W is the enabling set of the event (W, e1, e2). Order and conflict
are defined using order and conflict relations of E1, E2 (see [10,21] for the details).
The projections are defined as π1(W, e1, e2) = e1 and π2(W, e1, e2) = e2. For event
structures with labels in L, let be L∗ := L 8 {∗} where ∗ is a distinguished label.
Then the labelling function of the product takes on the set L∗ × L∗, and we define
λ(W, e1, e2) = (λ∗1(e1), λ∗2(e2)), where λ∗i (ei) = λi(ei) if ei
= ∗, and λ∗i (∗) = ∗.

The synchronisation model underlying the relabelling operation needed for parallel
composition is formalised by the notion of synchronisation algebra [26]. A synchroni-
sation algebra S is a partial binary operation •S defined on L∗. If αi are the labels of
events ei ∈ Ei, then α1 •S α2 is the label of the event e′ ∈ E′ representing the syn-
chronisation of e1 and e2. If α1 •S α2 is undefined, the synchronisation event is given a
distinguished label bad indicating that this event is not allowed and should be deleted.

Definition 5 (Parallel Composition of Event Structures). Let E1, E2 two event struc-
tures labelled over L, let S be a synchronisation algebra, and let fS : L∗ → L′ =

Compositional Event Structure Semantics for the Internal π-Calculus 323

L∗ ∪ {bad} be a function defined as fS(α1, α2) = α1 •S α2, if S is defined on
(α1, α2), and fS(α1, α2) = bad otherwise. The parallel composition E1‖SE2 is de-
fined as the categorical product followed by relabelling and restriction1: E1‖SE2 =
(E1 × E2)[fS] \ {bad}. The subscripts S are omitted when the synchronisation algebra
is clear from the context.

Example 2. We show a simple example of parallel composition. Let L = {α, β, α, τ}
Consider the two event structures E1, E2, where E1 = {a, b}, E2 = {a′}, with a ≤1 b
and λ1(a) = α, λ1(b) = β, λ2(a′) = α. The event structures are represented as follows:

E1 :
β

E2 : E3 :
β β

α α α ���� τ ���� α

where curly lines represent immediate conflict, while the causal order proceeds upwards
along the straight lines. Consider the synchronisation algebra obtained as the symmetric
closure of the following rules: α•α = τ , α•∗ = α, α•∗ = α, β •∗ = β and undefined
otherwise. Then E3 := E1‖E2 is the event structure 〈E3,≤,%, λ〉 where E3 = {e :=
(∅, a, ∗), e′ := (∅, ∗, a′), e′′ := (∅, a, a′), d := ({e}, a′, ∗), d′′ := ({e′′}, a′, ∗)}, the
ordering ≤ is defined as e ≤ d, e′′ ≤ d′′, while the conflict % is defined as e % e′′,
e′ % e′′, e % d′′, e′ % d′′, e′′ % d, d % d′′. The labelling function is λ(e) = α,
λ(e′) = α, λ(e′′) = τ , λ(d) = λ(d′′) = β.

A large CPO of event structures. We say that an event structure E is a prefix of an event
structure E ′, denoted E ≤ E ′ if there exists E ′′ ∼= E ′ such that E ⊆ E′′ and no event in
E′′ \ E is below any event of E.

Winskel [22] has shown that the class of event structures with the prefix order is a
large CPO, and thus the limits of countable increasing chains exist. Moreover all oper-
ators on event structures are continuous. We will use this fact to define the semantics of
the recursive definitions.

4 Event Structure Semantics

This section defines the denotational semantics of πI-processes in terms of labelled
event structures. Given a process P , we associate to P an event structure EP whose
events e represent the occurrence of an action λ(e) in the LTS of P . Our main issue is
compositionality: the semantics of the process P | Q should be defined as EP || EQ so
that the operator || satisfactorily models the parallel composition of P and Q.

4.1 Generalised Relabelling

It is clear from Definition 5 that the core of the parallel composition of event structures
is the definition of a relabelling function encoding the intended synchronisation model.

1 In [26], the definition of parallel composition is (E1×E2 \X)[f], where X is the set of labels
(pairs) for which f is undefined. We can prove that such a definition is equivalent to ours,
which is more suitable to be generalised to the π-calculus.

324 S. Crafa, D. Varacca, and N. Yoshida

As discussed in the Introduction, name dependences appearing in πI-processes let a
synchronisation between two events possibly depend on the previous synchronisations.
We then define a generalised relabelling operation where the relabelling of an event de-
pends on (the labels of) its causal history. Such a new operator is well-suited to encode
the πI-communication model and allows the semantics of the πI-calculus to be defined
as an extension of CCS event structure semantics.

Definition 6 (Generalised Relabelling). Let L and L′ be two sets of labels, and let
Pom(L′) be a pomset (i.e., partially ordered multiset) of labels in L′. Given an event
structure E = 〈E,≤,%, λ〉 over the set of labels L, and a function f : Pom(L′) ×
L −→ L′, we define the relabelling operation E [f] as the event structure E ′ = 〈E,≤
,%, λ′〉 with labels in L′, where λ′ : E −→ L′ is defined as follows by induction on
the height of an element of E:

if h(e) = 0 then λ′(e) = f(∅, λ(e))

if h(e) = n+ 1 then λ′(e) = f(λ′([e)), λ(e))

In words, an event e is relabelled with a label λ′(e) that depends on the (pomset of)
labels of the events belonging to its causal history [e).

The set of labels we consider is L = {a(x), a(x), τ | a, x ∈ Names}. For the par-
allel composition we need an auxiliary set of labels L′ = {a(x), a(x), τx=y | a, x, y ∈
Names} ∪ {bad, hide}, where bad and hide are distinguished labels.

In L′, the silent action τ is tagged with the couple of bound names that get identified
through the synchronisation. This extra piece of information carried by τ -actions is
essential in the definition of the generalised relabelling function. Let for instance e
encode the parallel occurrence of two events e1, e2 labelled, resp., x(x′) and y(y′),
then e1 and e2 do synchronise only if x and y are equal, that is only if in the causal
history of e there is an event labelled with τx=y; in such a case e can then be labelled
with τx′=y′ .

The distinguished label bad denotes, as before, synchronisations that are not allowed,
while the new label hide denotes the hiding of newly generated names. Both labels are
finally deleted.

Let fπ : Pom(L′)× (L8{∗}×L8{∗})−→ L′ be the relabelling function defined
as:

fπ(X, 〈a(y), a(z)〉) = fπ(X, 〈a(z), a(y)〉) = τy=z

fπ(X, 〈a(y), b(z)〉) = fπ(X, 〈b(z), a(y)〉) =
{
τy=z if τa=b ∈ X
bad otherwise

fπ(X, 〈α, ∗〉) = fπ(X, 〈∗, α〉) =
{

hide if τa=b ∈ X & α = a(y), a(y)
α otherwise

fπ(X, 〈α, β〉) = bad otherwise

The function fπ encodes the πI-synchronisation model in that it only allows synchro-
nisations between input and output over the same channel, or over two channels whose
names have been identified by a previous communication. The actions over a channel

Compositional Event Structure Semantics for the Internal π-Calculus 325

a that has been the object of a previous synchronisation are relabelled as hide since,
according to internal mobility, a is a bound name.

The extra information carried by the τ -actions is only necessary in order to define
the relabelling, but it should later on be forgotten, as we do not distinguish τ -actions in
the LTS. Hence we apply a second relabelling er that simply erases the tags:

er(α) =
{
τ if α = τx=y

α otherwise

4.2 Definition of the Semantics

The semantics of the πI-calculus is then defined as follows by induction on processes,
where the parallel composition of event structure is defined by

E1‖πE2 = ((E1 × E2) [fπ][er]) \{bad, hide}

To deal with recursive definitions, we use an index k to denote the level of unfolding.
{|0 |}k = /0 {|∑i∈I πi.Pi |}k = ∑i∈I πi.{|Pi |}k

{|P | Q |}k = {|P |}k ‖π {|Q |}k {|(νa)P |}k = {|P |}k\{l ∈ L | a is the subject of l}

{|A〈ỹ | w〉 |}0 = /0 {|A〈ỹ | w〉 |}k+1 = {|PA{ỹ/x̃}{w/z}|}k

Recall that all operators on event structures are continuous with respect to the prefix
order. It is thus easy to show that, for any k, {|P |}k ≤ {|P |}k+1. We define {|P |} to be
the limit of the increasing chain ...{|P |}k ≤ {|P |}k+1 ≤ {|P |}k+2...:

{|P |} = supk∈N{|P |}k

Since all operators are continuous w.r.t. the prefix order we have the following result:

Theorem 1 (Compositionality). The semantics {|P |} is compositional, i.e.

– {|P | Q |} = {|P |} ‖π {|Q |},
– {|

∑
i∈I πi.Pi |} =

∑
i∈I πi.{|Pi |}, and

– {| (νa)P |}k = {|P |}\{l ∈ L | a is the subject of l}.

4.3 Examples

Example 3. As the first example, consider the process P = a(x).x(u) | a(z).z(v) dis-
cussed in the Introduction. We show in the following the two event structures E1, E2
associated to the basic threads, as well as the event structure corresponding to {|P |} =
E1 ‖π E2. Figure 1 shows two intermediate steps involved in the construction of {|P |},
according to the definition of the parallel composition operator.

E1 :

x(u)

a(x)

E2 :

z(v)

a(z)

E1 ‖π E2 :

x(u) τ z(v)

a(x) τ �������� �� �� �� a(z)

326 S. Crafa, D. Varacca, and N. Yoshida

Example 4. As the second example, consider Q = a(w) | P , where P is the process
above. In Q two different communications may take place along the channel a: either
the fresh name w is sent, and the resulting process is stuck, or the two threads in P can
synchronise as before establishing a private channel for a subsequent communication.
The behaviour of Q is illustrated by the following event structure which corresponds to
{|Q |} = E3 ‖π {|P |}, where E3 = {| a(w) |} is a simple event structure consisting of a
single event labeled by a(w).

x τ z

a(w) τ �������� �� ��
�� �� �	
� � �� �� �� �� �� �� �� ��a(x) ������ τ ������ a(z)

Example 5. As a further example, let R = a(x).
(
x(y).y | x(y′).y′

)
| a(z).

(
z(w).

(w | w)
)

whose two threads correspond to the following two event structures:

E1 :

y y′

x(y)

���
���

x(y′)

			
			

a(x)

E2 :

w

 τ ���������� �� �� �� w

��
��
��

z(w)

a(z)

R allows a first communication on a that identifies x and z and triggers a further syn-
chronisation with one of the outputs overx belonging to E1. This second communication
identifies w with either y or y′, which can now compete with w for the third synchro-
nisation. The event structure corresponding to {|R |} = E1 ‖π E2 is the following.

τ

 τ τ τ

���
���

�

τ ���������������� τ

E1 ���������������� τ

������

E2�� �� �� �� �� �� �� ��

Example 6. Consider the recursive process, seen in Example 1 in Section 2, A(x | z) =
x(z0).A〈z0 | z′〉 | x(z1).A〈z1 | z′′〉, where z′(n) = z(2n+ 2) and z′′(n) = z(2n+ 3).
In the following, we draw the first approximations of the semantics of P = A〈a | z〉:

{|P |}0 : {|P |}1 : {|P |}2 :

z0(z2) z0(z4) z1(z3) z1(z5)

a(z0) a(z1) a(z0)

������

a(z1)

������

z2(z6) z2(z10) z4(z8) z4(z12) z3(z7) z3(z11) z5(z9) z5(z13)

{|P |}3 : z0(z2)

������
z0(z4)

������
z1(z3)

������
z1(z5)

������

a(z0)

�����������

������
a(z1)

�����������

������

Compositional Event Structure Semantics for the Internal π-Calculus 327

(x(u),z(v))

(∗,z(v)) (x(u),∗)

��
��

��
��

��
��

�
���� (x(u),z(v)) (∗,z(v))

��
��

��
��

��
��

�

�� �� (x(u),∗)

(x(u),∗) ���� (x(u),a(z))

�������

�� (a(x),z(v))

�� ��

�������
(∗,z(v))�� ��

(a(x),∗) (a(x),a(z)) ������������������������������������ �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� (∗,a(z))
Step 1. E1 ×E2

bad

(∗,z(v)) hide

��
��

��
��

��
��

���� τu=v hide

		
		

		
		

		
		

�� �� (x(u),∗)

x(u) ������ bad

�� bad

�� ��

��
��

��
� z(v)�� �� ��

a(x) τx=z �������������������������������� �� �� �� �� �� �� �� �� �� �� �� �� �� a(z)
Step 2. (E1 ×E2)[fπ]

Fig. 1. Event structure corresponding to a(x).x(u) | a(z).z(v)

4.4 Properties of the Semantics

The operational correspondence is stated in terms of the labelled transition system de-
fined in Section 3.

Theorem 2 (Operational Adequacy). Suppose P
β

−−→ P ′ in the πI-calculus. Then

{|P |}
β

−−→ ∼= {|P ′ |}. Conversely, suppose {|P |}
β

−−→ E ′. Then there exists P ′ such

that P
β

−−→ P ′ and {|P ′ |} ∼= E ′.

The proof technique is similar to the one used in [21], but it takes into account the
generalised relabelling. As an easy corollary, we get that if two πI processes have iso-
morphic event structure semantics, their LTSs are isomorphic too. This clearly implies
soundness w.r.t. bisimilarity.

Theorem 3 (Soundness). If {|P |} ∼= {|Q |}, then P ∼ Q.

The converse of the soundness theorem (i.e. completeness) does not hold. In fact this
is always the case for event structure semantics (for instance the one in [22]), because
bisimilarity abstracts away from causal relations, which are instead apparent in the event
structures. As a counterexample, we have a.b+b.a ∼ a | b but {| a.b+ b.a |}
∼= {| a | b |}.

Isomorphism of event structures is indeed a very fine equivalence, however it is, in a
sense behavioural, as it is strictly coarser than structural congruence.

328 S. Crafa, D. Varacca, and N. Yoshida

Proposition 2. If P ≡ Q then {|P |} ∼= {|Q |}

The converse of the previous proposition does not hold: {| (νa)a.P |} ∼= {|0 |} = ∅
but (νa)a.P
≡ 0. As a further counterexample, we have (νa)(a(x).x(u) | a(y).
y(v))
≡ (νa, b)(a(x).b(u) | a(y).b(v)), but both processes correspond to the same
event structure containing only two events e1, e2 with e1 ≤ e2 and λ(e1) = λ(e2) = τ .

5 Asynchronous πI-Calculus

This section studies the asynchronous πI-calculus [4,15,17], whose syntax slightly dif-
fers from that in Section 2 in the treatment of the output.

Processes P,Q ::=
∑

i∈I ai(xi).Pi | a(x)P | P | Q | (νa)P | A〈x̃ | z〉
Definition A(x̃ | z) = PA

The new syntax of the bound output reflects the fact that there is a looser causal connec-
tion between the output and its continuation. A process a(x)P is different from a(x).P
in that it can activate the process P even if the name x has not been emitted yet along
the channel a. The operational semantics can be obtained from that of Section 2 by
removing the rule (OUT) and adding the following three rules:

(OUT)

a(x)P
a(x)
−−→ P

(ASYNC)

P
α

−−→ P′

a(x)P
α

−−→ a(x)P′
x /∈ fn(α)

(ASYNCH COMM)

P
a(y)
−−→ P′

a(x)P
τ

−−→ (νx)P′{x/y}

Relying on this LTS, the definition of strong bisimilarity for the asynchronous πI-
calculus is identical to that in Section 2.

5.1 Denotational Semantics

The event structure semantics of the asynchronous πI-calculus requires to encode the
output process a(x)P , introducing the following novel operator, called rooting.

Definition 7 (Rooting a[X].E). Let E be an event structure labelled over L, let a be
a label and X ⊆ L be a set of labels. We define the rooting operation a[X].E as the
event structure E ′ = 〈E′,≤′,%′, λ′〉, where E′ = E 8 {e′} for some new event e′, ≤′
coincides with ≤ on E and for every e ∈ E such that λ(e) ∈ X we have e′ ≤′ e, the
conflict relation %′ coincides with %, that is e′ is in conflict with no event. Finally, λ′

coincides with λ on E and λ′(e′) = a.

The rooting operation adds to the event structure a new event, labeled by a, which is
put below the events with labels in X (and any event above them). This operation is
used to give the semantics of asynchronous bound output: given a process a(x)P , every
action performed by P that depends on x should be rooted with a(x). In addition to that,

Compositional Event Structure Semantics for the Internal π-Calculus 329

in order to model asynchrony, we need to also consider the possible synchronisations
between a(x) and P (for example, consider a(x)a(z).b.x, whose operational semantics
allows an initial synchronisation between a(x) and a(z).b.x).

The formal construction is then obtained as follows. Given a process a(x)P , every
action performed by P that has x as subject is rooted with a distinctive label ⊥. The
resulting structure is composed in parallel with a(x), so that (i) every “non-blocked”
action in P , (i.e. every action that does not depend on x) can synchronise with a(x),
and (ii) the actions rooted by⊥ (i.e. those depending on x) become causally dependent
on the action a(x).

Such a composition is formalised the parallel composition operator ‖Aπ built around
the generalised relabelling function fA

π : Pom(L′)×(L8{∗,⊥}×L8{∗,⊥}) −→ L′

that extends fπ with the following two clauses dealing with the new labels:

fA
π (X, 〈⊥, a(x)〉) = fA

π (X, 〈a(x),⊥〉) = a(x)

fA
π (X, 〈⊥, ∗〉) = fA

π (X, 〈∗,⊥〉) = bad

The denotational semantics of asynchronous πI-processes is then identical to that in
Section 4, with a new construction for the output:

{| a(x)P |}k = a(x) ‖Aπ ⊥[X].{|P |}k X = {α ∈ L | x is the subject of α}

Example 7. Let R be the process a(y)(a(x).b.y); its semantics is defined by the fol-
lowing event structure:

y

��
��

��
��

��
��

a(y) ‖Aπ b =

a(x) ⊥

y

��
��

��
��

��
��

b b

τ ������
�� �	 ��
� � �� �� �� �� �� �� ��

a(x) a(y)

First a new event labelled by ⊥ is added below any event whose label has y as subject.
In this case there is only one such event, labelled by y. Then the resulting event structure
is put in parallel with the single event labelled by a(y). This event can synchronise with
the⊥ event or with the a(x) event. The first synchronisation simply substitutes the label
a(y) for⊥. The second one behaves as a standard synchronisation.

Example 8. Consider the process P = a(y)(n(x) | y) | n(z)(a(w).w). The semantics
of P is the following event structure:

y

‖π
w

=
y τ w

a(y) n(x) n(z) a(w) n(x) ���� τ ���� n(z) a(y) ���� τ ���� a(w)

Note that the causality between the a(w) event and the w event is both object and
subject, and it is due to the prefix constructor. The causality between the a(y) event and
the y event is only object, and it is due to the rooting.

330 S. Crafa, D. Varacca, and N. Yoshida

5.2 Properties of the Semantics

As for the synchronous case, the semantics is adequate with respect to the labelled
transition system.

Theorem 4 (Operational Adequacy). Suppose P
β

−−→ P ′ in the πI-calculus. Then

{|P |}
β

−−→ ∼= {|P ′ |}. Conversely, suppose {|P |}
β

−−→ E ′. Then there exists P ′ such

that P
β

−−→ P ′ and {|P ′ |} ∼= E ′.

The proof is analogous to the synchronous case, with a case analysis for the rooting.

Theorem 5 (Soundness). If {|P |} ∼= {|Q |}, then P ∼ Q.

6 Related and Future Work

There are several causal models for the π-calculus, that use different techniques. There
exist semantics in terms of labelled transition systems, where the causal relations be-
tween transitions are represented by “proofs” which allow to distinguish different oc-
currences of the same transition [3,11]. In [7], a more abstract approach is followed,
which involves indexed transition systems. In [16], a semantics of the π-calculus in
terms of pomsets is given, following ideas from dataflow theory. The two papers [6,12]
present Petri nets semantics of the π-calculus.

A direct antecedent of this work presented a compositional, sound and adequate
event structure semantics for a restricted, typed variant of the π-calculus
[21]. This variant can embed the λ-calculus fully abstractly [1], but is strictly less ex-
pressive than the full π-calculus. The newly generated names of this subcalculus can
be statically determined when typing processes, therefore the semantics presented there
uses the original formulation of the parallel composition. The generalised relabelling,
the rooting, and the treatment of recursive definitions are developed first in the present
paper.

A recent work [5] provides an event structure semantics of the π-calculus. How-
ever this semantics does not correspond to the labelled transition semantics, but only to
the reduction semantics, i.e. only internal silent transitions are represented in the event
structure. For instance, in [5], the processes a(x) and 0 have both the same seman-
tics, the empty event structure. Consequently the semantics is neither compositional,
operationally adequate, nor an extension of Winskel’s semantics of CCS.

Recently Winskel [25] used event structures to give semantics to a kind of value
passing CCS. His recent work [24] extends the framework of [25] to a functor category
that can handle new name generation, but does not apply yet to the π-calculus.

The close relation between concurrent game semantics, linear logic and event struc-
ture semantics of the typed π-calculus has already been observed in [21,14,13]. In both
worlds, the types play an important role to restrict the amount of concurrency and non-
determinism. Based on the present work, it will be interesting to extend the relation to
the untyped, fully non-deterministic and concurrent framework.

Compositional Event Structure Semantics for the Internal π-Calculus 331

Our semantics captures the essential features of the causal dependencies created by
both synchronous and asynchronous name passing. For an extension of free name pass-
ing, we plan to use a technique analogous to the one developed for the asynchronous
πI-calculus. As observed in [3,11], the presence of free outputs allows subtle forms of
name dependences, as exemplified by (νb)(a〈b〉 | c〈b〉), where a restriction contributes
the object causality. A refinement of the rooting operator would be used for uniform
handling name causalities induced by both internal and external mobility.

References

1. Berger, M., Honda, K., Yoshida, N.: Sequentiality and the π-calculus. In: Abramsky, S. (ed.)
TLCA 2001. LNCS, vol. 2044, pp. 29–45. Springer, Heidelberg (2001)

2. Boreale, M.: On the expressiveness of internal mobility in name-passing calculi. Theor.
Comp. Sci. 195(2), 205–226 (1998)

3. Boreale, M., Sangiorgi, D.: A fully abstract semantics for causality in the π-calculus. Acta
Inf. 35(5), 353–400 (1998)

4. Boudol, G.: Asynchrony and the π-calculus. Research Report 1702, INRIA (1992)
5. Bruni, R., Melgratti, H., Montanari, U.: Event structure semantics for nominal calculi. In:

Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 295–309. Springer,
Heidelberg (2006)

6. Busi, N., Gorrieri, R.: A petri net semantics for pi-calculus. In: Lee, I., Smolka, S.A. (eds.)
CONCUR 1995. LNCS, vol. 962, pp. 145–159. Springer, Heidelberg (1995)

7. Cattani, G.L., Sewell, P.: Models for name-passing processes: Interleaving and causal. In:
Proc. of LICS, pp. 322–332. IEEE Computer Society Press, Los Alamitos (2000)

8. Crafa, S., Varacca, D., Yoshida, N.: Compositional event structure semantics for the internal
pi-calculus. Full version, available at www.pps.jussieu.fr/∼varacca

9. Curien, P.-L., Faggian, C.: L-nets, strategies and proof-nets. In: Ong, L. (ed.) CSL 2005.
LNCS, vol. 3634, pp. 167–183. Springer, Heidelberg (2005)

10. Degano, P., De Nicola, R., Montanari, U.: On the consistency of “truly concurrent” opera-
tional and denotational semantics. In: Proc. of LICS, pp. 133–141. IEEE Computer Society
Press, Los Alamitos (1988)

11. Degano, P., Priami, C.: Non-interleaving semantics for mobile processes. Theor. Comp.
Sci. 216(1-2), 237–270 (1999)

12. Engelfriet, J.: A multiset semantics for the pi-calculus with replication. Theor. Comp.
Sci. 153(1&2), 65–94 (1996)

13. Faggian, C., Piccolo, M.: A graph abstract machine describing event structure composition.
In: GT-VC workshop, ENTCS (2007)

14. Faggian, C., Piccolo, M.: Ludics is a model for the (finitary) linear pi-calculus. In: Proc. of
TLCA. LNCS, Springer, Heidelberg (2007)

15. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: America,
P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)

16. Jagadeesan, L.J., Jagadeesan, R.: Causality and true concurrency: A data-flow analysis of the
pi-calculus. In: Alagar, V.S., Nivat, M. (eds.) AMAST 1995. LNCS, vol. 936, pp. 277–291.
Springer, Heidelberg (1995)

17. Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi. Math. Struct. Comp.
Sci. 14, 715–767 (2004)

18. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, part I.
Theor. Comp. Sci. 13(1), 85–108 (1981)

www.pps.jussieu.fr/~varacca

332 S. Crafa, D. Varacca, and N. Yoshida

19. Palamidessi, C.: Comparing the expressive power of the synchronous and asynchronous pi-
calculi. Math. Struct. Comp. Sci. 13(5), 685–719 (2003)

20. Sangiorgi, D.: π-calculus, internal mobility and agent passing calculi. Theor. Comp.
Sci. 167(2), 235–271 (1996)

21. Varacca, D., Yoshida, N.: Typed event structures and the π-calculus. In: Proc. of MFPS
XXII. ENTCS, vol. 158, pp. 373–397. Elsevier, Amsterdam (2006), Full version available
at http://www.pps.jussieu.fr/∼varacca

22. Winskel, G.: Event structure semantics for CCS and related languages. In: Nielsen, M.,
Schmidt, E.M. (eds.) Automata, Languages, and Programming. LNCS, vol. 140, pp. 561–
576. Springer, Heidelberg (1982)

23. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Advances in
Petri Nets 1986. Proceedings of an Advanced Course, Bad Honnef, 8.-19. September 1986.
LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)

24. Winskel, G.: Name generation and linearity. In: Proc. of LICS, pp. 301–310. IEEE Computer
Society Press, Los Alamitos (2005)

25. Winskel, G.: Relations in concurrency. In: Proc. of LICS, pp. 2–11. IEEE Computer Society
Press, Los Alamitos (2005)

26. Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of logic in Computer Sci-
ence, vol. 4, Clarendon Press, Oxford (1995)

A Substitution of Sequences

Let A(x̃ | z) = PA be a recursive definition. The sequence z contains all bound names
of PA, and in particular the names of all sequences z′ that appear in PA. For each such
sequence, there exists an injective function f : N → N such that z′(n) = z(f(n)).
To obtain the process PA{w/z}, for each bound name of the form z(n) we substitute
w(n), and for each sequence z′ we substitute the sequence w′ defined as w′(n) =
w(f(n)).

http://www.pps.jussieu.fr/~varacca

������������ 	
����	�� ���	������ �� ���������	�

�����	����� ����

������ ������	 �
	 ����� �����
�

�������� ���	�
���� � �������
���������� ����� �������
�� ���

��������� �� �������
�� �����
 ��
���
���� ��
 ����
������ ��!���
���� ��� ������
����"��������� ����
� �������
�� �������
��� ����������
���� ������� �� ��#������
� �����
����� ����$�� ��%��
 ��
������� ������ ��
�
&���� ���������
��
 ��
������� ������ �� �
&���� ��#������
� �����
�����
����$ �� ����� �!
� ��� ��
���
���� ���� ��������� �� ���� ��
 &������
�
���� &�� ��� �!��� � � ��
������� �������$ '!�� �!� � �!
� ��#������
� ���
���
����� ����
�� ��(������� �)�������� ��� �����������	 �����������
��
��&������
� ����
��*�� &� �!� ����
������$

� �������	�
��

�
��� ���� ������ ������ �	�� � ����� ��� �������
����
 ���� ��� � ����
���
����
��� �
	 ����� ��	����
 �����	���� �������
� ����
� ��

����
� ���
�������� ���������
� ��� �������
 ��� ��
 �
�����	 � ���
���	����
 ��
�����	
���� ���� �
	 �����	
����
����	���� � ����
�
 ����!"��

#�� ��� �������� �� �����
� ��
�����
�� ��� �
��� ���� $���� ��%!���
�&'!!�� �'��()�� �#��("�� �*+()� ���	 �
 �+'("�� � � , ����	 � ������ �������
�� ���� ��
�����
��� ���� �� ��	����	 � ������� ������ �-� '�
��.� π/��������
�'�!0� 1%(2�3 ��
��
�� ���������������� 4
	��	� ��� -
��
 ������ �������
��	 ����� �
 ����
����� 	�����
��� ��	����
 �����	��� 5 ��� � ��� ����
��
����
��� �
	 �
��� ����� �
	 �� �������� ������� ���� �� ����	.� �*
�� 6�����.� λμ 5 �� �
 �7��������
�
/	�����
�� �
�� �� ��
�8�
.� ��������
��9��
� �������� �:� ���� �9����� ��� ������ �� ��� ���� ��������

;������� ��
� 	�
�����
�� ��	��� �� ��� ��� 	�/�������� �
	 �� �
��� ����
�	�� ���� ���� ��
�
/	�����
��� $���� �6���)� �����,� ����
� ���� �
�
/
	�����
��� ����� �������� �
��
��������� ������ ��� <��� ������
���	���	
���� ��	���� ���	 �
 ������ ������ $��� ���� ����("�,� ���� ���� �
�� �����/
�������� ���
�������� ��������
	
� �� � ����� �7��
��
 �� ��� ����� ���� �
���
���� ��������� ��� ��� �7��
�
�����

4
 ��� 	=���
��� ����
�� ��� ���-�

� ���� ��� � ����� ���� ���� �����	

���	������� �
	 ������� ��� 	�������
 �
	 ��� ��
������
� �
	 ��� ��	����

����� ���� ��� ��������
	
� ����� ��������� ��� ��������
	
� ��������

�� ������ �	
 ���� ����	���� ��
���� ������ ����� ���� ����� ��� ��� ��!� �����
© ����	"��#�����" $����	 %��
��&��" ����

++, '$ -!�!
��
�� .$ /
�����

�� ���������	� �����	
���� ���� ��� ��

���	���	
 � >�
� ���- � ��� <���
������ �
	 ?��
�� ��?()�'�

4
 � >�
� ���- ��� :��� ;�
	� �;�(��� ��� ����
	 ������ �������	 �
���
�����
 �� � �����
 �� ��� π/��������
 �����/
��� ��� � �����
 �� �
��� ����
�7��
	�	 ��� ��� ����
������
 ���� $�� ��
�� �
	�����
	,� ��� ��� 	��
��
����

�������
� ��� �������� ��������
 �� � ��� �����
 � ��
������

�
- $�� ���� ������� ������� ��� ��

����	� ������� 	�������
 �
-�, �
	 �
����
������
 �
-� $�� ���� ������� �������	 �������� ��� ��

����	�, #�
�
�������	� ����� �������� ��� ������ ���
 ��� ��
�� �� ��� π/��������� ��� �����
��
	���
��� 	�� �� ��� ���
�����
 ��
����
 ��
� �
��� ���� �������� ���
��-
� ��� 	=���
�� �����
 ������� $
������, �
	
���� $������,� �
	 ��
����
� � ����� �����
���
 �����
 ����� ��� ��������� ��� ������ �� ������

 � �����8�	 �
��� ���� ����
� � ���
� ������ ��� ��� π/�������� ���������

���	���	 � #������ ;�
	� �
	 @���	�
 �#;@(0�� ��� ���
�����
 ��� ���
�������� ���� ��
 � ��
�	���	 �� ����� 	������3 � ������� �
�� ������ ��
�������� �
	 �
�� ������ ��	���� $��� �������� ��������
 �� ��� ���������
��

�� � 	���� �	 �� � ���
���
 �� ��� ��������
	
�
���,�

��������� 	
 ��� �������	�� ��� ������� �� ��� �����
� ����� � �� ��
�
��
��� �
� �� 	���� ��
� ���� ������������� ���
�� ����������
���	���	 �
	=���
���
�������

�����

!

? ?

?

! !

	
�� �� ��������
����

��

��� <��� -�� 	����
 �� ��	�� ��	�	 � ���
��������� �� ��� ������ ����
������
A��
������
 ���

��
	�	 ��
������� �������� ��������
� ��� �� ��/
�����
� ��� ���� ����
��� �� � �������
�� �
��
 �� ��� ���� �����
 ��� ��������
	
� 	=���
���

�������

��� �
� �� ����� ����� ��� ���� � !/����
$������ ����, �
	 ��� ���� �� � ��
�	���	 �� ���
����� ���� �� ��� ��������
	
�
��� ��� ��� ��������
�
	 ��� ����� �
� ��� ���� � ?/���� $
������ ����,
�
	 ��� � ��
�	���	 �� �
 ������ �����

%� 	�������	 ���������� ���� ����� �� ���
�
����� ���� �� ���� ���
�������
� �������� ������/
��
 �
	 �����	 ����
������
	���� 	��	� 3 ���� ���
� ��
�	 � ���

�
 � ���������� �������� ��� ����
������
 �
	 ��
/
������
 ������ ����� ��� �����
����
 ����� �� �
� B����C $
�� �� �� ���� ��

� ���� �!
�� �� �!�� ����������	 	����� 	
���� �!� � �
������� ����������� ⊕
�� &
��
������%��� &�� �!�� ���� ��� ������� �!� ������ ���� !
���	 	��� ��	��
� �����������

�� �!�� ������%�
���� 0 !��! ������� ���� ��������������� 0 ���� ��� �)���� ��
�!� ���������
���� �����������1 ⊗
�� �
�� ��������$

� .�� �!���� ������� !��� �!
� ��
���
����� �� �!� π��
������ ���� ���� �� �
�����
2����� ��&3��� �� ���
� ��������� ���
������ !
�� &��� �������� &� �
�����
��!���
4��$ �!� ��2 �� /
����� �
���
�� 5����� ��
	
 ������� 6/�5789� �� :�#
�

�� ;
���� 6:;7<9� �� ;����� �� ������� 6=;7,9� �� ;
**
 6;
*7<9 �� ��	���
��

���������
� ��� ���$>$:�� �!��� ������	� !
�� �� ���
� ��	��
� 	������ ��� ������
�����
����
� ���
�����$

?����������	
 @����
�� ����
������ �� ��#������
� ?����
����� ���� ++<

���� ��

����	 �� �,� ��� �����
����
 ���� �� ���� 3 ��
 � ������	 ��

+���� 2� ����� ����
������
 ����� ��� ������	 �� !/�� ���	 ���
���� �
	 ��
/
������
 ����� �� ?/�� ���	 ���
����� ��� ����� ��������
	
� �� ��� ���� ����
��� ��� ��
���� ����� �� �
���	� ������

�	������ %� <���
���	��� 	=���
���
�������

���� ����	 ��� � �����/
��� ���
� ������ $
���	���	 � D�
�� �
	 ?��
��
 �?��!E� �
	 ����
��������
	� �� ��� �
����	 ��� 	�/��������, ��� ���	
� ��� �������
�� ��
�

��	�� �� ��
<������
�� �����
��� ��� <
����
 ��� ��
�� ���� ���� ��� �
��
� ���- ���� �� �������
� 4
 ��� ����
�� �� 	�<
� � B���� �7C� � ��������

��
��� ���� �� ����� ���
� ���
�������
� ���������� �
	 � ��� ��������	
��	����
�� 	����	 ���� ��� ��� ��	����
 ����� �� 	=���
���
�������

����

%� ����
8� ��	����
 ����� ��
��� �� � �� ���	 ���
���
 ������� ����� ���/
���� ���
���� �
	 ����� ��� ���
���
� ��������
	 �� 	�������
A��	�������

��	����
� ���
 �� 	�<
� � ������� ���� �� ���� � � �����	� π/��������� ���/
��� ��������
 �
	 ������ ����� %� ������ ��� �������
�� ����
��� �� ���
�������� � ���
� �� �
 � ������ ����
�
����	 � ��� ����
� �����
��	

 �&*!�� *������ 2)�� %� 	�<
� � ���
���
 ������ ����� ������� ��� ���
������ �� ��� ����
�� �
	 ���
���
� ��������
	 ��
���A������ ��	����
��
���� �� 	�<
� � B���
�����
C ������
 ���� ����
� ������ ��
��� �
	 ���� ����
��� ���
�����
 ������
 � � �������
 �����
 ��� ��� ���
���
 ��������

� �
�����
�� ������	�
�� ����

4
�������

��� ���� ��

���	���	 � ����
� ����!"� �� � ��
����8���
 ��
�
��� ���� �����
���� & ����	���� ��
�������

��� � � ��� �� ������� ����
�� ���� �
� ���
 ��� �
 ���� �
	 � ���
� ����� &
�� � ��	� �� ������ 4
 �

��� ���� ���� γ ���� �7����� �
� ��� ��� �
	 ��� ��������� �
 ���� nF ��� ����
γ ���� ���� n 	�����	�� ����� $
�� ���	 ���� 1 �� n, �
	 �
� ����
��	� ����
$
�� ���	 0,� &
�� ��
 ���� ���� ���� ������ 1�����
� ���
�� ��
���� ����

��
� �� ������� ���� � � ������
 �� �� �����
 2/�����
�� ���� $��� ����,�
���
� ���
�� ���
� �������
� � ������� �� ���� �
��� ������ ������ ���
���� �� �� ���
��	 ����
 ���� � ��� ����� ���
 ������
� ��� ���
����
 ��
��� ���� ��� ������� � ���
�	 �� �� �������
��� �� ������� ��� ���
� ����
�������	 �� ���� ���� �� ���
�� ���� ���� � ��������	 � ��� ���
��

1�� ���� ��?()� ��� �

���	����
 �� 	=���
���
�������

����

��� ���������	� 	
 ��� �����

���
��� ��� � ����	 ��
� � ���� ������ ���� ��������
	� �� ��� �
����	
��� 	�/��������� ��� ������ � ���	 �
 � �
��� ���� ��� �� o $��� ���� ��
�������,� �� >��� �� ��� ������
� �������� �9����
 o = ?o⊥�o� %� ��� ι = o⊥�
�� ���� ι = !o⊗ ι �
	 o = ?ι� o�

4
 ��� �����
� ����
�� ����� ��� �����
 ��� ���3 ��� $���� 2,� ����� $����
0,� ��
��� $���� 2,� �
� $���� 0,� 	�������
 $���� 1,� ���-�

� $���� 0,�
��
������
 $���� 2,� ��	�������
 $���� 1,� �����-�

� $���� 0,� ����
������

++A '$ -!�!
��
�� .$ /
�����

$���� 2, �
	 �����	 �������
 $���� 0,� %� �����
�
�� ��� ������ ���� ��� ����
��� ���� ���
� ������
 � ������� ���� ��� ��
���� ���� �� � ���� � ������	
�� �
� �� ��� �
���� �� ��� ���
��� �������
�
� ��� ����� ��� ����� ����� ���
������	 �
 ��� ������� �	��� %� ��� ����
 � ���- 	�� �� ������ ��� ��7����
����
�� �� 1�

����� ������������� �����

��� �	� �
	 ������ ������ �� ���� �� ���� B
������C �����
� ����� �
	 ��� ���
�� �������3

•

o

o
?ι

�
•

!o
⊗

ι

ι
⊥

o
1

ι

����� ���	������ �����

���� ��� ����	 �����	
� �� � ������� �����8�	 	����
�� ;��� ��� <��� ��� ���
��� ������ ���� ��� �����	 ������
����� ��	������ �
	
����	
����3

?
ι ?ι

?
?ι

?
?ι

?ι

?ι

�
	 ���
 ��� 	�� ������ �����	
�������
�����
���	������ �
	
�
����	
����3

!
o !o

!
!o

!
!o!o

!o

����� ��	��� ��	�	��	� ����� �� ��� �������	� 	
 ����

���
���
 �� �����
�� � ���
 	�<
�	
	�������� �������� ��� ���
���
 ��

����� ��������� �����

���
 � $
�

��������� �����,
�� s ��� �
�� �
� ���� ����
os ��

���	��� � ���� s!
!o

�

& ������ ��� � � ����	
�������

���
 ��� ��
����� �� ���� >��� 	�<
�	�
& ��� � � <
�� ������ ��� �� �����
��� ���
� ��� ��� ����
��������

?���� �� ���� ���
������� �� � �����
�� s � ��� ��� �� �� ���� ������ ��������
��� ��� ����
� �������
� �� ���� ���� ���� ��� ���� �� ��� ���
��	 ��� ��
s ����� �
	
� ��
� � ��� ��������
	
� �����

��� L � � ���
�� �� ��� �� �� ��� ��
��

� � 	��
�����	 �����
� τ $�� �
�
	������	 �� ��� � ��
�� �� �� ��,� & �	���� ������ ��� � � �����
�� �����
��� 	�������
 �
	 ��	�������
 ����� ��� �9����	 ��� �� ��� ���
�
� �� L�
%� ��9��� �������� ����� � ��� �� ��� ������
�
 � �� ���	
�� ��� �9���� ����
��� �9��� �� τ � &�� ���
��� �� ��
�	��
 ��� ����� ��� �� ���	� 4
 ��� ��������
��� �� ��� �� 	�������
 �
	 ��	�������
 ����� ��� �
	����	� �
���� � � τ �

 ���� ���� ��� $��,	�������
 ���� ��� � 	���
 ������ �
� �� ���

� ����	�
�� �����

%� 	�
��� � Δ ��� ��������
 �� ��� �����
��� �
	 � N〈Δ〉 ��� ��������
 ��
���
��� $<
�� ���� �� �����
��� ��� ��� ����
�������,�

?����������	
 @����
�� ����
������ �� ��#������
� ?����
����� ���� ++B

& ����
���� ���� � � �� ��� R �� Δ × N〈Δ〉 ��
���
� �� ���� (s, s′) �����
s � ��	� �� ��� ����� ��

����	 � ���� ��
���� ����� �
	 s′ ��� ��� ����

������� �� s� ��� ��� ��
 � <
�� ��
<
��� 1��� � ������
 � ����� �7��
	�	
�� �� ����� �����
��� $s R t � ����� � (s0, u1 + · · · + un) ∈ R ����� s0 �
� ��
�� �� s� ���� ui � ����� �
	 t = t1 + · · · + tn ����� ti � � ��
�	 �
������
� s0 � ui
 s,� ��� ������
 � �7��
	�	 ��
��� $���� �� �����
���,3
s1 + · · · + sn $����� ���� si � �����, � ������	 �� s′ � ��� �7��
��
 RΣ �
s′ = s′1 + · · ·+ s′n ������ ��� ���� i� si R s′i �� si = s′i� ����� R∗ � ��� ���
����
������� �� RΣ�

��� ������� ��� �������	�

����� ������������� �������	�

��� <��� ��� ����� ��
���
 ���
�������
 �� ��� ����������� ����� �� ��� ����
�����

• •
� ⊗

?ι ?ι

o

o
�m

o o

?ι

⊥
o

�m ε1

����� ε ���
	� ��� ��� ����� �����
�� $
�� �� � ��
����	 ��� ���
�� 0 ∈
N〈Δ〉� ��� ����� ���� ���� �
�� � �����
��,� ���
�7� ��� ����� ��
���

���
�������
 �����
 �
��� �
	 �
������ ����������� �����

� 1
o

�m

?ι

o

?ι

o 1

!

�m

!o

ι

⊗ ⊥
!o

ι

?

⊥

1� ���� ��� ��	����
 ���� $	�
���	 �� �m, ��� ���� �����
���

����� �	��������	� �������	�

��� R ⊆ L� %� ���� ��� ������
� ��	����
� � l,m ∈ R�
? !

ι ι?ι
�c,R

ι

l m

1� ��� ��� �c,R �
 >����� ��������
	�
�� ��� ��� ��� �� ���� (l,m) ���
l,m ∈ R �
	 l = m⇒ l = m = τ �

����� �	� ������������� �������	�

��� R ⊆ L� %� ���� ��� ������
� ��	����
� � l ∈ R�

?

?

?

?

ι ?ι

?ι?ι
!? +

l

l

�nd,R

?ι

l

!

!

!

!

! ?
o !o !o

!o
+

l

l

�nd,R
l

? !
ι ?ι

l
�nd,R 0 ! ?

o !o

l
�nd,R 0

++C '$ -!�!
��
�� .$ /
�����

����! "�������� �������	�

?ι

?ι

?ι
?

!

!

! �s !
!o

!o

!o
?

?

? �s

?ι
? �s εs! ?

?ι

?ι

?ι
�s

s!

s!

s!

?ι
? ! �s ε ? !

?ι

?ι

?ι
?ι

?ι
�s

!

!

?

?

����# $	� �������	�

?
ι ?ι

s�bs!

l
� ����� ���� ��� ��	����
 ����� ��� ������ �� ��� ��� 	�
�<����
 �� ���
�����-�

� ���� ��� � �������
 ���� ��
��

� ��� 0
��� � ����� ���� ����
��� �
�� ����� ���� 	�
�� �	�� � B��������C ���� ��� ����� ����
�����
� �������
 ����� 4
	��	� �������
 � ��� �
�� ��������� ���� �� 	=���
���
�
��� �����

�
� ��
 ����- ���� �� ���� ����	�	 ��	����
 ����� ��� ��� ���� �� ��	�7���
������ �� ��� ��� ���
� ������3 ��� �
� �����
�� s ��	� �� ��� ����� ��
/

����	 ������� ���� ��
���� ������ ����� � � ��	����
 ���� ����� ���� ��� ��
� s� ��� ���� � �
9��� �� �� ��� ����� �� � ��� �� �� ���� �� ��� ����� ���

�
G��
�� �
 ��� ���� ��� �� �� ��� �����

��� �	�%�����

&��	��� �� ��� R,R′ ⊆ L� ��� R ⊆ Δ × N〈Δ〉 � ��� ����� �� ���� �� ���

����
���� ���	����� �c,R� �nd,R′ � �m� �s 	�� �b� ��� ���	���� R∗ ��
�������
�� N〈Δ〉�
��� ����� � ����
����� ����� �
�� ��� �����
� ������
 ���
� ������ ���
$��� ��?()�,� ���
 R ⊆ L� �� ��
�	��
 ��������� ��� ������
� ��	����
3
�R = �m∪�c,{τ}∪�s∪�b∪�nd,R� %� ��� �d = �∅ $B	C ��� B	�����
���C,
�
	 	�
��� � ∼d ��� �������� �
	 ���
���� ������� �� ��� ������
�

1��� �� ��� ��	����
 ����� �� ���� 	�<
�	 	���
	 �
 � ��� �� �� ���� ���
	���
	�
�� � ������� ��
���
�
 ��� ��
�� ���� ��� ������
 ������ ������
���
 ��� ��� �� �� ���
��������

��� ' &������	� "(���� 	
 "����� ����

����� {l,m} ��������(

��� l �
	 m � 	��
�� �����
�� �� L\ {τ}� %� ���� (l,m)�
������
	���� �����

� �����
����
 ��	�7 ����� $��,	�������
 ����� ��� �� ���	 � l �
	 m� %�

?����������	
 @����
�� ����
������ �� ��#������
� ?����
����� ���� ++D

��� ���� � �����
�� s � {l,m}������	� �� ���
���� s �∗
{l,m} s

′�
�
� �� ���

����� �����
	� �� s′ ��
��
� �
 (l,m)/�����
����
 ��	�7�

)��� �� ��� s � 	 ������ ���� �� s �∗
{l,m} s

′ ����� 	�� ��� ������ ����	���

�� s′ 	�� {l,m}������	�� ���� s �� 	��� {l,m}������	��

����� &�� &������	� "(����

%� 	�<
� � �� ���	 ���
���
 ������ DL ����� � >���� ��� �����
���� �
	
���
���
� ��� �� ���	 � ���� �� 	��
�� �����
�� �� L \ {τ}� ��� s �
	 t �

�����
���� �� ���� s
lm−→ t � ��� ������
� ���	�3 s �∗

{l,m} s1 + s2 + · · · + sn
����� s1 � � �����
�� ���� ��
��
� �
 (l,m)/�����
����
 ��	�7 $���
	�������
 �� ���	 � m �
	 ��	�������
 �� ���	 � l, �
	 ������ t ���
 �
�
��	���� ��� ��	�7� �
	 ���� si $��� i > 1, � {l,m}/
�������

)��� �� ��� ���	���� ∼d ⊆ Δ×Δ �� 	 ������ ������	���� �� DL�

� � ������� ��� ���	��� ���	��
 �����������
��

!�� �	��	��� �����

!���� *������+�� �	������	� �� �	�	������	�

& �����	�����
����	
����
��� ��
����	
���� ���� � � �����
�� γ $��� �
�
��
���� ���� �
	 � <
��
�� �� �� ��7���� �����, ���� � ����� � ��� ��
� ���-�

� ���� �� � ��
������
 ���� ����� ��7���� ����� ��� ��

����	 ��
��� ��
���� ���� �� ����� ��
������
 ������ ����� ��7���� ����� ����� ���
��7���� ����� �� γ� ��
����8�	 ����
������
 ����� $����
������
 �����, ���
	�<
�	 	������

%� ��� ��� ���� ��������
�����
� ��� ��
����8�	 $��,��
������
 ����� ��
��� ��	
��� $��,��
������
 ������ ��� � B∗C
 ���������� �� ��� B !C �� B?C
��� ��� �� ���	 ��
����
�� � ����� ���� ����� ���
<
���� ��
� ��
����8�	
$��,��
������
 ����� �� �
� ���
 �����

!���� &�� ���������	� &���	� �� ��� �	���������	� �� �����

��� n � �
�
/
������
������ %� 	�<
� �
 n/��� ���� �� �������� 4� ��� �
	�������	 � ��� �� �� �� �� 	�������
 ���� $� 	=���
� ���� τ,�

?⊗

!o

!o

?ι

⊗
⊗

⊗
1

?
!o

!o

!o

ι ?ι

•
•

•

•
=��� l

l

���
�� �� �� ��
��� �����
 ��� ������
	 ���� � �9��� �� n� �
� 	�<
�� 	�����
��� !� ������
	 �����

!���� &�� ����� �����

H�� �� ��
 	�<
� ��� ������
	 ����� ���� ��� ���� ��� ��
 ����
 ���

+,7 '$ -!�!
��
�� .$ /
�����

����������
 �� ���<7�� �� ��� π/��������� ���
-� �� ��� � ��� 	�<
�	 ������ ���
��� ���
��	 ���� �� ���
��� �� ����� 	�<
� ��� ��� ���� ?ι �� !o� ���������
�� ��� ����� �
	 	��� ��� ���� ��� �
 ���
����
 ��������
	
� �� ��� ?ι
�����

��� n�	�� �����
��� �
	 ��� n�	�� ������
��� ��� 	�<
�	 ��

!�

?⊗

?⊗

!

••
���

������ =
ll

?

!�

!�

?⊗
••

���

������ =
ll

��� n ���� �� ��7���� ������
6��<7 ����� ��� �� ���	 � ��� �� �� �����	 � ���� ��������� 	�������
/

��
��� �� ��	�������
/��� ������
	 ����� � 	=���
� ���� τ � ��� �����
��	�������
/��� �� 	�������
/��
��� ������
	 ����� �
� �
�� ���	 $���� ��
�� ���	 � τ,�

!���! &������	�� �� $	��� ,������(

4
 ��	�� �� ������
� ��� ��9��
����� ��������
	
� �� ��9��
��� �� ���<7��

��� π/��������� �� ����� ��� ��� �
��� ������ ���<7 ���� 	�<
�	 � ��� �� � -
	
�� ���
������ ���� �� �� � -
	 �� ����� ���� �
� ��
 ��� �
 � ���� �
	 ����
� ��
������	 � �
����� ���� ��� 	�� � ����
���
����	 � ��� ���
�����
 ��
��� π/��������
 ��� �������� �� �������

�

�
?⊗

⊥

o•

	
�� � ?�������

����� ������� ��� � �����	 � B �7�	 	�
��� �����C�
���� ��� ��� �
9�� ��� �� ��-� �� �������

 ���
�����
� ���-� ��� I � ��� B	�
���C
�� �� +���� E�

���
 �� ����� ��� ��� �����	 �������
 ���� �� ���	 �

I !3 I ! �

!�� �	��������	� &		��

!���� &�� �	��������	� '���

3

	
�� �� E��
 �� �����
+

��� n ≥ −2� %� 	�<
� � ����� ��
��� ��� 2(n+ 2) ����
������ �����	 �����
����
 ����� �� ��	�� n� ���� �� �����
	��� ��
� �����
���� ��� �����	 �
����� +���� 0 �����
��� �� ������ � �����
����
 ���� �� ��	�� 3�

& �����
����
 ���� �� ��	�� n � ��	� �� n+2 ���� ��
(n+1)/��� ��
����8�	 ����
������
 �
	 ��
������
 �����
(γ+

1 , γ
−
1), . . . , (γ+

n+1, γ
−
n+1)� ���� ��� ���� i �
	 j ���� ����

1 ≤ i < j ≤ n+ 2� � ��� ���� �
 ��7���� ���� �� γ+
i ��

�
 ��7���� ���� �� γ−j �
	 � ��� ���� �
 ��7���� ���� �� γ−i �� �
 ��7����

���� �� γ+
j �

� ?� �� �!� � �� 6/57+9 �!
� ��� �
� ������ �!� π��
������ ��F�����
���� ������� &�
���%) ������	 �� �!� ����������
����!������ ���� ����
����1 �!� ���
 �� ���! ��
���
�
����� �� �� �&����� �!
�� ��
 ���� ������� ��2� P = νy (u(x, y) | y(. . .)) | Q� �!� %���
���� ���� �����
�� &����� �!� ������ ��� ��! �!� ����������� Q$

?����������	
 @����
�� ����
������ �� ��#������
� ?����
����� ���� +,8

1� ��� �����
����
 ���� �� ��	��−2 � ��� �����
�� ε� �
	 �����
����

����� �� ��	�� −1� 0 �
	 1 ��� ����������� �� ��� �����

?∗

!∗

!∗ ?∗

!∗?∗

!∗ ?∗

?∗ !∗

?∗!∗

!���� ,���������	� "���������

��� n, p ∈ N �
	 ��� f : {1, . . . , p} → {1, . . . , n} � � ��
���
� &
 f �������
	����
��������� � �
�� ��� p + n ���� �� ���� ����� $p ���� ��������
	 �� ��� 	�/
��
 �� f �
	�
 ��� �������� ��� � �������	 �� ���
�
 �����	 �	� ��
��� 	�
�<����
 ���������� �
	 n ���� ��������
	 �� ��� ��	���
 �� f � ��/
�����	 �� ��� �����	 �	� �� ��� ���������, ��
 +���� I$�,� 1��� �
�� �
��	� �� n �����
����
 ������ �
	 �
 ��� j.�� ����� ��� j.�� ��� �� ����
�� ��� ��	���
 � ��

����	� �� ���� �� ��� ���� �� ���� ��
	�7 i �� ���
	���
 ���� ���� f(i) = j� +��
���
��� � n = 4� p = 3� f(1) = 2� f(2) = 3
�
	 f(3) = 2� � ��������
	
� 	�
�<����
 ��������� � ��	� �� ���� ���/
��
����
 ������ ��� �� ��	�� −1� �
� �� ��	�� 0 �
	 �
� �� ��	�� 1� ��

+���� I$,�

1 . . .

. . .

f

p

n1

4
> ���
����

−1

1

0−1

4&> -)
����

�∗
s

f

g

g ◦ f

. . .

. . .

. . .

. . .

. . .

4�> ���������

	
�� �� ?�����%�
���� ����������

!�� -��
�� �������	��

!���� '�������	� 	
 �	��������	� '���

�
� �� ���
�� ��������� �� �����
����
 ����� � ����� ���
 �
� ��

����
��� ���� ����� ������� � ��� �� ����� �
� ���� �
����� �����
����
 ����F
� ��� ��� ����� ��� �� ��������� ��	��� p �
	 q� ��� ������
� ���� � �� ��	��
p+ q� ��� +���� "�

p+ q ���
��� p �∗

sq ���
���

	
�� �� E		��	
����

!���� �	��	����	� 	
 ,���������	� "���������

4
 ���������� �� ��� ��� ��	����
 �� +���� I$�,�

+,G '$ -!�!
��
�� .$ /
�����

!���� �	�� .	�/����� �� ���

��� t � �
�� �
	 p � � ���� ���� �� t� %� ��� ���� p �� ����	���� �� t � �����
� � ���� ���� q �� t ���� ���� t � �� �
� �� ��� ��� ������
� ������3

?∗

p

q���

· · ·

��� !∗

p

q

· · ·

���
���

!���! .	�/����� 	
 ���������	�� �� �	���������	�� ��

�	��������	� '���

��� ������
� ��	����
 ����� ���� 	�������
� �
	 ��	�������
� ��
 ���� ��/
�������� ���
 ��

����	 �� � �����
 �����
����
 ����� ��� l,m ∈ L� ���

?

!

!

?

?! ! ?ti
r r′

�∗
{l,m}

· · ·

p+ 1 p +
N∑
i=1

· · · · · ·

l l lmm

m

����� N � �
�
/
������
����� $��������� N = (p + 1)2, �
	�
 ���� �����

�� ti� ��� ����� r �
	 r′ ��� ������	�	�

!���# *����� .	�/�����

��� l ∈ L� ��� ������
� ���� ��
���� �� ����
�������� �������� ��� ���� �
���	3 �
� ���

?
��� ui

r ���?∗? �∗
{l}

N∑
i=1

l
���

��� p
l

�����
 ���� �����
�� ui� ��� ���� r � ������	�	 $��� I�0�0,� �� ������ �
�
���� ��� � 	��� ��	����
 $����� ��� 	�������
 � �������	 � � ��	�������
�
�
	 ��� ��
����8�	 ��
������
 � � ��
����8�	 ����
������
,�

!���0 �������	� 	
 �������

��� l,m ∈ L� 4� �� ��

��� �
 n/��� ������ ���<7 �� ���	 � m �� � p/���
���
���<7 �� ���	 � l� �� � ��
 �
�� ���� ��	���� � �c,{l,m} �� �
�� u ����
��	���� � �∗

{∅} �� 0 � n
= p �
	 �� ����� �����
 +����)$�,� � n = p�

!���1 &������	� &���������

& �7�	 	�
��� ��

����	 �� ��� ��
���� ���� �� � �
��� ������ ���� ���	 ��
� B���
�����C ���
� �
�� � ����� ��� ��
 +����)$,�

• •
���!?

���
���

m

l

�c,{l,m} u �∗
∅

4
> ���%)�� �����
�����

I ! ?
•

�∗
∅

4&> '�
������� ���		����	

	
�� �� ���%) ���������

?����������	
 @����
�� ����
������ �� ��#������
� ?����
����� ���� +,+

� � ������
	
�
���� π!	��	���� ��� ��� "�	��
�#

��� ������� �������� �� ��
�	�� � � ������
� �� ��� π/�������� ����� ��
���� ���������	 ��� ������
� ��������3 ����� ��������
� �������� 	�<
��
��
����� �
	 �������� ��� 	���
�� ���
 ���� 	=���
���
�������

��� ��
/

��
������� ����� ���������� ��� N � � ���
�� �� ��� ��
����� ��� ���/
������ ��� 	�<
�	 � ��� ������
� ��
��7� %� ��� ��� ���� ��� �� �� ��� ��
 ������

2 nil � ��� ����� ��������
2 4� P1 �
	 P2 ��� ���������� ���
 P1 | P2 � � ��������
2 4� P � � ������� �
	 a ∈ N � ���
 νa · P � � ������� ����� a � ��
	�
2 4� P � � �������� a, b1, . . . , bn ∈ N � ���
���� bi �
� ������ 	��
�� �
	
� l ∈ L� ���
 Q = [l]a(b1 . . . bn) ·P � � ������� $���<7�	 � �

��� ����
�
����� �� >��� � a �
	 ����� � >���� ��� ��� bi�F ���
��� a � ���� �
	 ����
bi � ��
	
 Q �
	 ��
�� a � 	��
�� ���� ���� bi,�

2 4� P � � �������� a, b1, . . . , bn ∈ N �
	 l ∈ L� ���
 [l]a〈b1 . . . bn〉 · P � �
������� $���<7�	 � �
 ������ ����
� ����� �� >��� � a �
	 ����� � >����
��� ��� bi�,� ��� ��
�������
 	���
��
	 ���
���� bi� �
	 �
� 	���
��
��9��� ��� bi� �� � 	��
��� ���
��� a ��
 � �9��� �� ���� �� ��� bi��

��� ������� �� ��� �� ��
� �� ���<7�� � �� 	��
���� ��� ������ �����/
��
��� ��
���� �� �� >��� �� ���<7��� ��� ��� FV(P) �� ����
���� �� � ���/
���� P �
	 ��� α/�9�����
�� ������
 �
 ��������� ��� 	�<
�	
 ��� �����
����

& �� ���	 ������� � � ������� ����� ��� ���<7�� ��� �� ���	� � ������ 	�/
�
�� �� ���� ��� ����� �� ��� �
� 	=���
� ���� τ � 4� P � � �� ���	 ��������
L(P) 	�
���� ��� ��� �� �� �� ���� &�� ��� ��������� �� ��
�	��
 ��� ����� ���
�� ���	�

#�� '� �������	� �	���

?����� ���
 ��
�	��
� � �����
� ������
 �
 ��������� �� �
� ������� 	����
�� ������ �� 	�<
� �
 B�
���
��
� ����
�C� ����� �� ��� ����
�
���	���	

 �&*!�� *������ 2)�(�

&
 ��!�������� � � ��
���
 e : Dom e → Codom e �����
 <
�� �� ���� ��
N � &
������ � � ��� (P, e) ����� P � � ������� �
	 e � �
 �
���
��
� ����
���� FV(P) ⊆ Dom(e)� & ���� � � ������� S = (P1, e1) · · · (PN , eN) �� ��������
$	�
���	 � ����� >�7�������
,� ��� ��� FV(S) �� ����
���� �� � ���� S �
��� �
�
 �� ��� ��	���
� �� ��� �
���
��
�� �� S� ��� ���� S � �� ���	 �
��� ��� Pi� ��� �� ���	� ��� ������ 	�>�
� ���� �� �� ���� & ��	�� � � ���

� ������
���� �
� &� ����������� ����	 �)�������
� &�)��� ����
�� ���&
&�� ���
���
�� �!� ���F��
������� ���������� �� ��#������
� ����
� ��	��$

� '!� ��
��� ��� �!�� �!���� �� �!
� �!� �� �����	
����
�! ����
� ����
���� !��!
�������� �� ����
���	
 �
�� &�
���!�� �
�� ��
 �������$ '!� ������������	 ���
��
���� �� ���� �� �
�!�� �������
���
�� � ������ ��� �� ��%�� �� !���$

+,, '$ -!�!
��
�� .$ /
�����

(S,L) ����� S � � ���� �
	 L � � ��� ��
���� $���
���� ���� ���� �� �
��
�	���	 �� ����� �� ��� �����, �
	 �� ��� FV(S,L) = FV(S) \ L�

��� ����� (S,L) � �� ���	 � ��� ���� S � �� ���	� &�� ��� ������ �� ��
�	��
��� �� ���	� �
� 	�<
�� ��� ��� L(S,L) �� ��� �� ��� �� ��� ����� (S,L) �� ���
	�>�
� �
�
 �� ��� ���� �� �� ��� ��������	 �� ��� ��������� �� ��� �������� ��
S�

#���� ��	���� .	�� 	
 "���

%� ��� ���� � ������� � ��	���� � � ������ ��� �

��� ���<7 �� �
 ������
���<7� %� ��� ���� � ���� S = (P1, e1) · · · (PN , eN) �
	����
	� � ���� Pi �
����	�	� �
	 ���� � ����� (S,L) � ��
�
��� � ��� ���� S � ��
�
���� �
�
	�<
�� � �����
� ������
 �can ���� ������ �� ���
 � �����
�� � ��
�
���
�
��

((nil, e)S,L) �can (S,L)
((νa · P, e)S,L) �can ((P, e[a �→ a′])S,L ∪ {a′})
((P | Q, e)S,L) �can ((P, e)(Q, e)S,L)

������
 ��� ����
	 ����� a′ ∈ N \ (L ∪ Codom(e) ∪ Codom(S))� �
� �����
����� ����� �� �� α/��
�����
� ��� ��	����
 ������
 � ��
G��
�� �
	 � �
������� ����
���
�����8
�� %� 	�
��� � Can(S,L) ���
����� ���� �� ���
����� (S,L) ��� ��� �����
� ������
� � ����� ���� � (S,L) �can (T,M) ���

FV(T,M) ⊆ FV(S,L)�

#���� &������	��

H�7�� �
� 	�<
�� � �� ���	 ���
���
 ������ SL� ��� � >���� �� ��� ������
��� �� ���	 ��
�
��� ������ �
	 ��� ���
���
�� �� ���	 � ���� �� �� ���� ���
	�<
�	 �� ��������

(([l]a(b1 . . . bn) · P, e)([m]a′〈b′1 . . . b′n〉 · P ′, e′)S,L)
lm−→ Can((P, e[b1 �→ e′(b′1), . . . , bn �→ e′(b′n)])(P ′, e′)S,L)

� e(a) = e′(a′)� � ����� ���� � (S,L) lm−→ (T,M) ���
 FV(T,M) ⊆ FV(S,L)�

#�� &������	� 	
 ��	������

1
�� �� 	�
�� ���- �� �� ���������� �
	 ����������� �� ��
������
 �
	
����
������
� � 	���
�� ��-� ��
�� �� 	�<
� ��� ���
�����
 �� � ��
���
 ����
��������� ��
���� +�� ���� �������
/���� ��� ��
���� a1, . . . , an� �� 	�<
� �
������
 Ia1,...,an ���� ��������� ����� ����
���� ��� ��
��
�	
 {a1, . . . , an}
��
��� t ���� ���� 2n+ 1 ���� ����� aι1, a

o
1, . . . , a

ι
n, a

o
n �
	 c ��
 +���� �$�,�

��� �		��
�� ���� c ��� � ���	 ��� ��
�����
� ��� ��9��
����� �� ��� ��	��/
��
� ���
-� �� ���
������� ?�	��
� ��� ���
�����
 �� � ������� ��� � ���� ��
�
�� ���
 � �7�	 	�
��� ���� ��� � ��

����	 �� �� ��
���� ����� ��� �

?����������	
 @����
�� ����
������ �� ��#������
� ?����
����� ���� +,<

���������� ����� �� ��� �		��
�� ��
���� ����
���
 ��� ���
�����
 �� ���
π/��������
 ������
 ��J(0�)�

*������� � P �
	 P ′ ��� α/�9�����
�� ���
 P Ia1,...,an s = P
′ Ia1,...,an s�

#���� ����(��	����

�
� ��� nil Ib1,...,bn t � t � ��
 +���� �$,�

#���� ��� ���������	�

�
� ��� νa ·P Ib1,...,bn t = t � ��
 +���� �$�,� ��� s ������
� P Ia,b1,...,bn s�

#���� ������ �	��	����	�

�
� ��� P1 | P2 Ib1,...,bn t = ��� �����
�� t � ��
 +���� �$,� �����
P1 Ib1,...,bn t1� P2 Ib1,...,bn t2 �
	 γ1, . . . , γn ��� �����
����
 ����� �� ��	�� 1�

#���! ,���� �����

��� l ∈ L� &����� ���� a, b1, . . . , bn, c1, . . . , cp ��� ������ 	��
��
���� �
	
��� Q = [l]a(b1 . . . bn) · P � �
� ��� Q Ia,c1,...,cp t � ��� ��� ����
���� �� P
��� ��
��
�	
 a, b1, . . . , bn, c1, . . . , cp �
	 � t � ��
 +���� �$�,� ����� γ �
� �����
����
 ���� �� ��	�� 1 �
	 ����� s � � �����
�� ���� ����<��
P Ia,b1,...,bn,c1,...,cp s�

#���# 3����� �����

��� l ∈ L� ��� b1, . . . , bn � � ��� �� ������ 	��
��
���� �
	 ��� Q =
[l]bf(0)〈bf(1) . . . bf(q)〉 · P � ����� f : {0, 1, . . . , q} → {1, . . . , n} � � ��
���
� �
�
��� Q Ib1,...,bn t � ��� ��� ����
���� �� P ��� ��
��
�	
 b1, . . . , bn �
	 � t �
��
 +���� �$�,� ����� γ1, . . . , γn ��� �����
����
 ����� �� ��	�� 1� δ � �

f /	�
�<����
 ��������� �
	 ����� s � � �����
�� ���� ����<�� P Ib1,...,bn s�

#���0 "����

��� S = (P1, e1) . . . (PN , eN) � � ���� �
	 b1, . . . , bn � � �������
/���� ���
��
���� ��
��

� ��� ��� ��	���
� �� ��� �
���
��
�� e1, . . . , eN � �
� ���
S Ib1,...,bn t �� ��� ���� �����
��� si $i = 1, . . . , N, �
� ��� Pi Ibi

1,...,b
i
ni

si

����� bi1, . . . , b
i
ni

� � �������
/���� �
�������
 �� ��� 	���
 �� ei� �
	 t �
� ��
�	 � ��

���
� ��� ��� �� ���� ����� �� si ��������	 �� ���� bik �� ���
��������
	
� ��� �� ���� ���� �� �
 	�
�<����
 ��������� ��������	 �� ���
��
���
 e 	�<
�	 � e(bik) = ei(bik)� ��� +���� �$�,�

� '!��� ��
 ������ ���������
���� �� �� ���� ��
	�
�� ���� ��#������
� �����
����� �����
 !��! ���� ���� ��� ����&�) ��!��� ��������� �� �!
� ���� ��
	�
�� �
� &� ����

�
� ���������
�� 	�
�!��
� �
�	�
	� !��! �
� &� ����������� �� �!� �� �����
��#������
� ����
)$.�� ��
���
���� �� �!� π��
������ ������� ����
�
�
�����
��

������%�
���� �� �!� �������� ��
���
���� Hπ��
������→ ���� ��
	�
��→ ��#������
�
����I$ '!� ������%�
���� ������� ���� ���� �� ����	
�� ���� �!� ��� �� �!� &�)��
�������� ����� !��! �� �
���� ������
&��$ '!� ��
���
���� �� ����� ���� ��#������
� ����
��
�� �� ������ 4 !��!
���
� !��
 �
�� �� ������%�� ��! ������> !��!
��
������
�� �!� ������� ������ ��
���
����$ ���� &�!
��� ���������� �� ����� ���
������	 ���!
������
�� ����������
�� ������� �� 6-/7B9$

+,A '$ -!�!
��
�� .$ /
�����

t
a1 an

. . .

c

4
> ���
����

bn

. . .

b1

?∗
c

4&> -���� �������

s

a b1 bn
. . .

c

4�> �����������

b1 bn
. . .

b1 bn
. . .

. . .

c c c
t1 t2

γ1 γn

?∗

4�> �
�
���� �����������

!
I !

•

?
•

s

. . .

a c1 cp. . .c

c1 cp

b1 . . .

. . .

bn

ac

l

γ
?∗

4�> ?���� ���%)

•

?

?
•

I !

���

bnb1 . . .

. . .
b1 bn

���

1

nq

0
c

f���

c
. . .

s

l

γn

δ

!∗ γ1

4�> .����� ���%)

I !I !

e. . .

.

. . .

. . .

1

1

p

n

c c

. . .

s1 . . .

δ

sN

4	> �
��

	
�� �� �������
�� ��
�� ��
���
����

����� � �� ��� �������� ���
 L ⊆ N �
	 � �������
/���� ��� ��
����
b1, . . . , bn ��
��

� ��� ��� ����
���� �� ��� ����� (S,L)� �
� ��� (S,L) Ib1,...,bn

u � �
� ��� S Ib1,...,bn,c1,...,cp t ��� ���� �������
/���� �
�������
 c1, . . . , cp ��
L $������	 �� ������ �� � 	�>�
� ���� b1, . . . , bn, �
	 u � � ��
�	 � �����
�
�����
����
 ����� �� ��	�� −1 �
 ��� ���� �� ���� ����� �� t ��������
	
�
�� ��� cj��

$ ��%���
�# �&� �����
�
�� '����%�

%� ���
�� ���	� �� ����� � �������
� �������� ���
 � �������
/���� ���
b1, . . . , bn ��
����� �� 	�<
� � ������
 Ĩb1,...,bn �����
 ������ �
	 �����
���

� ��
�� ��� ����	 ��
������� �������
�� &������
���� �� �!� ��
��
�� ������� �!���
�����
�� ���
�
��*��	 �!� �����&�� �����
������ �� ��������� ��! �!��� �����������$
.� �!� �����
��� � ��� �!�� ��� ������&��	
�� ����
���	 �!� ������
� ����������
�� ���������
�� ����� �!
�2� �� �
&���$

?����������	
 @����
�� ����
������ �� ��#������
� ?����
����� ���� +,B

 �3 (S,L) Ĩb1,...,bn s � ����� �7��� � �����
�� s0 ���� ���� (S,L) Ib1,...,bn s0
�
	 s0 ∼d s�

&��	��� �� ��� ���	���� Ĩb1,...,bn �� 	 ������ ������	���� ������ ��� �	����

��	������� ������� SL 	�� DL�

�	������	�� ��� ��
 ���� �� ��� ���- ���
�� �� 	�<
� �
� ���� ���
�/
����
 �� ��� π/��������
�� ��� �
����� �7��� ��������� %� ��
��	 �� �/
�������� � ��� �������
 ������ ���� 	=���
���
�������

��� ��� ��K/
��
��� �7������� ��� ������
� ��
�����
�� �
	 �� ���� �� ������8�	
 ���
π/��������� %� ����� ���� 	=���
���
�������

��� ���� ���� ��

���/
��� �
	 <
	 � ����
� ����������� �
	 ������ >���<����

 ���� ��

��/
��
 ��� �
��� �����
 ��� �7���
�� �� ������ 	�
�����
�� ��	��� �
	

��� �
����� �����
 �� ��� ��
������� �
	 ��
	���
��� ����������� ����/
���
� ���� �� 	=���
����
 �
	 ��
������
 ���	���� ��� ���� ���� 	=���
/
���
�������

��� ������� ��
�����
�� �
	 �� ��� �������� ���� ���� ����
����	� ���� ��
��
�
� ����������� �
	 ������ ���
	���
� �� ��
�����
�
������
��

�������	��

6E�DC9 E�
���� �$� ������� �$�/$1 ���
���
�� �
�&�
��
�����$ �
�&���	� '�
���
�� '!�������
� �������� ������� ���$,A$ �
�&���	� ���������� ������ �
��
&���	� 48DDC>

6E;DD9 E&�
��2�� $� ;������� �$�E$1 ���������� 	
���
�� ���� ������������$?�1
���������	� �� �!� 8,�! E���
� ?--- �������� �� /�	�� �� ��������
������� ?--- �������� ������ ������ /�� E�
����� 48DDD>

6:��7<9 :�#
�
� -$1 /�	�F��� ��
���
&����� �� �����������$ �!� �!����� ����������
����� ������� 4G77<>

6:JK7+9 :��	��� ;$� J���
� L$� K��!��
� �$1 ����	 ����
���
&����� �� �!� ����
������$
?�����
����
�� ������
���� 4G77+> 4��
���
�>

6:;7<9 :�#
�
� -$� ;
����� @$1 ���������� ����1
 ����� �� ���%)��	 �� �������
�
������ ���$ +<A$ '!�������
� �������� ������ 4G77<>

6�@7A9 ������� �$�/$� @
		�
�� �$1 E�
����
�! �� �������� ���
��	���
� 	�
�!�$
'��!���
� ������� �������� ���	�
���� �� �������� �&������ ��� ��&���
�
���� 4G77A>

6-!�7<9 -!�!
��� '$1 @��������� ��
���$;
�!��
���
� ��������� �� �������� ���
���� 8<4,>� A8<0A,A 4G77<>

6-/7B9 -!�!
��� '$� /
������ .$1 E������ ����� 4��&������ G77B>
6-�7A9 -!�!
��� '$� ��	����� /$1 ��#������
� �����
����� ����$ '!�������
� ��������

������ 4G77A> 4��
���
�>
6-�DB9 -�	&��	� �$� ����2��� M$1 ������������ ������� ��� ����
� ��	�� �� ����� ����$

E��
�� �� ����
�� E������ /�	�� CA4G>� 87808+< 48DDB>
6@;7<9 @
		�
�� �$� ;
����� @$1 /����� �����
 	
�� ����� �� ���������� �����
�����$

?�1 ���������	� �� �!� G7�! E���
� ?--- �������� �� /�	�� �� ��������
������� ��$ +BA0+C<$?--- �������� ������� /�� E�
����� 4G77<>

6M��CB9 M��
��� =$�K$1 /���
� ��	��$ '!�������
� �������� ������ <7� 8087G 48DCB>
6M��CC9 M��
��� =$�K$1 ����
� ��������� �� �� ������
�� �!� λ��
������$ E��
�� ��

����
�� E������ /�	�� +B� 8GD08BB 48DCC>

+,C '$ -!�!
��
�� .$ /
�����

6J/7B9 J���
� L$� /
������ .$1 E� �)
�� �������������� &�� ���
 ����� π��
������

�� ���
��*�� ���������� 4G77B> 4�� ����
�
����>

6=;7,9 =������ .$� ;������ �$1 :�	�
�!�
�� ��&��� ��������� 4�������>$ '��!���
�
������� �
�&���	� ���������� �������� /
&��
���� 4G77,>

6/
�D<9 /
����� K$1 @��� ����� ���� �� �����
����� ����$?�1 M��
��� =$�K$� /
�����
K$� ��	����� /$ 4���$> E��
���� �� /���
� /�	��� ��$ GG<0G,B$ �
�&���	�
���������� ������ �
�&���	� 48DD<> ���������	� �� �!� ���2�!�� �� /���
�
/�	��� ?�!
�
� �� K��2 =��� 8DD+

6/�5789 /
����� �$� �
��� � =$� 5������ :$1 ��� ��
	�
��$?�1 L�&
�
�!�� �$� �������
:$�$ 4���$> 'E� G778$ /��� ���$ GG8<� ����	��� J�����&��	 4G778>

6/57+9 /
����� �$� 5������ :$1 ���� �� �������$;
�!��
���
� ��������� �� ����
����� ������ 8+4<>� A<B0AC+ 4G77+>

6;
*7<9 ;
**
� �$1 ;�������� �����
����� ����
�� �����������$?�1 E&
��� ;$� ��
E��
��� /$ 4���$> �.���� G77<$ /��� ���$ +A<+� ��$ G80+<$ ����	���
J�����&��	 4G77<>

6;��7A9 ;������� �$�E$1 E����!������ 	
��� G1 �!� ���� ����������� �� ���������$
'!�������
� �������� ������ +<C4G>� G770GGC 4G77A>

6;��D+9 ;������ �$1 '!� ����
��� ����
������1
 ������
�$?�1 /�	��
�� E�	�&�
 ��
����%�
����� ��$ G7+0G,A$ ����	��� J�����&��	 48DD+>

6���BA9 ����2��� M$1 E �� �����
�� ������������$?E; =����
� �� ��������	 <4+>�
,<G0,CB 48DBA>

6��	DG9 ��	����� /$1 /
�&�
��
���� �� ����
�)$ '!��� �� ������
�� ���������� �
���
B 4=
��
�� 8DDG>

6�789
�	���	�� �$� �
�2��� �$1 '!� ����
������1
 '!���� �� ;�&��� ���������$
�
�&���	� ���������� ������ �
�&���	� 4G778>

Mobility Control Via Passports
(Extended Abstract)

Samuel Hym

PPS, Université Paris Diderot (Paris 7) & CNRS

Abstract. Dπ is a simple distributed extension of the π-calculus in
which agents are explicitly located, and may use an explicit migration
construct to move between locations.

We introduce passports to control those migrations; in order to gain
access to a location agents are now expected to show some credentials,
granted by the destination location. Passports are tied to specific loca-
tions, from which migration is permitted. We describe a type system for
these passports, which includes a novel use of dependent types, and prove
that well-typing enforces the desired behaviour in migrating processes.

Passports allow locations to control incoming processes. This induces
major modifications to the observations which can be made of agent-
based systems. Using the type system we describe these observations,
and use them to build a loyal notion of observational equivalence. Finally
we provide a complete proof technique in the form of a bisimilarity for
establishing equivalences between systems.

Keyword: process calculus; control of agent migrations; distributed
computation; observational equivalence.

1 Introduction

Dπ [1] is a process calculus designed to reason about distribution of computation.
It is built as a simple extension of the π-calculus in which agents are explicitly
located without nesting so that a system might look like:

l1�c ! 〈b〉P1� | l2�P2� | (new a : E)(l3�P3� | l1�c ? (x : T)P4�)

where the li are location names and the Pi are processes located in one of those
locations. Here, P1 and P4 are placed in the same location l1, even if they are
scattered in the term. Channels also are distributed: one channel is anchored in
exactly one location: two processes must be in the same location to communicate.
In our example, the system can evolve into

l1�P1� | l2�P2� | (new a : E)(l3�P3� | l1�P4{b/x}�)

when P1 and P4 communicate. This makes Dπ a streamlined distributed version
of the π-calculus, which allows to concentrate our attention on agent migrations.

Dπ agents can trigger their migration from their current location, say k, to
the location l via the primitive

gotop l

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 349–363, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

350 S. Hym

The p, added by the present work, is a passport which must match the actual
migration attempted, from k to l. Those passports are permits, requested when-
ever trying to enter a location and therefore allowing that location to control
which processes should be granted access.

Some other approaches to control migrations have been investigated in process
calculi. In Ambients-related calculi, the migrations are particularly hard to con-
trol so many works tried to address this problem: in Safe Ambients [2], the desti-
nation location must grant access to incoming ambients by using a co-capability.
These co-capabilities have been enriched in [3] with passwords : the password
used to migrate is syntactically checked at runtime when the migration is to be
granted. This idea of passwords was pursued in the NBA calculus [4] which com-
bines it with another choice to control behaviours of ambients: communications
across boundaries are allowed so that the troublesome open primitive from the
original Mobile Ambients can be removed without impeding the expressivity of
the calculus. This second approach was also used in different hierarchical calculi
like Seal [5] or Kell [6].

In non-hierarchical calculi, we have a better handle over migrating behaviours
so that more powerful techniques can be employed, for instance leveraging type
systems. The present work is inspired in that direction by [7]. In that work,
access to a location is a capability tied to that location via its type: access is
either always granted or always denied depending on the type used when the
location is generated. Of course, even when access is granted, the location name
can then be transmitted without giving access; nevertheless, this setting lacks
flexibility. In the present work, we refine that approach to be able to grant
access selectively, depending on the origin location and to authorise such access
migrations dynamically, namely after the generation of the location itself. That
is why passport names are added to the calculus to bear those authorisations.
We chose to use regular names to preserve the homogeneity of the calculus: in
particular, they can be exchanged over channels and their scopes are dealt with
in precisely the same way as any other name, including for their extrusions.
Types are then used to tie rights to the names of the passports: for instance,
the type l �→ k is attached to some passport granting access to k from l. The
typing system will therefore have to include dependent types to describe the link
between passports and the locations they are attached to1. Fortunately, those
dependent types bring little extra complexity to the type system itself and to the
proofs of its properties, including subject reduction. What is more, this approach
to tie rights to types provides type-based tools and techniques to reason about
security properties. We also argue that relying on names to bear access rights
gives a good handle to control those rights.

Other type systems have been used to control mobility in Dπ-based calculi.
In [9], access requires the knowledge of a port which also governs subsequent

1 Since a passport must grant access to only one location, the one which delivered
that passport, using “groups” ([8]) to try and avoid dependent types would fall back
on defining one group per location. So it would only reduce the expressivity of the
language.

Mobility Control Via Passports 351

resource accesses by typing the migrating processes, using for this complex pro-
cess types developed in particular in [10]. This approach is strongly constraining
processes and requires higher order actions. The present work provides a first-
order theory that aims at becoming a foundation for a fine-grained control of
comparable power to [9]: while the passport types developed hereafter corre-
spond to a simple mobility control, they should leave room to extensions to
control resource accesses.

In [11], access to locations and resources is conditioned by policies based on
the history of migrations of the agent. In the present work, the only location
of the history taken into account to grant access is the origin of the migrating
process: we will define a simple setting in which it is possible to describe “trust
sub-networks” such as an intranet. Furthermore, the origin of a process seems
easier to assert realistically than its full history. The setting we propose here
relies on a simple view of trust: when a location l expresses its trust into another
one k (through a passport valid from k), it also decides to trust k not to relay
any dangerous process from another location.

In the following, we will investigate the notion of typed observational equiv-
alence inherited from [12]. The founding intuition of observational equivalences
is to distinguish two systems only when it is possible to observe a difference be-
tween them through a series of interactions. In a typed observational equivalence
where types represents permissions, the barbs the observer is allowed to see are
conditioned by the permissions he managed to get access to. Since permissions
are represented by types, a normal type environment is used to describe the
observer’s rights.

Control of migrations has a great impact on the set of possible observations:
since all interactions are performed over located channels, permissions to access
these locations, i.e. passports, are mandatory to observe anything if the observer
abides by the rules. We will therefore introduce an intuitive typed congruence
that takes into account the migration rights of such a loyal observer. We argue
that relying on names to bear access rights also gives a clean equivalence the-
ory, in which the rights granted to the observer are easily expressed. As usual,
the closure of the equivalence over all admissible contexts makes this equiva-
lence intractable. So we will provide an alternative coinductive definition for
this equivalence as a bisimilarity based on actions which identify the possible
interactions between the system and its observer. This alternative definition re-
veals a difficulty arising from dependent types: as an artefact of dependencies,
some name scopes must be opened even when the name itself is not revealed to
the observer.

2 Typed Dπ with Passports

We present here a stripped-down version of the Dπ-calculus to focus on migration
control. A more complete description of the specificities of the calculus we use
here can be found in the long version of this work [13] or in [14]. Most of it is
inherited from previous works, like [15], so we will insist mostly on the differences.

352 S. Hym

Fig. 1. Syntax for the Dπ-calculus
M ::= Systems

l�P � Located process
M1 |M2 Parallel composition
(new a : E) M Name scope
0 Inactive system

P ::= Processes
u ! 〈V 〉P Writing on channel
u ? (X : T) P Reading on channel
if u1 = u2 then P1 else P2 Condition
gotov u. P Migration
newchan c : C inP Channel generation
newloc l, (�c), (�p), (�q) : L with Pl in P Location generation
newpass p from ũ� in P Passport generation
P1 |P2 Parallel composition
∗P Replication
stop Termination

Processes are described using names (usually written a, b, . . ., reserving c, d
for channel names, k, l for locations and p, q for passports) and variables (usually
written x, y, . . .). When both names and variables can be used, we will talk of
identifiers and write them u, v, We will write ũ for a set of identifiers and)u
for a tuple. We will also write ũ� when either ũ or * is expected (the meaning
of * will be explained shortly). Finally, we will use capital letters when tuples
are allowed so V can represent (v1, (v2, v3), v4) or any other value, composed of
identifiers and X any pattern, composed of variables.

The syntax of Dπ is given in Figure 1. Our contributions are:

– The migration construct gotov u now mentions the passport v to get access
to the location u.

– The new construct to generate passports, newpass, provides two kinds of
origin control:
• passports that allow migration from a given set of originating locations ũ

are created by newpass p from ũ; thus a location can express its trust in
the sub-network ũ: every process using p will be granted access from any
location in ũ;

• universal passports, that allow migration from any location (for instance
when describing the behaviour of a public server accepting requests from
anywhere) are created by newpass p from *.

Of course, the location a passport grants access to is the location where
the passport is generated: that is the only way to allow locations to control
incoming processes.

– The construct to generate new locations, newloc, is enriched: passports to
access the new location (child) or the location where the construct is called
(mother) can be generated on the fly. This is the only way to model all the

Mobility Control Via Passports 353

Fig. 2. Reduction semantics, extracts

(r-goto) l�gotop k. P � −→ k�P �

(r-newloc) l�newloc k, (�c), (�p), (�q) :
�

x : loc. T with Pk inP �

−→ (new
�
k, ((�c), (�p), (�q)) : T{l/x}

�
)(k�Pk� | l�P �)

(r-newpass) l�newpass p from k̃� in P � −→ (new p : k̃� �→ l) l�P �

(r-comm) l�a ! 〈V 〉P1� | l�a ? (X : T) P2� −→ l�P1� | l�P2{V/X}�

possible situations (the child location granting access to processes from the
mother location; or vice versa; and any other variation). Indeed, if passports
to access the child were always created from inside the child itself, some
passports granting access from the child would be needed to export them. . .

Since passports allow a location to accept processes depending on their origin,
they can be delivered for specific communications, for instance the response
awaited from a server: in

cl�newpasspass from sv in
gotopsv

sv. req ! 〈(sv, cl), (quest, res, pass)〉 | . . . res ? (x)P �

the client cl generates a passport specific to the server sv before going there and
requesting some computation while waiting for the result in cl. The correspond-
ing server might look like:

sv�∗req ? ((xsv, xcl), (xquest, xres, xpass) : T) · · · gotoxpass
xcl. xres ! 〈r〉�

Let us consider now the semantics associated with the calculus: the most inter-
esting rules concerning this work are given in Figure 2 (the full set is provided
in appendix). Those rules are fairly unsurprising since passports are homoge-
neously added to the calculus. In the reduction rule for the migration (r-goto),
the passport involved is simply ignored: the verification of the passport will be
performed using types. In the two rules for generation, types are instantiated in
a similar way to what is usually done for channels: when passports are actually
generated in (r-newpass), they are tied to the location to which they will grant
access, by getting the type k̃ �→ l (from k̃ to l).

The types we can associate with identifiers or values are summed up in Fig-
ure 3. Two major modifications are made here. Firstly, we introduce a new type
for passport: ũ �→ v will be the type of a passport to access v from one of the
locations in ũ and * �→ v of a universal passport to v. Secondly, we add a depen-
dent sum type for values that are transmitted over channels: since the type for
a passport mentions the names of the source and target locations, the depen-
dent sum provides a way to send those names (locations and passport), packed
together. They are also used to describe the tie between the locations and the
passports in the newloc construct. So that the system

l�newloc k, p, q :
∑

x : loc.
∑

y : loc. x �→ y, y �→ xwithPk inP �

354 S. Hym

Fig. 3. Syntax of types

E ::= Identifiers types
loc Location
r〈T1〉@u Channel in location u: right to read values of type T1

w〈T2〉@u Channel in location u: right to write values of type T2

rw〈T1, T2〉@u Intersection of the two previous types
ũ� �→ v Passport

T ::= Transmissible values types
E Identifier
(T1, . . . , Tn) Tuple�

�x : �loc. T Dependent sum

L ::= Types to declare locations�
x : loc.

�
y : loc. (C1@y, . . .), (ũ�

1 �→ y, . . .), (ṽ�
1 �→ x, . . .)

reduces into

(new k : loc) (new p : l �→ k) (new q : k �→ l) k�Pk� | l�P �

For space reasons we refer the reader to the long version [13] for the full expla-
nations of the L types, in particular their unwinding into simple types for every
identifiers, as they bring little insight on the actual passports.

Again, we provide here only a simple presentation of the set of types to focus
on passports (in particular, we got rid of the recursive types which are completely
orthogonal to passports types; see [16] for a detailed account of recursive types).
The main property of interest about passport types is subtyping: for instance,
a universal passport to access l allows to come from anywhere so should be a
subtype of any passport to l. The following inference rules sum up subtyping for
passports:

ũ′ ⊆ ũ
(sr-pass)

ũ �→ v <: ũ′ �→ v
(sr-pass-*) * �→ v <: ũ� �→ v

We refer the reader to previous works (in particular [16]) for a complete presen-
tation of subtyping in Dπ. Let us simply state here that the property of partial
meets is preserved in this setting:

Theorem 1 (Partial meets). Any two types sharing a subtype have a meet.

As usual, the type system relies on type environments, written Γ, Φ,Ω, which
are lists of hypotheses, i.e. associations of types to identifiers, for instance l :
loc, k : loc, p : * �→ k, . . . Those environments are used to prove typing judge-
ments like Γ 3 p : l �→ k, which states that p can be used to migrate from l to k
according to Γ , or Γ 3l P , which states that running the process P in location l

Mobility Control Via Passports 355

will require at most the permissions contained in Γ . These judgments are derived
using inference rules: we give here only some rules relevant to passports.

Γ 3 u : w �→ v
Γ 3v P

(t-goto)

Γ 3w gotou v. P

Γ 3 ũ : ˜loc

Γ ; p : ũ� �→ w 3w P
(t-newpass)

Γ 3w newpass p from ũ� inP

Those rules are fairly straightforward and provide the two expected theorems
about the type system: subject reduction and type safety. Let us state here only
the important part for passports using an erroneous reduction of a system M ,
written M err−→Γ , defined by the reduction l�gotop k. P � err−→Γ in any context
whenever Γ
3 p : l �→ k. A really simple case of erroneous reduction might
look like this (this reduction is erroneous in any well-formed environment, in
particular the empty one):

(new l1, l2, l3 : loc) (new p : l1 �→ l2) l1�gotop l3. 0� err−→∅

Theorem 2. Γ 3 M and M −→∗ N imply N
err−−→Γ .

3 Loyal Observational Equivalence

The main goal of passports is to allow a location to control the processes it
accepts. Naturally, this implies that the observable behaviour of a system de-
pends on the actual authorisations the observer is granted. Let us then define
an equivalence that takes passports into account drawing inspiration from [17].

For this, we will describe explicitly the knowledge of the observer, includ-
ing his passports, using a type environment written Ω. This type environment
thus describes the observations that can be performed, in a similar way to the
knowledge-indexed relations defined in [7]. The basic observations must be inter-
actions with the studied system, i.e. communications over some channels. Since
channels are located, this will be possible only when the observer is granted
access to their location. To actually allow the system to “choose” which loca-
tions should be reachable, we decided to place the observer into a fresh location.
This implies that the only directly reachable locations are the destinations of the
universal passports in Ω. So we define barbs thus:

Definition 1 (Barbs). M shows a barb on c to Ω, written Ω�M ⇓ c, whenever
there exist a location l and a passport p such that: Ω 3 p : * �→ l; Ω 3 c : r〈T〉@l,
for some type T; and there exist some P , M ′ and ()a :)E) with c, l
∈)a and such
that M −→∗≡ (new)a :)E)(M ′ | l�c ! 〈V 〉P �).

Note that the only control performed in this definition is whether the observer
is able to reach the location where the interaction takes place: since our mobility
control happens only when entering a location, it will always be possible to
report the observation in the observer’s home location.

356 S. Hym

Some observer knowing Ω will be able to distinguish two systems as soon
as they show different sets of barbs. To get an equivalence out of this simple
property, the observer is usually allowed to test the system by putting it in any
context in order to eventually obtain a distinguishing barb. In our setting, we
should consider only loyal contexts, i.e. contexts which use only rights available
to the observer: they should not try to launch code in unreachable locations
and access channels without the corresponding permissions. We formally define
a location l as reachable knowing Ω when there exist p : * �→ l1, p1 : l1 �→ l2,
. . . , pn : ln �→ l in Ω. We will write RΩ for the set of such reachable locations.
Then a context of the form [·] | l�P � is loyal only when l is reachable and P is
well-typed in Ω. The observer must also be loyal when introducing new names
(for instance to be used in P):

Definition 2 (Loyal extension). Γ ′ is a loyal extension of Γ when:

– Γ ;Γ ′ is a well-formed environment;
– for every u : C@w when w : loc ∈ Γ , we must have w ∈ RΓ ;
– for every u : ṽ� �→ w ∈ Γ ′ when w : loc ∈ Γ , we must have w ∈ RΓ .

Finally, we define the loyal contextuality of a relation S. writing Ω M S N
when M and N are in S for an observer knowing Ω. For this we need to extend
subtyping to environments: we will say that Γ is a subtype of Γ ′ as soon as every
typing judgment that can be inferred in Γ ′ can also be inferred in Γ .

Definition 3 (Loyally contextual relation). A relation S is said loyally
contextual only when:

– If Ω M S N and Ω′ is a loyal extension of Ω such that for every a : E
in Ω′, a is fresh, then Ω;Ω′ M S N .

– If Ω M S N , k ∈ RΩ and Ω 3 k�P � then Ω M | k�P � S N |k�P �.
– If Ω; a : E M S N and both (new a : E)M and (new a : E)N are well-typed

in some subtype environment of Ω, then Ω (new a : E)M S (new a : E)N .

The loyal barbed congruence follows from the notion of contextuality.

Definition 4 (Loyal barbed congruence). We call loyal barbed congruence,
written ∼=l, the biggest symmetric loyally contextual relation that preserves barbs
and is closed over reductions.

The contexts considered in this congruence can launch processes in every reach-
able location (to allow more contexts to be used) while barbs can only be ob-
served in directly reachable (to get the simplest notion of observations). Note
though that the congruence obtained does not depend on this choice because it
is closed: it is simple to see that reachable barbs or directly reachable contexts
would end up defining the same equivalence.

4 Loyal Bisimilarity

The definition given for the loyal barbed congruence is justified by intuitions
but it is highly intractable: every proof of equivalence indeed requires a quan-
tification over all contexts. So we also propose a complete proof technique for

Mobility Control Via Passports 357

Fig. 4. Labelled transition system, most significant rules

(lts-goto) Ω � l�gotop k. P � τ−→Ω � k�P �

l ∈ RΩ Ω �l a : r〈T〉 where T = Ωr(a)
(lts-w)

Ω � l�a ! 〈V 〉P � a!V−−→Ω,〈V : T〉 � l�P �

l ∈ RΩ Ω �l a : w〈T′〉 Ω �l V : T′

(lts-r)

Ω � l�a ? (X : T) P � a?V−−→Ω � l�P{V/X}�

ΩM � M (Φ)a!V−−−−→Ω′
M � M ′

ΩN � N (Φ)a?V−−−−→Ω′
N � N ′

(lts-comm)

Ω � M |N τ−→Ω � (newΦ) M ′ |N ′

Ω � N |M τ−→Ω � (newΦ) N ′ |M ′

Ω � M (Φ)a!V−−−−→Ω′ � M ′

(lts-open)

b �= a
b ∈ fn(V) ∪ fn(Φ)Ω � (new b : E)M (b:E;Φ)a!V−−−−−−→Ω′ � M ′

Ω; Ωe � M (Φ)a?V−−−−→Ω′ � M ′

(lts-weak)

dom(Ωe) ∩ ({a} ∪ fn(M)) = ∅
Ωe is a loyal extension of ΩΩ � M (Ωe;Φ)a?V−−−−−−−→Ω′ � M ′

this equivalence: a bisimilarity. The idea of the bisimilarity is to provide an al-
ternative but equivalent definition of the semantics using a Labelled Transition
System (LTS) where the labels represent the possible interactions between the
system and its environment. Then two systems can be distinguished if, after
some preliminary interactions, one can perform a transition the other cannot.

The way the LTS is built is completely standard (see [1]): we associate the
label τ to every internal reduction a system can perform, to indicate that the
environment is not involved. The rule for migration (lts-goto) is an exam-
ple of this. Note that, since the interactions we are characterising are between
some system M and an observer knowing Ω, we define transitions of configura-
tions of the form Ω � M . Also note that the knowledge of the observer is left
untouched in a τ transition since it is not interacting with the system. In this
extended abstract, we present in Figure 4 only the most significant rules, namely
the rules where a message is exchanged with the environment and the rule for
communication. The omitted rules are:

– the two natural contextual rules (for contexts of the forms (new a : E)[·]
and [·] |M);

– and some τ transitions that can be directly derived from the reduction se-
mantics, the way (lts-goto) is obtained from (r-goto).

Let us explain (lts-w). The conditions of this rule are similar to the ones
for barbs. Indeed an observer knowing Ω will be able to interact with a system
outputting a message V on a channel a in a location l only when l is reachable
(l ∈ RΩ) and when the observer can input on that channel (Ω 3l a : r〈T〉).

358 S. Hym

The knowledge of the observer will consequently be enriched by the message:
Ω becomes Ω,〈V : T〉 along that transition. In this expression, the type T indi-
cates all the rights the observer learns, calculated using the meet of the types
associated with the channel. Suppose for instance that the meet of all the types
associated with a in Ω is rw〈T1,T2〉@l; then T1 sums up all the rights that can
be obtained by inputting on a. We denote that type T1 as Ωr(a) in (lts-w).

With those transitions, we would like to define an equivalenceR as a standard
bisimulation: when Ω M R N and Ω � M μ−→Ω′ � M ′ then there must exist
some N ′ such that Ω � N τ−→∗ μ̂−→ τ−→∗ Ω′ � N ′ and Ω′ M ′ R N ′. But this
definition cannot be used right away in our case, because of dependent types. Let
us consider a case where the discrepancy appears. Suppose some channel c in l on
which a passport can be transmitted (so c is of type rw〈

∑
x, y :)loc. x �→ y〉@l)

and consider the following two systems:

(new k′ : loc) (new p : k, k′ �→ l) l�c ! 〈(k, l), (p)〉 d ! 〈k′〉� (1)

(new k′ : loc) (new p : k �→ l) l�c ! 〈(k, l), (p)〉 d ! 〈k′〉� (2)

The only difference is the fact that the passport p can be used also from the new
location k′ in the first system. Since the observer receives p at the type k �→ l in
both cases, it should not be able to make the difference. But they can perform
the following transitions with distinct labels (for simplicity, we ignore the type
annotations in the labels):

Ω � (1) (k′,p)c!((k,l),(p))−−−−−−−−−−→ Ω, p : k �→ l � l�d ! 〈k′〉�
d!k′
−−→ Ω, p : k �→ l, k′ : loc � l�stop�

Ω � (2) (p)c!((k,l),(p))−−−−−−−−−→ Ω, p : k �→ l � (new k′ : loc) l�d ! 〈k′〉�
(k′)d!k′−−−−→ Ω, p : k �→ l, k′ : loc � l�stop�

namely not opening the scope of k′ in the same transition. To avoid this problem,
we annotate configurations with a set of names whose scopes have been opened
because of type dependencies, not because they were revealed. The labels are
modified accordingly to mention only the names that are actually revealed.

Definition 5 (Actions). The annotated configuration Ω �ã M can perform
the action μ and become Ω′ �ã′ M ′ when:

– if μ is τ or (Φ)a?V : the transition Ω � M μ−→ Ω′ � M ′ is provable in the
LTS and ã = ã′;

– if μ is (b̃)a!V : the transition Ω � M (Φ)a!V−−−−→Ω′ �M ′ is provable in the LTS,
b̃ = fn(V) ∩ (dom(Φ) ∪ ã) and ã′ = (dom(Φ) ∪ ã) \ fn(V).

So, using an empty set as annotation, the first transition of the first system
becomes:

Ω �∅ (new k′ : loc) (new p : k, k′ �→ l) l�c ! 〈(k, l), (p)〉 d ! 〈k′〉�
(p)c!((k,l),(p))−−−−−−−−−→ Ω, p : k �→ l �k′ l�d ! 〈k′〉�

Definition 6 (Loyal bisimilarity). The loyal bisimilarity, written ≈al, is the
largest bisimulation defined in the standard way over actions of annotated con-
figurations.

Mobility Control Via Passports 359

The rest of this section is devoted to the proof that the two equivalences coincide
under some conditions to justify that the bisimilarity has been introduced as a
proof technique. The proof of that property is significantly more complex than
its equivalent in the literature: the control of migrations hinders tracking the
knowledge of the observer (apart from the passports, note that we must keep
track of annotations because they hide some names from the observer). We will
describe here only the most interesting aspects of the proof; more details are
provided in [13], the proof is fully developed in [14].

The first step to bridge the gap between the loyal barbed congruence and the
loyal bisimilarity is to account for annotations in configurations. This can be
done by simply defining annotated typed relations, written

Ω M ãMS ãN N

and adapting the notion of contextuality to those relations. It is quite easy to
see that the annotated loyal barbed congruence which ensues coincides with ∼=l

when its annotations are the empty sets of names.
The expected result then amounts to proving that the loyal bisimilarity and

the annotated loyal barbed congruence coincide. The proof that the bisimilarity
is included in the barbed congruence is mainly the proof of the fact that the
bisimilarity is contextual. This is naturally done by checking all three items
defining contextuality, the major property to check being:

Theorem 3 (Bisimilarity is closed on parallel contexts). Ω M ãM≈al
ãN

N , l ∈ RΩ , Ω 3 l�O� and fn(O) ∩ (ãM ∪ ãN) = ∅ imply Ω M | l�O� ãM≈al
ãN

N | l�O�.

Idea of proof. To get this result we simply build a relation and prove that it is
a bisimulation which induces the fact that it is included in the biggest bisimula-
tion, ≈al. Because that relation must be closed on reductions, we will consider
a relation S in which systems have a very general form:

Ω (newΦM)(M |
∏
i

li�Oi�) ãMS ãN (newΦN)(N |
∏
i

li�Oi�)

The main difficulty to tackle is the fact that, along reductions, the knowledge of
the observer, initially completely located in Ω (because l�O� is well-typed in Ω),
is split between Ω and

∏
i li�Oi�. In particular, a part of the environments Φ and

annotations ã should be included in the general knowledge of the observer since
they might have been communicated to the processes Oi. A precise account of
this knowledge must be kept to preserve the full-strength of the initial hypothesis
of bisimilarity between M and N . In particular, M and N must be bisimilar for
an observer having access to all the locations li since it has some processes Oi

running there. ()

Let us now consider the converse, namely the fact that the congruence is included
in the bisimilarity. The guiding idea of the definition of the actions was to identify
all the possible interactions between a system and its observer. So the proof of

360 S. Hym

that inclusion can be based on the definition of contexts that characterise a
given action of the system. Those contexts use the fact that we can put any
environment Γ in a normal form looking like:

w1 : loc, . . . , wm : loc,
u1 : w̃i1 �→ wi1 , . . . , un : w̃in �→ win ,

v1 : C1@wj1 , . . . , vo : Co@wjo

where

– the wk are all distinct;
– uk = uk′ only if k = k′ or if wik
= wik′ ;
– vk = vk′ only if k = k′ or if wjk

= wjk′ .

So this normal form has the following structure: all the locations are defined first
because types can depend only on location identifiers so that all the locations
can be listed first; and every identifier is attributed exactly one type per location
identifier to which it is attached2. The existence of such a normal form follows
from the property of partial meets (Theorem 1) which ensures that all the types
associated with a given identifier sum up to their meet.

This normal form of environments is relevant for the contexts that characterise
the actions of a system because they provide a way to encode every environment
into a value of the calculus.

Definition 7 (Reification of environments). To an environment Γ of the
following (normal) form

w1 : loc, . . . , wm : loc,
u1 : w̃i1 �→ wi1 , . . . , un : w̃in �→ win ,

v1 : C1@wj1 , . . . , vo : Co@wjo

we associate the value VΓ and the type TΓ such that:

VΓ = ((w1, . . . , wm), (u1, . . . , un, v1, . . . , vo))
TΓ =

∑
x1, . . . , xm : ˜loc. x̃�

i1
�→ xi1 , . . . , x̃

�
in
�→ xin ,C1@xj1 , . . . ,Co@xjo

Proposition 1 (Soundness of the reification). For any well-formed envi-
ronment Γ and any location w defined in Γ , Γ 3w VΓ : TΓ .

Thanks to this reification of environments, we can proceed as usual, namely we
can define some system CΩ

N ((b̃)c!U) so that M |CΩ
N ((b̃)c!U) will be sending the

value VΩ,〈U :Ωr(c)〉 on some specific channel ω if and only if the system M has
actually sent the message U over the channel c to CΩ

N ((b̃)c!U). So such a context
would be of the form l�O� where l is the location of the channel c in which the
action takes place. Note that the observer can launch some process in l since the
action (b̃)c!U is visible to the observer Ω: by rule (lts-w) this implies that l is
in RΩ. Then O performs the following steps.
2 When typechecking processes, a given channel or passport can be attached to more

than one location variable.

Mobility Control Via Passports 361

1. It waits for a message on the channel c and, in parallel, exhibit a barb on
some special channel δ.

2. It checks that the received value matches the expected U : this relies on the
possibility to test the equality and inequality of names; in particular, to
check that the names in b̃ are indeed fresh, the context is parameterised
with a finite set of existing names N which contains all the names that are
known to the observer. This test matches exactly the definition of the set b̃
in output actions: this set contains only the names which were hidden within
the system or the annotation and which are revealed to the observer.

3. It finally cancels the barb on δ and outputs the value VΩ,〈U :Ωr(c)〉 on the
channel ω.

The channel δ used in the context serves only one purpose: to check that the
step 2 has actually been performed: since the detected barbs always allow some
preliminary τ transitions, the barb on ω is visible since the very beginning as
soon as the system can perform the action.

By a very similar technique, it is possible to form contexts that characterise
an input action, so that the following theorem can be proved:

Theorem 4. The loyal annotated barbed congruence is included in the loyal
bisimilarity.

Idea of proof. We simply prove that ∼=p, the biggest annotated relation verify-
ing the conditions of the loyal annotated barbed congruence apart from closure
over (new a : E)[·] contexts, is a bisimulation. For this considerΩ M ãM

∼=p
ãN N .

When the configuration Ω �ãM M performs a τ action to Ω �ãM M ′, the
closure of ∼=p on reductions gives a N ′ such that Ω M ′

ãM
∼=p

ãN N ′.
For the action Ω�ãM M α−→Ω′ �ã′

M
M ′, we know that M |CΩ

N (α) can reduce
into some system (newΦM)M ′ |λ�ω ! 〈VΩ′〉�. By contextuality and closure on
reductions, N |CΩ

N (α) should reach an equivalent state, with a barb on ω and
no barb on δ. By definition of the context CΩ

N (α), that equivalent state must be
of the form (newΦN)N ′ |λ�ω ! 〈VΩ′〉� with Ω �ãN N α=⇒Ω′ �ã′

N
N ′.

A fairly standard scope extrusion lemma (see for instance [1]) bridges the last
gap by concluding Ω′ M ′

ã′
M

∼=p
ã′

N
N ′ from

λ, ω, π (newΦM)M ′ |λ�ω ! 〈VΩ′〉� ã′
M

∼=p
ã′

N
(newΦN)N ′ |λ�ω ! 〈VΩ′〉�

where: π is a universal passport to λ, ã′M is (ãM ∪ dom(ΦM)) \ dom(Ω) and a
similar formula for ã′N . ()

The results stated above directly entails the expected result:

Theorem 5 (Full abstraction of ≈al for ∼=l). Ω M ∼=l N if and only if
Ω M ∅≈al

∅ N

5 Conclusion and Perspectives

This work presents a new approach to control the migrations of agents in the con-
text of distributed computation, using simple passports that should correspond

362 S. Hym

to the origin location of the migrating agent. We have developed the full theory
of this idea, with a loyal barbed congruence that takes those passports into ac-
count to distinguish between systems. We have also provided a complete proof
technique for this equivalence as a bisimilarity.

This work provides a solid ground on which to investigate subtler notions of
security like the ones presented in [9] and [18]. We already started to study more
complex passports in which resources that can be accessed after the migration
depend on the passport actually used: when a new passport is generated, its
type also embed all the rights to be granted to incoming processes.

It would also be interesting to refine passports to stricter notions of trust,
where other locations are prevented from relaying processes for instance.

Acknowledgement. The author would like to thank Matthew Hennessy for nu-
merous helpful discussions and comments.

References

1. Hennessy, M.: A Distributed Pi-calculus. Cambridge University Press, Cambridge
(2007)

2. Levi, F., Sangiorgi, D.: Controlling interference in ambients. In: 27th Annual Sym-
posium on Principles of Programming Languages (POPL), Boston, MA, pp. 352–
364. ACM Press, New York (2000)

3. Merro, M., Hennessy, M.: A bisimulation-based semantic theory of Safe Ambients.
ACM Transactions on Programming Languages and Systems 28(2), 290–330 (2006)

4. Bugliesi, M., Crafa, S., Merro, M., Sassone, V.: Communication interference in mo-
bile boxed ambients. In: Agrawal, M., Seth, A.K. (eds.) FST TCS 2002: Founda-
tions of Software Technology and Theoretical Computer Science. LNCS, vol. 2556,
pp. 71–84. Springer, Heidelberg (2002)

5. Castagna, G., Nardelli, F.Z.: The Seal calculus revisited: Contextual equivalence
and bisimilarity. In: Agrawal, M., Seth, A.K. (eds.) FST TCS 2002: Foundations
of Software Technology and Theoretical Computer Science. LNCS, vol. 2556, pp.
85–96. Springer, Heidelberg (2002)

6. Schmitt, A., Stefani, J.-B.: The Kell calculus: A family of higher-order distributed
process calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp.
146–178. Springer, Heidelberg (2005)

7. Hennessy, M., Merro, M., Rathke, J.: Towards a behavioural theory of access and
mobility control in distributed systems. Theoretical Computer Science 322, 615–
669 (2003)

8. Cardelli, L., Ghelli, G., Gordon, A.D.: Ambient groups and mobility types. In:
Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS
2000. LNCS, vol. 1872, pp. 333–347. Springer, Heidelberg (2000)

9. Hennessy, M., Rathke, J., Yoshida, N.: SafeDpi: a language for controlling mobile
code. Acta Informatica 42(4-5), 227–290 (2005)

10. Yoshida, N.: Channel dependent types for higher-order mobile processes (Septem-
ber 2004)

11. Martins, F., Vasconcelos, V.T.: History-based access control for distributed pro-
cesses. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp.
98–115. Springer, Heidelberg (2005)

Mobility Control Via Passports 363

12. Boreale, M., Sangiorgi, D.: Bisimulation in name-passing calculi without matching.
In: Thirteenth Annual Symposium on Logic in Computer Science (LICS) (Indiana),
IEEE Computer Society Press, Los Alamitos (1998)

13. Hym, S.: Mobility control via passports (preprint 2007), Available on
https://hal.archives-ouvertes.fr/hal-00140527
http://www.pps.jussieu.fr/∼hym/r/

14. Hym, S.: Typage et contrôle de la mobilité. PhD thesis, Université Paris Diderot
– Paris 7 (December 2006)

15. Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Infor-
mation and Computation 173, 82–120 (2002)

16. Hym, S., Hennessy, M.: Adding recursion to Dpi. Theoretical Computer Sci-
ence 373(3), 182–212 (2007)

17. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) Automata,
Languages and Programming. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg
(1992)

18. Crary, K., Harper, R., Pfenning, F., Pierce, B.C., Weirich, S., Zdancewic, S.: Man-
ifest security for distributed information. White paper (March 2006)

A Reduction Semantics

Fig. 5. Reduction semantics

(r-goto) l�gotop k. P � −→ k�P �

(r-newloc) l�newloc k, (�c), (�p), (�q) :
�

x : loc. Twith Pk in P �
−→ (new

�
k, ((�c), (�p), (�q)) : T{l/x}

�
)(k�Pk� | l�P �)

(r-newpass) l�newpass p from k̃� inP � −→ (new p : k̃� �→ l) l�P �

(r-comm) l�a ! 〈V 〉P1� | l�a ? (X : T) P2� −→ l�P1� | l�P2{V/X}�
(r-if-v) l�if a = a then P1 else P2� −→ l�P1�

(r-if-f) l�if a1 = a2 then P1 else P2� −→ l�P2� when a1 �= a2

(r-newchan) l�newchan c : C in P � −→ (new c : C@l) l�P �

(r-split) l�P1 |P2� −→ l�P1� | l�P2�

(r-rep) l�∗P � −→ l�P � | l�∗P �

M1 −→ M ′
1

(r-c-par)

M1 |M2 −→ M ′
1 |M2

M1 −→ M ′
1

(r-c-new)

(new a : E) M1 −→ (new a : E)M ′
1

M1 ≡ M2 −→ M ′
2 ≡ M ′

1
(r-struct)

M1 −→ M ′
1

https://hal.archives-ouvertes.fr/hal-00140527
http://www.pps.jussieu.fr/~hym/r/

Coalgebraic Models for Reactive Systems�

Filippo Bonchi and Ugo Montanari

Dipartimento di Informatica, Università di Pisa

Abstract. Reactive Systems à la Leifer and Milner allow to derive from a reac-
tion semantics definition an LTS equipped with a bisimilarity relation which is
a congruence. This theory has been extended by the authors (together with Bar-
bara König) in order to handle saturated bisimilarity, a coarser equivalence that is
more adequate for some interesting formalisms, such as logic programming and
open pi-calculus. In this paper we recast the theory of Reactive Systems inside
Universal Coalgebra. This construction is particularly useful for saturated bisim-
ilarity, which can be seen as final semantics of Normalized Coalgebras. These are
structured coalgebras (not bialgebras) where the sets of transitions are minimized
rather than maximized as in saturated LTS, still yielding the same semantics. We
give evidence the effectiveness of our approach minimizing an Open Petri net in
a category of Normalized Coalgebras.

1 Introduction

The operational semantics of process calculi has traditionally been specified by labelled
transition systems (LTSs), and the abstract semantics by bisimilarity relations defined
on them. Bisimilarities often turn out to be congruences with respect to the operations
of the languages, a property which expresses the compositionality of the abstract se-
mantics. A simpler approach, inspired by classical formalisms like λ-calculus, Petri
nets, term and graph rewriting - pioneered by the Chemical Abstract Machine [3] and
especially convenient for nominal calculi - defines operational semantics by means of
structural axioms and reaction rules. Transitions caused by reaction rules, however, are
not labeled, since they represent evolutions of the system without interactions with the
external world. Thus reaction semantics is neither abstract nor compositional.

To enhance the expressiveness of reaction semantics, Leifer and Milner proposed in
[12] the theory of reactive systems: a systematic method for deriving a labeled tran-
sition system from reaction rules. The main idea is the following: a process p can do
a move with label C[−] and become p′ iff there is a reaction rule transforming C[p]
in p′. This LTS is called Context Transitions System (CTS) and the bisimilarity over
it (∼SAT , called saturated) is always a congruence. However, such an LTS is usually
very large, typically infinite branching and overloaded with redundant transitions, since
often contexts C[−] contain components which are irrelevant for the transition.

For this reason, Leifer and Milner introduced the notions of relative pushout (RPO)
and idem relative pushout (IPO) for specifying a/the minimal context that allows the

� Research partially supported by the IST 2004-16004 SENSORIA, and the MIUR PRIN
2005015824 ART.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 364–379, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Coalgebraic Models for Reactive Systems 365

state to react with a rule. This construction leads to the IPO transition system (ITS), that
uses only contexts generated by IPOs, and not all contexts, as labels, and thus is smaller
than CTS. Bisimilarity on this LTS (∼IPO) is a congruence under restrictive conditions.

In [4], the authors proved that for some interesting formalisms, such as logic pro-
gramming and open π-calculus, ∼IPO is at some extent inadequate, since it is strictly
finer than standard abstract semantics, while ∼SAT exactly characterizes it.

Universal Coalgebra [15] provides a categorical framework where abstract semantics
of interactive computing systems are described as morphisms to their minimal represen-
tatives. More precisely, given an endofunctor F on a category C, a coalgebra is an arrow
f : X → F(X) of C and a coalgebra morphism from f to f ′ is an arrow h : X → X ′

of C with h ; f ′ = f ;F(h). Under certain conditions on C and F, a category of coalge-
bras admits a final object. Ordinary labeled transition systems (with finite or countable
branching) can be represented as coalgebras with final object for a suitable functor on
Set. Then, in order to prove that two states are equivalent, we have to check if they are
identified by the final morphism, and the image of the given coalgebra through the latter
is the minimal representative, which in the finite case can be usually computed via the
list partitioning algorithm by Kanellakis and Smolka [9].

However, this representation of interactive systems forgets about the algebraic struc-
ture, which is usually very relevant in practical cases, since compositionality is the
key to master complexity. In particular, the property that bisimilarity respects the op-
erations, i.e. that it is a congruence, which is essential for making abstract semantics
compositional, is not reflected in the structure of the model.

In [19], bialgebras are introduced as a model with both algebraic and coalgebraic
structure, while a related approach based on structured coalgebras is presented in [7].
In the latter work, the endofunctor determining the coalgebraic structure is lifted from
Set to the category ofΣ-algebras, for some algebraic signatureΣ. Morphisms between
coalgebras in this category are both Σ-homomorphisms and coalgebra morphisms: as a
consequence the unique morphism to the final coalgebra always induces a bisimilarity
that is a congruence.

In this paper we provide a structured coalgebraic construction for both ITS and CTS.
This is interesting for at least two reasons. On the one hand it assures the existence of
final semantics and minimal representatives for reactive systems, both for the Leifer
and Milner’s IPO semantics∼IPO and for our saturated semantics∼SAT . On the other
hand it is an alternative compositionality proof of them.

For practical applications a key issue is how efficiently our saturated semantics
can be computed, which, according to its definition, is based on the large and redun-
dant CTS. In the previous paper [4], an unconventional notion of bisimulation, called
semisaturated, is presented for this purpose. It allows Alice, the first player of the bisim-
ulation game, to choose a transition in ITS, while Bob, the second player, chooses in
CTS. Semisaturated bisimilarity is the same as saturated bisimilarity, but the size of the
game is much smaller. Unfortunately, this approach cannot be extended to coalgebraic
theory, since in the latter case there is only one transition system for both players.

A further contribution of the paper is the construction of yet another LTS which
has fewer transitions than ITS, but supports ∼SAT . In reactive systems all non-IPO
transitions, i.e. the transitions labeled with a context that is not strictly necessary to

366 F. Bonchi and U. Montanari

perform a transition with a given rule, are considered redundant and omitted. Here we
introduce a stronger notion of redundancy. Indeed we consider redundant the transitions

p
C[−]→ p′ such that p

D[−]→ p′′, and D[−], p′′ are smaller, i.e., there exists a contextE[−]
such that E[D[−]] = C[−] and E[p′′] ∼ p′. Thus our notion of redundancy is based on
bisimilarity and it is independent from the rule that allows the reaction, while the IPO
construction is based on syntactic equivalence and it is relative to a particular rule.

Our construction is based on Normalized Coalgebras. These are structured coalge-
bras without redundant transitions which form a category with final object, where the
unique morphism induces a notion of bisimilarity completely abstract from redundant
transitions. We prove that the category of Normalized Coalgebras is isomorphic to the
category of saturated coalgebras (the coalgebras containing all the redundant transi-
tions), where the large context transition system CTS can be directly modelled. In doing
this, we use the notions of normalization that junks away all the redundant transitions,
and of saturation that adds all the redundant transitions. Both are natural transforma-
tions between the functors (defining the two categories of coalgebras) and one is the
inverse of the other. As a corollary of the isomorphism theorem, ∼SAT can be charac-
terized as bisimilarity in the category of Normalized Coalgebras. This proves that our
notion of non-redundancy is more canonical than IPOs, since it exactly captures∼SAT .

Normalized Coalgebras provide an efficient way to compute ∼SAT . Indeed we can
forget about all the redundant transitions (obtaining a labeled transition system smaller
than ITS) and then we can compute the final morphism in the category of normalized
coalgebras, through the canonical minimization algorithm. Normalized Coalgebras turn
out to be theoretically interesting for one additional reason. Those are, to our knowl-
edge, the first interesting example of structured coalgebras that are not bialgebras.

Synopsis. In Sec. 2 and 3, we introduce the theory of reactive systems and (structured)
coalgebras. Then in Sec. 4 and 5 we provide a structured coalgebraic construction for
CTS and for ITS. In Sec. 6 we introduce Normalized Coalgebras, a minimization algo-
rithm for these and we apply it to a concrete example.

2 The Theory of Reactive Systems

Here we summarize the theory of reactive systems proposed in [12] to derive labelled
transition systems and bisimulation congruences from a given reaction semantics. The
theory is centred on the concepts of term, context and reaction rules: contexts are arrows
of a category, terms are arrows having as domain 0 (a special object that denotes no
holes), and reaction rules are pairs of terms.

Definition 1 (Reactive System). A reactive systemR consists of:

1. a category C
2. a distinguished object 0 ∈ |C|
3. a composition-reflecting subcategory D of reactive contexts
4. a set of pairs R ⊆

⋃
m∈|C|C[0,m]×C[0,m] of reaction rules.

The reactive contexts are those in which a reaction can occur. By composition-reflecting
we mean that d; d′ ∈ D implies d, d′ ∈ D.

Coalgebraic Models for Reactive Systems 367

From reaction rules one generates the reaction relation by closing them under all
reactive contexts. Formally, the reaction relation is defined by taking p 	 q if there is
〈l, r〉 ∈ R and d ∈ D such that p = l; d and q = r; d.

Thus the behaviour of a reactive system is expressed as an unlabelled transition sys-
tem. On the other hand many behavioural equivalences are only defined for LTSs. In
order to obtain an LTS, we can plug a term p into some context c and observe if a re-
action occurs. In this case we have that p

c→. Categorically speaking this means that
p; c matches l; d for some rule 〈l, r〉 ∈ R and some reactive context d. This situation is
depicted by diagram (i) in Fig. 1: a commuting diagram like this is said a redex square.

Definition 2. The context transition system (CTS for short) is defined as follows:

– states: arrows p : 0→ m in C, for arbitrary m;
– transitions: p

c→C q iff p; c 	 q.

Bisimilarity on this LTS is called saturated (denoted by ∼SAT), and it is always a
congruence (i.e., preserved under all contexts). However this labelled transition system
is often infinite-branching since all contexts that allow reactions may occur as labels.
Another problem of CTS is that it has redundant transitions. For example, consider the
term a.0 of CCS. The observer can put this term into the context a.0 | − and observe

a reaction. This corresponds to the transition a.0
a.0|−→C 0|0. However we also have

a.0
p|a.0|−→C p | 0 | 0 as a transition, yet p does not contribute to the reaction. Hence

we need a notion of “minimal context that allows a reaction”. Leifer and Milner define
idem pushouts (IPOs) in order to capture this notion.

Definition 3 (RPO/IPO). Let the diagrams (ii)-(v) in Fig. 1 be in some category C. Let
(ii) be commuting. Any tuple 〈x, e, f, g〉 which makes (iii) commute is called a candi-
date for (ii). A relative pushout (RPO) is the smallest such candidate. More formally, it
satisfies the universal property that given any other candidate 〈y, e′, f ′, g′〉, there exists
a unique mediating morphism h : x→ y such that (iv) and (v) commute.

Diagram (ii) of Fig. 1 is called idem pushout (IPO) if 〈o, c, d, ido〉 is an RPO.

n

k

c
������

j

d
������

0
p

������
l

		����

o

m

c

����
n

d�����

k
a

������
b

������

o

m

c

����
e
�� x
g
��

n
f

d�����

k
a

������
b

������

y

m

e′ ������
e
�� x
h

��

n
f

f′������
o

y

g′ ������
x

g
��

h

n ye

k

c
		���� c′���

�����

j

d��
����

x

d′������

0
p

������ l
		���� l′

����������

(i) (ii) (iii) (iv) (v) (vi)

Fig. 1. Redex Square and RPO

We say that a reactive system has (redex) RPOs if, in the underlying category, for each
(redex) square there exists an RPO, while it has (redex) IPOs, if every (redex) square
has at least one IPO as candidate. A deeper discussion about the relationship between
the two concepts can be found in [4].

368 F. Bonchi and U. Montanari

Definition 4. The IPO transition system (ITS for short) is defined as follows:

– states: p : 0 → m in C, for arbitrary m;
– transitions: p

c→I r; d iff d ∈ D, 〈l, r〉 ∈ R and the diagram (i) in Fig. 1 is an IPO.

In other words, if inserting p into the context cmatches l; d, and c is the “smallest” such
context (according to the IPO condition), then p transforms to r; d with label c, where
r is the reduct of l. Bisimilarity on ITS is referred to as standard bisimilarity (denoted
by ∼IPO), and [12] proves the following.

Proposition 1. In reactive systems with redex RPOs, ∼IPO is a congruence.

In [4], the authors, together with Barbara König, show that ∼IPO is usually finer than
∼SAT , and the latter is more appropriate than the former in some important cases:
in Logic Programming and Open π-calculus, saturated semantics capture the canonical
abstract semantics (i.e., logic equivalence and open bisimilarity), while standard seman-
tics result too fine. Since CTS is full of redundancy (and usually infinite branching), the
authors introduce semi saturated bisimulation to efficiently characterize ∼SAT .

Definition 5 (Semi-Saturated Bisimulation). A symmetric relation R is a semi-satu-
rated bisimulation iff whenever pR q,

if p
c→I p

′ then q
d→I q

′ and ∃e ∈ D such that d; e = c and p′Rq′; e.
The union of all Semi-Saturated bisimulations is Semi-Saturated bisimilarity (∼SS).

This characterization is more efficient than considering all the possible contexts as la-
bels. Nevertheless, as the following proposition states, it coincides with ∼SAT .

Proposition 2. In reactive systems with redex IPOs, ∼SAT=∼SS .

b
y �� c x �� d

cx

id
��������

a
xy ��

y

		���������
e

y ����
���

��
id �� f

fy

1

1

xy ��						
=

�

axxy

��

ax

��������

(i) (ii) (iii)

Fig. 2. (i) The Open Petri net N . (ii) The ITS of a, b and cx. (iii) Arrows composition in OPL.

Example 1. Open Petri nets [10,2] are P/T nets equipped with an interface, i.e., a set of
open places, where nets can receive tokens from the environment1. Consider the Open
net in Fig. 2(i). The interface of this set is the set of open places x and y depicted in gray.
This net defines the reactive system N = 〈OPL, *,OPL,T〉. Roughly the states of

1 [13] encodes C/E nets into Bigraphs [14], while [16] P/T nets into Borrowed Contexts [8].

Coalgebraic Models for Reactive Systems 369

OPL (arrows from * to 1) are multisets on all the places, while contexts (arrows from
1 to 1) are multisets on open places. The composition of a statem1 with a contextm2 is
defined as the union of the multisetsm1 andm2 as shown in Fig. 2(iii). Every transition
of the net describes a reaction rule, where the left hand side is the precondition of the
transition, and the right hand side is the postcondition.

Hereafterwe will use id for the empty multiset and aab for the multiset {a, a, b}. The
ITS of a and b is depicted in Fig.2(ii). Consider the multisets e and cx. The former can

interact both with the rule 〈e, f〉 generating the transition e
id→I f and with the rule

〈ey, fy〉 generating the transition e
y→I fy. The latter can interact only with the rule

〈cx, d〉 generating the transition cx
id→I d. Thus e �IPO cx, but e ∼SAT cx. Indeed

the CTS move e
y→C fy is matched by cx

y→C dy and fy ∼SAT dy since both cannot
move. Moreover a �IPO b but a ∼SS b (and thus a ∼SAT b). Indeed when a proposes
a

xy→I e, b can answer with b
y→I c and, as proved above, e ∼SAT cx.

3 Coalgebras and Structured Coalgebras

In this section we introduce first the basic notions of the theory of coalgebras [15] and
then structured coalgebras [7] in order to model reactive systems.

Definition 6 (coalgebras and cohomomorphisms). Let F : C → C be an endofunc-
tor on a category C. A coalgebra for F or (F-coalgebra) is a pair 〈A,α〉 where A is
an object of C and α : A → F(A) is an arrow. An F-cohomomorphism f : 〈A,α〉 →
〈B, β〉 is an arrow f : A→ B of C such that f ;β = α;F(f).

CoalgF is the category of F-coalgebras and F-cohomomorphisms.

Let PL : Set → Set be the functor defined as X �→ P(L × X) where L is a fixed
set of labels and P denotes the powerset functor. Then coalgebras for this functor are
one-to-one with labeled transition systems over L [15]. Transition system morphisms
are usually defined as functions between the carriers that preserve transitions, while
PL-cohomomorphisms not only preserve, but also reflect transitions.

We can give a categorical characterization of bisimilarity if there exists a final coal-
gebra. Two elements of the carrier of a coalgebra are bisimilar iff they are mapped to
the same element of the final coalgebra by the unique cohomomorphism. Indeed, in
the final coalgebra all bisimilar states are identified, and thus, the image of a coalgebra
through the unique morphism, is the minimal realization (w.r.t. bisimilarity) of the coal-
gebra. Computing the unique morphism just means to minimize the coalgebras, that it
is usually possible in the finite case, using the following algorithm [1]:

1. Given a F-coalgebra 〈X,α〉, we initialize !0 : X → 1 as the morphism that maps all
the elements of X into the one element set 1. This represents the trivial partitioning
where all the elements are considered equivalent.

2. Then !n+1 is defined as α;F(!n). This function defines
a new finer partition on X . If the partition is equivalent
to that of !n, then this partition equates all and only the
bisimilar states (i.e., coincides with !).
If the set of states is finite, then the algorithm terminates.

X
!n ��

α

��

!n+1

��

 Fn(1)

F (X)
F (!n)

�� Fn+1(1)

370 F. Bonchi and U. Montanari

Unfortunately, due to cardinality reasons, the category of PL-coalgebras does not have
a final object [15]. One satisfactory solution consists of replacing the powerset functor
P by the countable powerset functor Pc, which maps a set to the family of its countable
subsets. Then defining the functor Pc

L : Set→ Set by X �→ Pc(L×X) one has that
coalgebras for this endofunctor are one-to-one with transition systems with countable
degree. Unlike functor PL, functor Pc

L admits final coalgebras (Ex. 6.8 of [15]).
The coalgebraic representation using functor Pc

L is not completely satisfactory, be-
cause by definition the carrier of a coalgebra is just a set and therefore the intrinsic
algebraic structure of states is lost. This calls for the introduction of structured coal-
gebras, i.e., coalgebras for an endofuctor on a category AlgΓ of algebras for a spec-
ification Γ . Since cohomomorphisms in a category of structured coalgebras are also
Γ -homomorphisms bisimilarity is a congruence w.r.t. the operations in Γ .

In [19], bialgebras are used as structures combining algebras and coalgebras. Bialge-
bras are richer than structured coalgebras, since they can be seen both as coalgebras on
algebras and also as algebras on coalgebras. Categories of bialgebras over the functor
Pc

L have a final object and bisimilarity abstracts from the algebraic structure.
In [6], it is proved that whenever the endofunctor on algebras is a lifting of Pc

L, then
structured coalgebras coincide with bialgebras.

Proposition 3. Let Γ be an algebraic specification. Let VΓ : AlgΓ → Set be the
forgetful functor. If FΓ : AlgΓ → AlgΓ is a lifting of Pc

L along VΓ (i.e., FΓ;VΓ =
VΓ;Pc

L), then FΓ-coalgebras are bialgebras and CoalgFΓ has a final object.

4 Coalgebraic Models of CTSs

In this section we give a coalgebraic characterization of Context Transition Systems of
reactive systems through the theory outlined in the previous section. We will first define
the CTS as a coalgebra without algebraic structure and then we will lift it to a structured
setting. This proves that bisimilarity on CTS (i.e.,∼SAT) is a congruence, and moreover
it provides a characterization of ∼SAT as final semantics.

Firstly we have to define the universe of observations. Since the labels of the CTS
are arrows of the base category C (representing the contexts), we define the functor as
parametric w.r.t. C, and ||C|| (i.e. the class of all arrows of C) is the universe of labels.

Definition 7. Given a category C, the functor PC : Set|C| → Set|C| is defined for

each |C|-indexed set S by PC(Sn) = Pc

(⋃
m∈|C|C[n,m]× Sm

)
.

The functor is defined analogously on arrows of Set|C|.

Note that PC is not an endofunctor on Set, as it is the case for the standard PL dis-
cussed in the previous section, but it is defined on Set|C|, i.e., the category of sets
indexed by objects of C. The base category C induces C, an object of Set|C| where,
for any sort n, the corresponding set is C[0, n]. Here we have implicitly assumed that C
is locally small (i.e., the hom-class between two objects is always a set and not a proper
class), otherwise C[0, n] could be a proper class. Moreover, in the following definition,
we require that ||C|| is a countable set, otherwise the possible transitions of an element

Coalgebraic Models for Reactive Systems 371

could beuncountable and then not belong to PC. Note that this usually holds in those
categories where arrows are syntactic contexts of a formalism.

Definition 8. Given a reactive system R = 〈C, 0,D,R〉, the PC-coalgebra corre-
sponding to its CTS is 〈C, αR〉 where αR(p) = {(c, r; d) s.t. diagram (i) in Fig. 1
commutes and d ∈ D and 〈l, r〉 ∈ R}.

It is immediate to see that the LTS defined above exactly coincides with the CTS (Def.
2). However this model does not take into account the algebraic structure of the states,
i.e., of the possibility of contextualizing a term. In order to have a richer model we lift
this construction to a structured setting where the base category is not anymore Set|C|,
but a category of algebras with contextualization operations. In the following we assume
that the category C has strict distinguished object, i.e., that the only arrow with target
0 is id0. This is needed to distinguish between elements and operations of algebras.

specification Γ (R) =
sorts
n ∀n ∈ |C| with n
= 0

operations
d : n→ m ∀d ∈ C[n,m] with n
= 0

equations
id(x) = x
e(d(x)) = c(x) ∀d; e = c

This signature defines AlgΓ(R) the category of Γ (R)-algebras. The base category C
of a reactive system induces Ĉ ∈ |AlgΓ(R)|. In Ĉ, for every sort m, the elements of
this sort are the arrows of C[0,m]. Every operation c : m → n is defined for every
element p of sort m as the composition of p; c in C.

Hereafter we will use cX to denote the operation c of the algebra X, and c to mean
both the operation c

�C and the arrow c ∈ ||C||. Moreover we will not specify the sort of
sets and operations, in order to make the whole presentation more readable.

Definition 9. The functor F : AlgΓ(R) → AlgΓ(R) is defined as follows.
For each X = 〈X, aX, bX, . . . 〉 ∈ AlgΓ(R), F(X) = 〈PC(X), aF(X), bF(X), . . . 〉
where ∀a ∈ Γ (R), ∀A ∈ PC(X), aF(X)(A) = {(c, dX(x)) s.t. diagram (ii) in Fig. 1
commutes in C, d ∈ D and (b, x) ∈ A}. On arrows of AlgΓ(R) is defined as PC.

Trivially F is a lifting of PC. Then, by Prop. 3, CoalgF is a category of bialgebras, it
has final object 1CoalgF and bisimilarity abstracts away from the algebraic structure.

In [19], Turi and Plotkin show that every process algebra whose operational seman-
tics is given by SOS rules in DeSimone format, defines a bialgebra. In that approach the
carrier of the bialgebra is an initial algebra TΣ for a given algebraic signatureΣ, and the
SOS rules in DeSimone format specify how an endofunctor FΣ behaves with respect to
the operations of the signature. Since there exists only one arrow ?Σ : TΣ → FΣ(TΣ),
to give the SOS rules is enough for defining a bialgebra (i.e., 〈TΣ, ?Σ〉) and then for
assuring compositionality of bisimilarity. Our construction slightly differs from this. In-
deed, the carrier of our coalgebra is Ĉ, that is not the initial algebra of AlgΓ(R). Then

372 F. Bonchi and U. Montanari

there could exist several or no structured coalgebras with carrier Ĉ. In the following we
prove that αR : Ĉ→ F(Ĉ) is a Γ (R)-homomorphism. This automatically assures that
〈Ĉ, αR〉 is a structured coalgebra and then bisimilarity is a congruence with respect to
the operations of Γ (R).

Theorem 1. Let R = 〈C, 0,D,R〉 be a reactive system. If ||C|| is countable and C
has strict distinguished object, then 〈Ĉ, αR〉 is a F-coalgebra.

From the above theorem immediately follows the characterization of ∼SAT as final
semantics. Indeed the unique cohomorphism !R : 〈Ĉ, αR〉 → 1CoalgF identifies all the
bisimilar states of Ĉ. In other words, for all f, g ∈ ||C|| with domain 0, f ∼SAT g if
and only if !R(f) =!R(g).

5 Coalgebraic Models of ITSs

Analogously to the previous section, we define a PC-coalgebra that coincides with ITS.

Definition 10. Given a reactive system R = 〈C, 0,D,R〉, the PC-coalgebra corre-
sponding to its ITS is 〈C̄, αI

R〉 where αI
R(p) = {(c, r; d) s.t. diagram (i) in Fig. 1 is an

IPO and d ∈ D and 〈l, r〉 ∈ R}.

Now we would like to lift this coalgebra to the structured setting of AlgΓ(R), but this

is impossible, since αI
R : Ĉ → F(Ĉ) is not a Γ (R)-homomorphism. Then we define

below a different functor that is suitable for lifting αI
R.

Definition 11. The functor I : AlgΓ(R) → AlgΓ(R) is defined as follows.
For each X = 〈X, aX, bX, . . . 〉 ∈ AlgΓ(R), I(X) = 〈PC(X), aI(X), bI(X), . . . 〉
where ∀a ∈ Γ (R), ∀A ∈ PC(X), aI(X)(A) = {(c, dX(x)) s.t. diagram (ii) in Fig. 1
is an IPO in C and (b, x) ∈ A and d ∈ D}. On arrows of AlgΓ(R) is defined as PC.

Trivially, also I is a lifting of PC. The following theorem assures that ∼IPO is a con-
gruence, and gives us a characterization as final semantics.

Theorem 2. Let R = 〈C, 0,D,R〉 be a reactive system with redex-RPOs. If ||C|| is
a countable and C has strict distinguished object, then 〈Ĉ, αI

R〉 is an I-coalgebra.

It is worth to note that the existence of redex-RPOs is fundamental in order to prove
that αI

R : Ĉ→ I(Ĉ) is a Γ (R)-homomorphism, while it is not necessary for αR.
A different coalgebraic construction for ITS has been already proposed in [5].

6 Normalized Coalgebras

The coalgebraic characterization of ∼SAT given in Sec. 4, is not completely satisfac-
tory. While it supplies a characterization as final semantics, it does not allow for a min-
imization procedure because CTS is usually infinitely branching. Similar motivations
have driven us to introduce semi-saturated bisimilarity in [4], that efficiently character-
izes saturated bisimilarity. In this section we use the main intuition of semi-saturated

Coalgebraic Models for Reactive Systems 373

bisimilarity in order to give an efficient and coalgebraic characterization of ∼SAT . We
introduce CoalgN, the category of Normalized Coalgebras, and we prove that it is
isomorphic to CoalgF (Sec. 6.1). This allows us to characterizes ∼SAT as the final
morphism in CoalgN. Sec. 6.2 shows that, in the finite case, the coalgebraic minimiza-
tion algorithm in CoalgN is computable and Ex. 2 applies it to the open netN .

Recall the definition of semi-saturated bisimulation (Def. 5). When p proposes a
move labeled by a context c, then q must answer with a move labeled by the same
context, or by a smaller one. Suppose that it answers with a smaller context d. Since
bisimulations are symmetric, q will propose the d move and now p must perform a
transition labeled by d, or by a smaller context. Our intuition is that, if the category of
contexts is in some sense well formed, and if p and q are bisimilar, at the end p and
q must perform both a transition labeled with the same minimal context. All the other
bigger transitions are redundant, i.e., meaningless in the bisimulation game.

Thus, in order to capture the right bisimilarity, we have to forget about all the redun-

dant transitions, i.e., all transitions p
c→ p′ such that p

d→ p′′ and ∃e ∈ D with c = d; e
and p′ ∼ p′′; e. As an example consider the ITS of the Open Petri net N (Fig. 2). The

transition e
y→ fy is redundant because e

id→ f and clearly fy ∼ fy (note that in our
example m;n = mn for all multisets m and n). The transition a

xy→ e is redundant
because a

y→ c and cx ∼ e (proved in Ex. 1).
But immediately a problem arises. How can we decide which transitions are redun-

dant, if redundancy itself depends on bisimilarity?
Our proposal is the following. First we consider redundant only the transitions p

c→
p′ such that p

d→ p′′ and p′ = p′′; e (where as usual c = d; e). In our example e
y→ fy

is redundant, while a
xy→ e is not. Then we define a category of coalgebras without

redundant transitions. Since in the final object, all the bisimilar states are identified, all

the transitions p
c→ p′ such that p

d→ p′′ and p′ ∼ p′′; e will be forgotten.
We can better understand this idea thinking about minimization. We normalize, i.e.,

we junk away all the redundant transitions (those where p′ = p′′; e) and then we
minimize w.r.t. bisimilarity. Now the bisimilar states are identified and if we normalize
again, we will junk away new redundant transitions. We repeat this procedure until we
reach a fix point (the final object). Since all the bisimilar states are identified in the final

object, we will have forgotten not only all the transitions p
c→ p′ such that p

d→ p′′ and
p′ = p′′; e, but also those where p′ ∼ p′′; e.

Consider for example the ITS derived from N (Fig. 2(ii)). After normalization the
transition e

y→ fy disappears (Fig. 3(i)) and after minimization e = cx (Fig. 3(ii)). If
we normalize again we also junk away the transition a

xy→ e and performing a further
minimization we reach the LTS depicted in Fig. 3(iii).

It is worth to note that normalization and minimization have to be repeated itera-
tively. Indeed we cannot minimize once and then normalize, or normalize once and
then minimize (try with our example).

Definition 12 (Normalized Set and Normalization). Let R = 〈C, 0,D,R〉 be a re-
active system. Let X be a Γ (R)-algebra with carrier set X and A ∈ PC(X).

A transition (c′, x′) derives (c, x) in X (in symbols (c′, x′) 3X (c, x)) iff ∃d ∈ D
such that c′; d = c and dX(x′) = x. A transition (c′, x′) is equivalent to (c, x) in X

374 F. Bonchi and U. Montanari

b
y �� c x �� d

cx
id��

�����

a
xy ��

y

		���������
e

id �� f

b
y �� c x �� d = f

a
xy ��

y

�����������
e = cx

id

�����������

a = b
y �� c x �� d = f

cx = e

id

�����������

(i) (ii) (iii)

Fig. 3. (i) The portion of 〈ÔPL, αI
N ; norm

ÔPL
〉 corresponding to a and b.(ii) 〈B, β〉 is not a

N-coalgebra. (iii)〈C, γ〉 is a N-coalgebra.

((c′, x′) ≡X (c, x)) iff (c′, x′) 3X (c, x) and (c, x) 3X (c′, x′). A transition (c′, x′)
dominates (c, x) in X ((c′, x′) ≺X (c, x)) iff (c′, x′) 3X (c, x) and (c, x) �X (c′, x′).
A transition (c, x) ∈ A is said redundant in A w.r.t. X if ∃(c′, x′) ∈ A such that
(c′, x′) ≺X (c, x).
A is normalized in X iff it does not contain redundant transitions and it is closed

by equivalent transitions. The set PNX
C (X) is the subset of PC(X) containing all and

only the normalized sets in X.
For any A ∈ PC(X), the normalization function normX : PC(X) → PNX

C (X)
maps A ∈ PC(X) in {(c′, l′) s.t. (c′, l′) ≡ (c, l) ∈ A and (c, l) not redundant in
A w.r.t. X}.

Look at the ITS ofN in Fig.2(ii). The set of IPO transitions of e (i.e., αI
N (e)) is not nor-

malized in ÔPL, because (id, f) ≺ÔPL (x, fx), while the set of IPO transitions of a
is normalized since (x, c) �ÔPL (xy, e) because yÔPL(c)
= e. (Remember that OPL

is the base category of N . The algebra ÔPL can be thought roughly as an algebra
having multisets as both elements and operators where ∀m,n multisets, m(n) = m⊕n
where⊕ is the union of multisets).

Normalizing a set of transitions means eliminating all the redundant transitions and
then closing w.r.t.≡. It is worth to note that we use≺X (and not 3X) to define redundant
transitions. Indeed, suppose that (c, x) ≡ (c′, x′) and no other transition dominates
them. If we consider both redundant, then normalization erases both of them. This is in
contrast with our main intuition of normalization, i.e., the normalized set must contain
all the minimal transitions needed to derive the original set (Lemma 1).

Definition 13 (Normalizable Reactive System). A Reactive SystemR = 〈C, 0,D,R〉
is normalizable if:

1. ||C|| is countable,
2. C has strict distinguished object,
3. ∀X ∈ AlgΓ(R), ≺X is well founded.

We inherit the first and the second constraint by Sec. 4. The third assures that for any
transition, there exists a minimal non redundant transition that dominates it.

Lemma 1. Let R be a normalizable reactive system. Let X be Γ (R)-algebra and A ∈
|F(X)|. Then ∀(d, x) ∈ A, ∃(d′, x′) ∈ normX(A), such that (d′, x′) ≺X (d, x).

Coalgebraic Models for Reactive Systems 375

We cannot prove that the third constraint is less restrictive than requiring to have redex-
RPOs, but while the latter usually does not hold in categories representing syntactic
contexts (look at Ex. 2.2.2. of [18]), the former will usually hold. Indeed it just requires
that a context cannot be decomposed infinitely many times.

Definition 14. The functor N : AlgΓ(R) → AlgΓ(R) is defined as follows. For each
X = 〈X, aX, bX, . . . 〉, N(X) = 〈PNX

C (X), aF(X);normX, bF(X);normX, . . . 〉.
For all h : X → Y, N(h) = F(h);normY.

The I-coalgebra corresponding toN , namely 〈ÔPL, αI
N 〉 (partially in Fig.2(ii)), is not

a N-coalgebra since αI
N (e) is not normalized in ÔPL. On the other hand, it is easy too

see that 〈ÔPL, αI
N ;normÔPL〉 (partially represented in Fig.3(i)) is a N-coalgebra.

Note how the functor is defined on arrows. If we apply F(h) to a normalized set
A, the resulting set may not be normalized. Thus we apply the normalization function
normY, after the mapping F(h).

This is the most important intuition behind normalized coalgebras. Normalization
after mapping makes bisimilar also transition systems which are such only forget-
ting redundant transitions. Let C be the algebra obtained by quotienting ÔPL with
e = xc, a = b and d = f and let h be such a quotient. Let γ be the transition
structure on C partially represented in Fig.3(iii). We have that αI

N ;normÔPL;F(h)
=
h; γ, since αI

N ;normÔPL;F(h)(a) = {(xy, e), (y, c)} and h; γ(a) = {(y, c)}. But
αI
N ;normÔPL;F(h);normY = h; γ (αI

N ;normÔPL;F(h);normY(a) = {(y, c)}).
Now we would like to apply the theory illustrated in Sec. 3, as we have done for F

and I, but this is impossible since the notion of normalization (and hence the functor)
strictly depends on the algebraic structure. In categorical terms, this means that N-
coalgebras are not bialgebras, or equivalently, that there exists no functor B : Set|S| →
Set|S| such that N is a lifting of B.

6.1 Isomorphism Theorem

Here we prove that CoalgF and CoalgN are isomorphic. This assures that CoalgN
has a final object. Moreover the final morphism in CoalgN still characterizes∼SAT .

We start by introducing a new category of coalgebras that is isomorphic to both
CoalgF and CoalgN.

Definition 15. Let R be a reactive system and X be a Γ (R)-algebra with carrier set
X . A set A ∈ PC(X) is saturated in X if and only if it is closed w.r.t. 3X. The set
PSX

C (X) is the subset of PC(X) containing all and only the saturated sets in X.
For any A ∈ PC(X), the saturation function satX : PC(X) → PSX

C (X) maps A
to {(c′, x′) s.t. (c, x) ∈ A and (c, x) 3X (c′, x′)}.

The functor S : AlgΓ(R) → AlgΓ(R) is defined as follows.
For each X = 〈X, aX, bX, . . . 〉 ∈ AlgΓ(R), S(X) = 〈PSX

C (X), aF(X), bF(X), . . . 〉.
On arrows of AlgΓ(R) is defined as F.

The only difference between S and F is that for any Γ (R)-algebra X, |S(X)| contains
only the saturated set of transitions, while |F(X)| contains all the possible sets of tran-
sitions. In terms of coalgebras this means that the coalgebras of the former functor are

376 F. Bonchi and U. Montanari

forced to perform only saturated set of transitions, while coalgebras of the latter are
not. But every F-coalgebra 〈X, α〉 is however forced to performs only saturated set
of transitions. Indeed ∀x ∈ |X|, α(x) = α(idX(x)) = idF(X)(α(x)) because α is a
homomorphism. By definition idF(X)(α(x)) is closed w.r.t. 3X, i.e., saturated.

The left triangle of diagram (i) in Fig.4 depicts this setting. S(X) is a subalgebra
of F(X), i.e. ∀X ∈ AlgΓ(R), ∃mX : S(X) � F(X) mono. Moreover ∀α : X →
F(X), there exists a unique αS : X → S(X) such that α = αS ;mX. This observation
guarantees that CoalgF and CoalgS are isomorphic. While, in order to prove the
isomorphism of CoalgS and CoalgN, we show that normalization and saturation are
natural isomorphisms.

Proposition 4. Let norm and sat be respectively the families of morphisms {normX :
S(X) → N(X) ∀X ∈ |AlgΓ(R)|} and {satX : N(X) → S(X) ∀X ∈ |AlgΓ(R)|}.
Then norm : S ⇒ N and sat : N ⇒ S are natural transformations, and one is the
inverse of the other, i.e. all squares in diagram (ii) of Fig.4 commutes.

Theorem 3. CoalgF, CoalgS and CoalgN are isomorphic.

(X) h ��

αS

��

α

��

(Y)

βS

��

β

��
F(X)

F(h) �� F(Y)

S(X)
S(h)

��
��mX

�������

S(Y)
��mY

�������

S(X)
S(h) ��

normX

��

idS(X)

��
S(Y)

normY

��

idS(Y)

��

N(X)
N(h)

��

satX

��

idN(X)

�� N(Y)

satY

��

idN(Y)

��

(i) (ii)

Fig. 4. Commuting diagrams in AlgΓ(R)

The above theorem guarantees that CoalgN has a final system 1CoalgN . The final
morphisms !NR : 〈Ĉ, αR;norm

�C〉 → 1CoalgN characterizes∼SAT .

Corollary 1. LetR be a normalizable reactive system. p ∼SAT q ⇔!R(p) =!R(q) ⇔
!NR(p) =!NR(q).

6.2 From ITS to ∼SAT Through Normalization

Until now, we have proved that !NR : 〈Ĉ, αR;norm
�C〉 → 1CoalgN characterizes

∼SAT . Now we apply the coalgebraic minimization algorithm (Sec. 3) in the cate-
gory CoalgN, in order to compute ∼SAT . However, normalizing αR is unfeasible,
because it is usually infinitely branching. Instead of normalizing the CTS, we can build
αR;norm

�C through the normalization of ITS.
Note that the ITS could have redundant transitions. Indeed consider two redex

squares for two different rules as those depicted in diagram (vi) of Fig. 1 where 〈l, r〉,

Coalgebraic Models for Reactive Systems 377

〈l′, r′〉 ∈ R. The transition p
c→ r; d could be an IPO transition even if it is dominated

by p
c′
→ r′; d′. This explains the difference between our notion of redundancy and that

of Leifer and Milner. They consider all the non-IPO transitions redundant, i.e. all the
transitions where the label contains something that is not strictly necessary to reach the
rule. Our notion completely abstracts from rules.

Theorem 4. Let R = 〈C, 0,D,R〉 be a normalizable reactive system having IPOs.
Then αI

R;norm
�C = αR;norm

�C and moreover, aI(X);normX = aF(X);normX.

This theorem is the key to compute !NR(p). Indeed it allows to compute αI
R;norm

�C
instead of αR;norm

�C that is usually unfeasible. Now we can instantiate the general
minimization algorithm (Sec. 3) in the case of CoalgN.

At the beginning !N0 : Ĉ→ 1 is the final morphism to 1 (the final Γ (R)-algebra).
At any iteration !Nn+1 = αR;norm

�C;N(!Nn) = αI
R;norm

�C;F(!Nn);normN(1)n .
The peculiarity of minimization in CoalgN is that we must normalize at every it-

eration. Note that the normalization is performed not only in the source algebra Ĉ, but
also on the target algebra N(1)n. Thus the minimization procedure strictly depends
on the algebraic structure. This further explains why normalized coalgebras are struc-
tured coalgebras but not bialgebras where we can completely forget about the algebraic
structure.

Proposition 5. LetR = 〈C, 0,D,R〉 be a normalizable reactive system such that:

– arrow composition in C is computable,
– C has IPOs, and these can be computed,
– ∀a, b ∈ ||C||, there exist a finite number of c ∈ ||C|| such that a = b; c,
– ∀a, b ∈ ||C||, there exist a finite number of c, d ∈ ||C|| such that diagram (ii) in

Fig. 1 is an IPO.

Then the algorithm outlined above is computable and it terminates for minimizing those
p whose ITS is finite.

Example 2. Here we prove that a ∼SAT b inN (Ex. 1), by proving that !NN (a) =!NN (b).
The LTSs αN ;normÔPL(a) and αN ;normÔPL(b) are shown in Fig.3(i) (by Th. 4

these can be computed by normalizing in ÔPL the ITS in Fig. 2(ii)). Let Γ (N) be
the specification corresponding to N : operations are just multisets on {x, y}. Let 1 be
the final Γ (N)-algebra: the carrier set contains only the single element 1 and for all
operationsm, m(1) = 1.

The homomorphism !N0 : ÔPL→ 1 maps all the elements of |ÔPL| into 1.
In order to compute !N1 , we first compute αN ;normÔPL;F(!0) for all the states

reachable from a and b (the results are reported in the second column of Fig. 5(i)) and
then we normalize in the final algebra 1 (third column). The normalization junks away
the transition a

xy→ 1. Indeed (y, 1) ≺1 (xy, 1) since xy = y;x and x1(1) = 1.
For computing !N2 we proceed as before, using !N1 instead of !N0 and normaliz-

ing on N(1) instead of normalizing on 1. The results of the second iteration are re-
ported in Fig. 5(ii). Normalization junks away the transitions a

xy→ {(id, 1)} because
(y, {(x, 1)}) ≺N(1) (xy, {(id, 1)}). The morphism !N2 partitions the states in {a, b},
{c}, {d, f}, {e}, as well as !N1 . Thus the algorithm terminates and then a ∼SAT b.

378 F. Bonchi and U. Montanari

multisets αN ; norm
ÔPL

;F(!N0) !N1
a (xy, 1), (y, 1) (y, 1)
b (y, 1) (y, 1)
c (x, 1) (x, 1)
d ∅ ∅
e (id, 1) (id, 1)
f ∅ ∅

multisets αN ; norm
ÔPL

;F(!N1) !N2
a (xy, {(id, 1)}), (y, {(x, 1)}) (y, {(x, 1)})
b (y, {(x, 1)}) (y, {(x, 1)})
c (x, ∅) (x,∅)
d ∅ ∅
e (id, ∅) (id, ∅)
f ∅ ∅

(i) (ii)

Fig. 5. (i) First Iteration. (ii)Second Iteration.

7 Conclusions

In this paper we have defined structured coalgebras for both labeled transition sys-
tems (CTS and ITS), derived from reactive systems. This provides a characterization of
∼SAT and ∼IPO via final semantics and minimal realizations. Since CTS is usually
infinite branching, its minimal realization is infinite and ∼SAT uncomputable. For this
reason, we have introduced Normalized Coalgebras. These are structured coalgebras
that, thanks to a suitable definition of the underlying functor, allow to forget about re-
dundant transitions but still characterize ∼SAT as final semantics. Here the notion of
redundancy is coarser than that expressed by the IPO condition. Indeed, given p

y→ q,
p

x→ q′ and a context E[−], such that E[x] = y, the former transition is not an IPO
if the latter reacts with the same rule and E[q′] = q, while it is redundant, according
to our notion of normalized coalgebras, if E[q′] ∼ q (without any condition on rules).
Then constructing an LTS smaller than ITS and then minimizing it through a minimiza-
tion algorithm (which employs the proper functor definition) allows us to check∼SAT .
This approach can be easily extended to G-reactive systems [17] and to open reactive
systems [11] where, in our opinion, it might help to relax the constraints of the theory.
Pragmatically, Normalized Coalgebras are isomorphic to a category of bialgebras, but
the minimization procedure is feasible, because it employs the algebraic structure that
is completely forgotten in bialgebras.

References

1. Adámek, J., Koubek, V.: On the greatest fixed point of a set functor. Theoretical Computer
Science 150(1) (1995)

2. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open Petri nets
based on deterministic processes. Mathematical Structures in Computer Science 15(1), 1–35
(2005)

3. Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer Science 96,
217–248 (1992)

4. Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In: Proc. of
LICS, pp. 69–80. IEEE Computer Society Press, Los Alamitos (2006)

5. Bonchi, F., Montanari, U.: A coalgebraic theory of reactive systems. Electronic Notes in
Theoretical Computer Science, LIX Colloqium on Emerging Trends in Concurrency Theory
(to appear)

Coalgebraic Models for Reactive Systems 379

6. Corradini, A., Große-Rhode, M., Heckel, R.: A coalgebraic presentation of structured transi-
tion systems. Theoretical Computer Science 260, 27–55 (2001)

7. Corradini, A., Heckel, R., Montanari, U.: From sos specifications to structured coalgebras:
How to make bisimulation a congruence. Electronic Notes in Theoretical Computer Science,
vol. 19 (1999)

8. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph
rewriting. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 151–166. Springer,
Heidelberg (2005)

9. Kanellakis, P.C., Smolka, S.A.: Ccs expressions, finite state processes, and three problems of
equivalence. Information and Computation 86(1), 43–68 (1990)

10. Kindler, E.: A compositional partial order semantics for Petri net components. In: Azéma, P.,
Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 235–252. Springer, Heidelberg (1997)

11. Klin, B., Sassone, V., Sobocinski, P.: Labels from reductions: Towards a general theory.
In: Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS,
vol. 3629, pp. 30–50. Springer, Heidelberg (2005)

12. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg
(2000)

13. Milner, R.: Bigraphs for Petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures
on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 686–701. Springer, Heidelberg (2004)

14. Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR
2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001)

15. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer Sci-
ence 249(1), 3–80 (2000)

16. Sassone, V., Sobociński, P.: A congruence for Petri nets. In: Ehrig, H., Padberg, J., Rozen-
berg, G. (eds.) Petri Nets and Graph Transformation. ENTCS, vol. 127, pp. 107–120. Else-
vier, Amsterdam (2005)

17. Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Proc. of LICS, pp. 311–320.
IEEE Computer Society Press, Los Alamitos (2005)

18. Sobociński, P.: Deriving process congruences from reaction rules. PhD thesis (2004)
19. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Proc. of LICS,

pp. 280–291. IEEE Computer Society Press, Los Alamitos (1997)

Reactive Systems over Directed Bigraphs�

Davide Grohmann and Marino Miculan

Dept. of Mathematics and Computer Science, University of Udine, Italy
grohmann@dimi.uniud.it, miculan@dimi.uniud.it

Abstract. We study the construction of labelled transition systems
from reactive systems defined over directed bigraphs, a computational
meta-model which subsumes other variants of bigraphs. First we con-
sider wide transition systems whose labels are all those generated by the
IPO construction; the corresponding bisimulation is always a congruence.
Then, we show that these LTSs can be simplified further by restricting
to a subclass of labels, which can be characterized syntactically.

We apply this theory to the Fusion calculus: we give an encoding of
Fusion in directed bigraphs, and describe its simplified wide transition
system and corresponding bisimulation.

1 Introduction

Bigraphical reactive systems (BRSs) are an emerging graphical meta-model of
concurrent computation introduced by Milner [5,6]. The key structure of BRSs
are bigraphs, which are composed by a hierarchical place graph describing loca-
tions, and a link (hyper-)graph describing connections. The dynamics of a system
is represented by a set of reaction rules which may change both these structures.
Remarkably, using a general construction based on the notion of relative pushout
(RPO), from a BRS we can obtain a labelled transition system such that the
associated bisimulation is always a congruence [3].

Several process calculi for Concurrency can be represented in bigraphs, such
as CCS and (using a mild generalization), also the π-calculus and the λ-calculus.
Nevertheless, other calculi, such as Fusion [7], seem to escape this framework.
On the other hand, a “dual” version of bigraphs introduced by Sassone and
Sobociński [8] seem suitable for Fusion calculus, but not for the others.

In order to overcome this limitation, in previous work we have introduced a
generalization of both Milner’s and Sassone-Sobociński’s variants, called directed
bigraphs [2,1]. Intuitively, in directed bigraphs edges represent resources which
are accessed by controls, and indicated by names. Connections from controls
to edges (through names) represent “resource requests”, or accesses. Directed
bigraphs feature an RPO construction which generalizes and unifies both Jensen-
Milner’s and Sassone-Sobociński’s variants [2].

In this paper, we consider reactive systems built over directed bigraphs, hence
called directed bigraphical reactive system (DBRS). Given a DBRS, we can read-
ily obtain a labelled transition system (called directed bigraphical transition sys-
tem, DBTS) by taking as observations all the contexts generated by the IPO
� Work supported by Italian MIUR project 2005015824 Art.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 380–394, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Reactive Systems over Directed Bigraphs 381

construction. We show that the bisimilarity associated to this DBTS (called
“standard”) is always a congruence. However, this LTS is still quite large, and
may contain transitions not strictly necessary. In fact, we show that, under a
mild condition, standard bisimilarity can be characterized also by a smaller, more
tractable DBTS, whose transitions are only those really relevant for the agents.

In order to check the suitability of this theory, we apply it to the Fusion
calculus. We present the first encoding of the Fusion calculus as a DBRS; then, we
discuss the DBTS and associated bisimilarity constructed using these techniques.
Synopsis. In Section 2 we recall some definitions about directed bigraphs. In
Section 3 we introduce directed bigraphical reactive and transition systems, and
show that standard bisimilarity is a congruence. In Section 4, we show that
(under some conditions) standard bisimilarity can be characterized by a smaller
LTS. As an application, in Section 5 we represent the Fusion Calculus using
DBRSs and DBTSs. Conclusions and direction for future work are in Section 6.

2 Directed Bigraphs

In this section we recall some definitions about directed bigraphs, as in [2]. Fol-
lowing Milner’s approach, we work in precategories; see [4, §3] for an introduction
to the theory of supported monoidal precategories.

Let K be a given signature of controls, and ar : K → ω the arity function.

Definition 1. A polarized interface X is a pair of disjoint sets of names X =
(X−, X+); the two elements are called downward and upward faces, respectively.

A directed link graph A : X → Y is A = (V,E, ctrl, link) where X and Y
are the inner and outer interfaces, V is the set of nodes, E is the set of edges,
ctrl : V → K is the control map, and link : Pnt(A) → Lnk(A) is the link map,
where the ports, the points and the links of A are defined as follows:

Prt(A)�
∑
v∈V

ar(ctrl(v)) Pnt(A) � X+8Y −8Prt(A) Lnk(A) � X−8Y +8E

The link map cannot connect downward and upward names of the same interface,
i.e., the following condition must hold: (link(X+)∩X−)∪ (link(Y −)∩Y +) = ∅.

Directed link graphs are graphically depicted much like ordinary link graphs,
with the difference that edges are explicit objects and points and names are
associated to edges (or other names) by (simple) directed arcs. This notation
makes explicit the “resource request flow”: ports and names in the interfaces
can be associated either to locally defined resources (i.e., a local edge) or to
resources available from outside the system (i.e., via an outer name).

Definition 2 (′DLG). The precategory of directed link graphs has polarized
interfaces as objects, and directed link graphs as morphisms.

Given two directed link graphs Ai = (Vi, Ei, ctrli, linki) : Xi → Xi+1 (i =
0, 1), the composition A1 ◦ A0 : X0 → X2 is defined when the two link graphs
have disjoint nodes and edges. In this case, A1 ◦ A0 � (V,E, ctrl, link), where

382 D. Grohmann and M. Miculan

V � V0 8 V1, ctrl � ctrl0 8 ctrl1, E � E0 8 E1 and link : X+
0 8 X−

2 8 P →
E 8X−

0 8X+
2 is defined as follows (where P = Prt(A0) 8 Prt(A1)):

link(p) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

link0(p) if p ∈ X+
0 8 Prt(A0) and link0(p) ∈ E0 8X−

0

link1(x) if p ∈ X+
0 8 Prt(A0) and link0(p) = x ∈ X+

1

link1(p) if p ∈ X−
2 8 Prt(A1) and link1(p) ∈ E1 8X+

2

link0(x) if p ∈ X−
2 8 Prt(A1) and link1(p) = x ∈ X−

1 .

The identity link graph of X is idX � (∅, ∅, ∅K, IdX−�X+) : X → X.

Definition 3. The support of A = (V,E, ctrl, link) is the set |A| � V ⊕ E.

Definition 4. Let A : X → Y be a link graph.
A link l ∈ Lnk(A) is idle if it is not in the image of the link map (i.e.,

l
∈ link(Pnt(A))). The link graph A is lean if there are no idle links.
A link l is open if it is an inner downward name or an outer upward name

(i.e., l ∈ X− ∪ Y +); it is closed if it is an edge.
A point p is open if link(p) is an open link; otherwise it is closed. Two points

p1, p2 are peer if they are mapped to the same link, that is link(p1) = link(p2).

Definition 5. The tensor product ⊗ in ′
DLG is defined as follows. Given two

objects X, Y , if these are pairwise disjoint then X ⊗Y � (X− 8Y −, X+8Y +).
Given two link graphs Ai = (Vi, Ei, ctrli, linki) : Xi → Yi (i = 0, 1), if the
tensor products of the interfaces are defined and the sets of nodes and edges are
pairwise disjoint then the tensor product A0⊗A1 : X0⊗X1 → Y0⊗Y1 is defined
as A0 ⊗A1 � (V0 8 V1, E0 8 E1, ctrl0 8 ctrl1, link0 8 link1).

Finally, we can define the directed bigraphs as the composition of standard place
graphs (see [4, §7] for definitions) and directed link graphs.

Definition 6 (directed bigraphs). A (bigraphical) interface I is composed by
a width (a finite ordinal, denoted by width(I)) and by a polarized interface of
link graphs (i.e., a pair of finite sets of names).

A directed bigraph with signature K is G = (V,E, ctrl, prnt, link) : I → J ,
where I = 〈m,X〉 and J = 〈n, Y 〉 are its inner and outer interfaces respectively;
V and E are the sets of nodes and edges respectively, and prnt, ctrl and link
are the parent, control and link maps, such that GP � (V, ctrl, prnt) : m→ n is
a place graph and GL � (V,E, ctrl, link) : X → Y is a directed link graph.

We denote G as combination of GP and GL by G = 〈GP , GL〉. In this notation,
a place graph and a (directed) link graph can be put together if and only if they
have the same sets of nodes and edges.

Definition 7 (′DBig). The precategory ′
DBig of directed bigraph with signa-

ture K has interfaces I = 〈m,X〉 as objects and directed bigraphs G = 〈GP , GL〉 :
I → J as morphisms. If H : J → K is another directed bigraph with sets of nodes
and edges disjoint from V and E respectively, then their composition is defined
by composing their components, i.e.: H ◦G � 〈HP ◦GP , HL ◦GL〉 : I → K.

The identity directed bigraph of I = 〈m,X〉 is 〈idm, IdX−�X+〉 : I → I.

Reactive Systems over Directed Bigraphs 383

A bigraph is ground if its inner interface is ε = 〈0, (∅, ∅)〉; we denote by Gr〈I〉
the set of ground bigraphs with outer interface I, i.e., Gr〈I〉 = ′

DBig(ε, I).

Definition 8. The tensor product ⊗ in ′
DBig is defined as follows. Given I =

〈m,X〉 and J = 〈n, Y 〉, where X and Y are pairwise disjoint, then 〈m,X〉 ⊗
〈n, Y 〉 � 〈m+ n, (X− 8 Y −, X+ 8 Y +)〉.

The tensor product of Gi : Ii → Ji is defined as G0 ⊗G1 � 〈GP
0 ⊗GP

1 , G
L
0 ⊗

GL
1 〉 : I0 ⊗ I1 → J0 ⊗ J1, when the tensor products of the interfaces are defined

and the sets of nodes and edges are pairwise disjoint.

Remarkably, directed link graphs (and bigraphs) have relative pushouts and
pullbacks, which can be obtained by a general construction, subsuming both
Milner’s and Sassone-Sobociński’s variants. We refer the reader to [2].

Actually, in many situations we do not want to distinguish bigraphs differing
only on the identity of nodes and edges. To this end, we introduce the cate-
gory DBig of abstract directed bigraphs. The category DBig is constructed from
′
DBig forgetting the identity of nodes and edges and any idle edge. More pre-
cisely, abstract bigraphs are concrete bigraphs taken up-to an equivalence �.

Definition 9 (abstract directed bigraphs). Two concrete directed bigraphs
G and H are lean-support equivalent, written G � H, if they are support equiv-
alent after removing any idle edges.

The category DBig of abstract directed bigraphs has the same objects as
′
DBig, and its arrows are lean-support equivalence classes of directed bigraphs.
We denote by A : ′DBig→ DBig the associated quotient functor.

We remark that DBig is a category (and not only a precategory); moreover, A
enjoys several properties which we omit here due to lack of space; see [4].

3 Directed Bigraphical Reactive and Transition Systems

In this section we introduce wide reactive systems and wide transition systems
over directed bigraphs, called directed bigraphical reactive systems and directed
bigraphical transition systems respectively.

3.1 Directed Bigraphical Reactive Systems

We assume the reader familiar with wide reactive systems over premonoidal
categories; see [6] for the relevant definitions.

In order to define wide reactive systems over directed bigraphs, we need to
define how a parametric rule, that is a “redex-reactum” pair of bigraphs, can be
instantiated. Essentially, in the application of the rule, the “holes” in the reactum
must be filled with the parameters appearing in the redex. This relation can be
expressed by a function mapping each site in width n of the reactum to a site
in width m of the redex; notice that this allows to replace, duplicate or forget
in the reactum the parameters of the redex. Formally:

384 D. Grohmann and M. Miculan

Definition 10 (instantiation). An instantiation ρ from (width) m to (width)
n, written ρ :: m→ n, is determined by a function ρ̄ : n→ m. For any pair X,
this function defines the map ρ : Gr〈m,X〉 → Gr〈n,X〉 as follows. Decompose
g : 〈m,X〉 into g = ω(d0⊗· · ·⊗dm−1), with ω : (∅, Y) → X and each di (i ∈ m)
prime and discrete. Then define:

ρ(g) � ω(e0 � . . . � en−1 � id(∅,Y))

where ej � dρ̄(j) for j ∈ n. This map is well defined (up to support equivalence).
If ρ̄ is injective, surjective, bijective then the instantiation ρ is said to be affine,

total or linear respectively.

If ρ is not affine then it replicates at least one of the factor di. Support translation
is used to ensure that several copies of replicated factor have disjoint support;
also outer sharing product is used because copies will share names.

Note that the names of e0 � . . . � en−1 may be fewer than Y , because ρ
may be not total, so we add id(∅,Y) to the previous product to ensure that the
composition with ω is defined (in that composition idle names can be generated).

Proposition 1. Wirings commute with instantiation: ωρ(a) � ρ(ωa).

Next, we define how to generate ground reaction rules from parametric rules.

Definition 11 (reaction rules for directed bigraphs). A ground reaction
rule is a pair (r, r′), where r and r′ are ground with the same outer interface.
Given a set of ground rules, the reaction relation −→ over agents is the least,
closed under support equivalence (�), such that Dr −→ Dr′ for each active
context D and each ground rule (r, r′).

A parametric reaction rule has a redex R and reactum R′, and takes the form:

(R : I → J,R′ : I ′ → J, ρ)

where the inner interface I and I ′ with widths m and m′. The third component
ρ :: m → m′ is an instantiation. For any X and discrete d : I ⊗ (∅, X) the
parametric rule generate the ground reaction rule:

((R ⊗ id(∅,X)) ◦ d, (R′ ⊗ id(∅,X)) ◦ ρ(d)).

Definition 12 (directed bigraphical reactive system). A directed bigraph-
ical reactive system (DBRS) over K is the precategory ′

DBig(K) equipped with
a set1 ′R of reaction rules closed under support equivalence (�). We denote it
by ′D(K, ′R), or simply ′D when clear from context.

3.2 Directed Bigraphical Transition Systems

We can prove that DBRSs are a particular instance of the generic wide reactive
systems definable on a wide monoidal precategory [6, Definition 3.1]:
1 Here we use the “tick” to indicate that elements are objects of a precategory.

Reactive Systems over Directed Bigraphs 385

Proposition 2. Directed bigraphical reactive systems are wide reactive systems.

This result ensures that DBRSs inherit from the theory of WRSs ([6]) the defi-
nition of transition system based on IPOs.

Definition 13 (directed bigraphical transition system). A transition for
a DBRS ′D(K, ′R) is a quadruple (a, L, λ, a′), written as a L−→λ a

′, where a and
a′ are ground bigraphs and there exist a ground reaction rule (r, r′) ∈ ′R and
an active context D such that La = Dr, and λ = width(D)(width(cod(r))) and
a′ � Dr′. A transition is minimal if the (L,D) is an IPO for (a, r).

A directed bigraphical transition system (DBTS) L for ′D is a pair (I, T):

– I is a set of bigraphical interfaces; the agents of L are the ground bigraphs
with outer interface I, for I ∈ I;

– T is a set of transitions whose sources and targets are agents of L.

The full (resp. standard) transition ft (resp. st) system consists of all inter-
faces, together with all (resp. all minimal) transitions.

Definition 14 (bisimilarity). Let ′D be a DBRS equipped with a DBTS L. A
simulation (on L) is a binary relation S between agents with equal interface such
that if aSb and a

L−→λ a
′ in L, then whenever Lb is defined there exists b′ such

that b L−→λ b
′ and a′Sb′.

A bisimulation is a symmetric simulation. Then bisimilarity (on L), denoted
by ∼L, is the largest bisimulation.

From [6, Theorem 4.6] we have the following property:

Proposition 3 (congruence of wide bisimilarity). In any concrete DBRS
equipped with the standard transition system, wide bisimilarity is a congruence.

Now we want to transfer st, with its congruence property, to the abstract DBRS
D(K,R), where DBig(K) is the category defined by the quotient functor A, and
R is obtained from ′R also by A.

Recall that the functor A forgets idle edges. For this purpose, as in [6], we
impose a constrain upon the reaction rules in ′R: every redex R must be lean.
Then we can prove that transitions respect lean-support equivalence:

Proposition 4. In any concrete DBRS with all redex lean, equipped with st:

1. in every transition label L, both components are lean;
2. transitions respect lean-support equivalence (�). For every transition a

L−→λ

a′, if a � b and L � M where M is another label with M ◦ b defined, then
there exists a transition b

M−→λ b
′ for some b′ such that a′ � b′.

Now we want to transfer the congruence result of Proposition 3 to abstract
DBTSs. The following result is immediate by the [6, Theorem 4.8].

Proposition 5. Let ′D(K, ′R) be a concrete DBRS with all redexes lean, with
st. Let A : ′DBig(K) → DBig(K) be the lean-support equivalence functor. Then

1. a ∼st b in ′D(K, ′R) if and only if A(a)A(∼st)A(b) in D(K,R);
2. bisimilarity A(∼st) is a congruence in D(K,R).

386 D. Grohmann and M. Miculan

4 Reducing Directed Bigraphical Transition Systems

The standard DBTS st is already smaller than the full one ft, since we restrict
to labels which form an IPO. Still, a lot of observations generated by the IPOs are
useless. Actually, if the agent a and the redex R share nothing (i.e. |a|∩ |R| = ∅)
or the redex R does not access to any resources of a, the observation L gives no
information about what a can do.

In this section we discuss how, and when, the standard DBTS can be reduced
further, but whose bisimilarity coincides with the standard one.

For the rest of the paper we work only with hard DBRSs, i.e., DBRSs over
′
DBigh(K) and DBigh(K) where the place graphs are hard, that is, have no
barren roots (see [4, Definition 7.13]).

4.1 Engaged Transition System

A possible way for reducing the transitions in the standard transition system is
to consider only transitions where the labels carry some information about the
agent. This can be expressed by considering only transitions in whose underlying
IPO diagram the redex shares something with the agent, or the label accesses
some of agent’s resources (i.e. edges).

Definition 15 (engaged transitions). In ′
DBigh a standard transition of an

agent a is said to be engaged if it can be based on a reaction rule with redex
R such that |a| ∩ |R|
= ∅ or some nodes of R access to resources of a (via the
IPO-bound). We denote by et the transition system of engaged transitions.

Notice that this definition extends smoothly the one given by Milner for pure
(i.e., output linear) bigraphs [6, Definition 9.10]; in fact, on output-linear bi-
graphs these definition coincide.

Definition 16 (relative bisimilarity). A relative bisimulation for et (on st)
is a symmetric relation S such that if aSb, then for every engaged transition
a

L−→λ a
′ and Lb is defined, there exists b′ such that b L−→λ b

′ in st, and a′Sb′.
The relative bisimilarity for et (on st), denoted by ∼et

st
, is the largest relative

bisimulation for et (on st).

Our aim is to prove that et is adequate for st, that is, ∼et

st
=∼st.

To this end, we need to recall and introduce some technical definitions:

Definition 17. 1. A bigraph is open if every link is open;
2. it is inner accessible if every edge and upward outer name is connected to

an upward inner name;
3. it is outer accessible if every edge and downward inner name is connected

to a downward outer name;
4. it is accessible if it is inner and outer accessible;
5. it is inner guarding if it has no upward inner names and has no site has a

root as parent;

Reactive Systems over Directed Bigraphs 387

6. it is outer guarding if it has no downward outer names;
7. it is guarding if it is inner and outer guarding;
8. it is simple if it has no idle names, no barren roots and no downward inner

names, and it is prime, guarding, inner-injective and open.
9. it is pinning if it has no upward outer names, no barren roots, no two down-

ward outer names are peers, and it is prime, ground and outer accessible.

Intuitively, a simple bigraph has no edges (i.e., no resources), and the ports of
its controls are separately linked to names in the outer interface. Instead, in a
pinning bigraph ports are connected only to local edges, each of them is also
accessible from exactly one name of the outer interface. Notice that in simple
(resp. pinning) bigraphs, the downward (resp. upward) outer interface is empty.

Definition 18. A DBRS is simple if all redexes are simple; it is pinning if all
redexes are pinning; it is orthogonal if all redexes are either simple or pinning.

Note that all these DBRS have mono and epi redexes.
We recall and give some properties of openness and accessibility.

Proposition 6 (openness properties)

1. A composition F ◦G is open if and only if both F and G are open.
2. Every open bigraph is lean (i.e. has no idle edges).
3. If B is an IPO for A and A1 is open, then B0 is open.

Proposition 7 (accessibility properties)

1. A composition F ◦ G is outer (resp. inner) accessible if and only if both F
and G are outer (resp. inner) accessible.

2. Every inner or outer accessible bigraph is lean.
3. If B is an IPO for A and A1 is outer (resp. inner) accessible, then B0 is

outer (resp. inner) accessible.

We can now state and prove the main result of the section.

Theorem 1 (adequacy of engaged transitions). In an orthogonal and lin-
ear DBRS equipped with st, the engaged transitions are adequate; that is, relative
engaged bisimilarity ∼et

st
coincides with ∼st.

Proof. The fact that ∼st⊆∼et

st
is trivial. For the vice versa we shall show that

S = {(Ca0, Ca1) | a0 ∼et

st
a1}∪ �

is a standard bisimulation up to support equivalence for ∼st, for details see [6,
Proposition 4.5]. This more general result ensures ∼et

st
⊆∼st by taking C = id.

Suppose that a0 ∼et

st
a1. Let Ca0

M−→μ b′0 be a standard transition, with

MCa1 defined. We must find b′1 such that Ca1
M−→μ b

′
1 and (b′0, b′1) ∈ S�, where

S� � �S� is the closure of S under �.
There exists a ground reaction rule (r0, r′0) and an IPO (the large square in

diagram (a) below) underlying the previous transition of Ca0. Moreover E0 is
active and width(E0)(width(cod(r0))) = μ and b′0 � E0r

′
0. By taking an RPO

for (a0, r0) relative to (MC,E0), we get two IPOs as shown in diagram (a).

388 D. Grohmann and M. Miculan

(a)

a0

r0

L

D0

C

M

E

E0

(b)

a1

r1

L

D1

(c)

a1

r1

L

D1

C

M

E

Now D0 is active, so the lower IPO in diagram (a) underlies a transition
a0

L−→λ a
′
0 � D0r

′
0, where λ = width(D0)(width(cod(r0))). Also E is active at

λ and b′0 � Ea′0. Since MCa1 is defined we deduce that La1 is defined; we have
to show the existence of a transition a1

L−→λ a
′
1, with underlying IPO as shown

in diagram (b). Substituting this IPO for the lower square in diagram (a) we get
a transition Ca1

M−→μ b
′
1 � Ea′1 as shown in diagram (c).

Now, to complete the proof we have to show that a1
L−→λ a

′
1 exists and that

(b′0, b
′
1) ∈ S�. This can be done by cases, on how the transition is engaged. ()

Notice that in DBTSs, differently from pure bigraphical transition systems, et

restricted to prime agents is not adequate for st; that is, in general the bisimi-
larity defined using et restricted to prime agents does not coincide with ∼st on
prime agents.

4.2 Definite Engaged Transition System

From the DBTS et defined in the previous subsection, we want to obtain an
abstract DBTS for the corresponding abstract DBRS, obtained by the quotient
functor A : ′DBigh(K) → DBigh(K). To do this, we need to prove that et is
definite for st, that is, that we can infer whether a transition a L−→λ a

′ in st is
engaged just by looking at the observation (L, λ) [6, Definition 4.11].

Definition 19 (split, connected). A split of F : I → K takes the form:

F = F1 ◦ (F2 ⊗ idI1) ◦ ι

where F0 : I0 → J and F1 : J ⊗ I1 → K each have at least one node and
ι : I → I0 ⊗ I1 is an iso. The split is connected if some port in F0 is linked
to some port in F1. It is prime if I0 is prime. F is (prime-)connected if every
(prime) split of F is connected.

Now we are ready to prove that if the simple redexes of the DBRS satisfies
connected condition, then et is definite.

Now we can prove the main result of this section.

Definition 20. A label (L, λ) of a transition system is ambiguous if it occurs
both in an engaged and a not engaged transition. A transition system is ambigu-
ous if it has a ambiguous label.

Reactive Systems over Directed Bigraphs 389

Proposition 8. In an orthogonal and linear DBRS, where all the simple redexes
are connected, then a label (L, λ) is unambiguous.

Then by [6, Proposition 4.12] we can conclude that ∼et

st
is equal to the absolute

one ∼et (defined as per Definition 14).
Note that this property applies equally to concrete and abstract DBRSs. Now

applying [6, Corollary 4.13] and Theorem 1, we obtain

Proposition 9. In an orthogonal linear DBRS where all simple redexes are
connected:

1. The engaged transition system et is definite for st.
2. Absolute engaged bisimilarity ∼et coincides with ∼st.

We can finally transfer engaged transitions and bisimilarity to the abstract bi-
graphs. The “engagedness” can be defined only for concrete bigraphs; we say
that an abstract transition is engaged if it is the image of an engaged transition
under A and we still call engaged bisimilarity the induced bisimilarity under A.

We prove a result for et similar to Proposition 5 for st.

Proposition 10. Let ′D be an orthogonal linear DBRS where all simple redexes
are connected, and let D be its lean-support quotient. Then

1. a ∼et b if and only if A(a) A(∼et) A(b).
2. In D, A(∼et) is a congruence.

4.3 Extending to Non-hard Abstract Bigraphs

The DBTS above is obtained using the quotient functor A : ′
DBigh(K) →

DBigh(K), which considers only hard place graphs. As a consequence of this
restriction, we cannot use the unit 1 of the sharing products because 1 is not
hard. In some cases this is too restrictive; for example, we need to use 1 for
encoding the null agent of many process calculi.

A possibility is to introduce a specific zero-arity node � (called place node)
which can be used to fill the barren roots; but in this way the structural con-
gruence 0|P ≡ P does not hold; we can only prove that 0|P ∼ P . In fact, as in
[4], we want to quotient the bigraphs by “place equivalence” (≡�), that is, two
bigraphs are equal if they differ only by � nodes.

Let �� be the smallest equivalence including � and ≡�. Then, similarly to
�, we obtain the ��-quotient functor:

A� : ′DBigh(K�)→ DBig(K)

where K� is the signature K extended with the place node �.
We want to obtain an abstract (possibly not hard) DBTSs on K from an

hard concrete DBTS on K�, using the functor A�. As for A, we must prove ��

respects et transitions. We know that � does so, it remains to show that ≡�

respects et. For this we require that all redexes of the DBRS are flat.

390 D. Grohmann and M. Miculan

Definition 21. A bigraph is flat if no node has a node as parent.

Now we can prove the same result shown in Proposition 10:

Proposition 11. Let ′D(K�, ′R) be an orthogonal linear hard DBRS (that is,
definite and whose redexes are flat), and let D(K,R) be its ��-quotient.

1. a ∼et b if and only if A�(a) A�(∼et) A�(b).
2. In D, A�(∼et) is a congruence.

5 An Application: The Fusion Calculus

In this section we apply the theory developed in the previous sections to the Fu-
sion calculus. Recall that the processes of the (monadic) Fusion calculus (without
replication) are generated by the following grammar:2

P,Q ::= 0 | zx.P | z̄x.P | P |Q | (x)P

where the processes are taken up to the structural congruence (≡), that is the
least congruence satisfying the abelian monoid laws for composition and the
scope laws and scope extension law:

(x)0 ≡ 0 (x)(y)P ≡ (y)(x)P P |(x)Q ≡ (x)(P |Q) where x /∈ fn(P).

The semantics is defined by the following set of rules (which is a monadic
version of that given in [7]), closed under the structural congruence ≡.

Pref
−

α.P
α→ P

Par
P

α→ P ′

P |Q α→ P ′|Q
Open

P
uz→ P ′, u /∈ {z, z̄}

(z)P
(z)uz→ P ′

Scope
P
{x=y}→ P ′

(y)P 1→ P ′{x/y}
Pass

P
α→ P ′, x /∈ n(α)

(x)P α→ (x)P ′
Com

P
ux→ P ′, Q

ūy→ Q′

P |Q {x=y}→ P ′|Q′

We write (P, ϕ) to mean that a process has reached the configuration P with

associated fusion relation ϕ. We define (P, ϕ) → (P ′, ϕ′) iff P
ψ→ P ′ and ϕ′ is

the transitive closure of ϕ ∪ ψ.
Finally, we recall the notions of fusion bisimilarity and hyperequivalence.

Definition 22. A fusion bisimulation is a symmetric relation S between pro-
cesses such that whenever (P,Q) ∈ S, if P α→ P ′ with bn(α) ∩ fn(Q) = ∅, then
Q

α→ Q′ and (P ′σα, Q
′σα) ∈ S (where σα denotes the substitutive effect of α).

P and Q are fusion bisimilar if (P,Q) ∈ S for some fusion bisimulation S.
A hyperbisimulation is a substitution closed fusion bisimulation, i.e., an S

such that (P,Q) ∈ S implies (Pσ,Qσ) ∈ S for any substitution σ. P and Q are
hyperequivalent, written P ∼F Q, if they are related by a hyperbisimulation.

Reactive Systems over Directed Bigraphs 391

x z

getx,z

z y

sendy,z

x y

fusex,y

Fig. 1. The controls of the signature for the Fusion calculus

�yx.0|(x)z̄x.0�{z=y}

P
[n]∈{z=y} �[n]

n ◦ ��n
n ◦ �n

[n]

�yx.0|(x)z̄x.0�{y,z,x}

x y z

x y z

Fig. 2. An example of encoding a fusion process in directed bigraphs

Notice that hyperequivalence only is a congruence, while bisimilarity is not [7].
The signature for representing Fusion processes in directed bigraphs is KF �

{get:2, send:2, fuse:2}, where get, send are passive and fuse is atomic (Figure 1).
A process P is translated to a bigraph of DBig(KF) in two steps, using some

algebraic operators of directed bigraphs [1]. First, for X a set of names such that
fn(P) ⊆ X , we define a bigraph �P �X : ε→ 〈1, (∅, X)〉:

�0�X = 1 � X �P |Q�X = �P �X � �Q�X �(x)P �X = �x ◦ �P �X�{x}

�zx.P �X = getx,z ◦ �P �X �z̄x.P �X = sendx,z ◦ �P �X where x, z ∈ X

Notice that names in X are represented as outer upward names. In this transla-
tion bound names are represented by local (not accessible) edges.

Then, the encoding of a process P under a fusion ϕ takes the bigraph �P �fn(P)
and associates to each name in fn(P) an outer accessible edge, according to ϕ:

�P �ϕ =

⎛
⎝ ∑

[n]ϕ∈ϕ

�[n]ϕ
n ◦ ��n

n ◦ �n
[n]ϕ

⎞
⎠ ◦

⎛
⎝�P �fn(P) ⊗

∑
m∈Y \fn(P)

�m

⎞
⎠

Fusions are represented by linking the fused names (in the outer interface) to
the same edge. An example of encoding is given in Figure 2.

2 Sum and fusion prefix can be easily encoded in this syntax.

392 D. Grohmann and M. Miculan

x z y

0 1

getx,z � sendy,z → fusex,y � �z � id1 � id1

x z y

0 1

Com

x y

(��x
x ⊗ ��y

y) ◦ fusex,y → �x,y
z ◦ �z

x y

Fuse

x

��x
x ◦ �x

y,z ◦ fusey,z → �x

x

Disp

Fig. 3. Reaction rules RF for the Fusion calculus

Proposition 12. Let P and Q be two processes; then P ≡ Q if and only if
�P �ϕ = �Q�ϕ, for every fusion ϕ.

The set of reaction rules (RF) are shown in Figure 3. Notice that Com is simple,
instead Fuse and Disp are pinning; hence this system is orthogonal. Moreover
each rule is flat. We denote this DBRS as DF � D(KF ,RF).

Proposition 13 (Adequacy of the encoding).

1. if (P, ϕ) → (P ′, ϕ′) then �P �ϕ −→∗ �P ′�ϕ′ ;
2. if �P �ϕ −→∗ �P ′�ϕ′ then (P, ϕ) →∗ (P ′, ϕ′).

Proof. By induction on the length of the traces. Point 1. is easy. For point
2, first of all note that, by definition of �·�ϕ, �P ′�ϕ′ has no fuse controls. If
�P �ϕ −→∗ �P ′�ϕ′ , in the trace there are one or more applications of the Com
rule in DF , so we use the Com rule of the Fusion on the corresponding P
sub-process. We can ignore the Fuse and Disp rules, because the fusions are
performed immediately in the Fusion calculus. ()

Working with the abstract bigraphs we obtain the exact match between the
Fusion reactions and bigraphic one. Now we want to define the et bisimilarity
for the Fusion calculus. We define ′DF � ′D(K�

F ,
′RF) to be the concrete DBRS

whose precategory of bigraphs is defined on the signature K�

F , and ′RF are all

Reactive Systems over Directed Bigraphs 393

x z w y

u v

u v

x z w y

z w

z w

x z w y

u v

�xz|wy�∅
idx,y⊗(fusez,w�idz,w)−−−−−−−−−−−−−−→ �xz|wy�{z=w} ⊗ 1

Fig. 4. An example of a non prime engaged transition in ′DF

the reaction rules that are in the preimage of the abstract rules of DF via A�

(see Figure 3).
First notice that engaged transitions of ′DF yield a congruential bisimilarity.

Corollary 1. The bisimilarity ∼et is a congruence in ′DF .

Proof. Since ′RF is orthogonal and linear, by Theorem 1, et is adequate for
st in ′DF . Moreover there are no subsumption, then it follows by Proposition 9
that et is definite for st and hence ∼et=∼st. ()

Now by Proposition 11, we can derive a congruential bisimilarity in our bigraph-
ical representation of the Fusion.

Corollary 2. In DF , the following two sentences are verified:

1. a ∼et b if and only if A�(a) A�(∼et) A�(b);
2. A�(∼et) is a congruence.

Clearly, ∼et induces a congruence on processes of Fusion calculus. In fact this is
the first congruence for Fusion calculus defined only by coinduction (differently
from hyperequivalence, which needs a closure under substitutions). However,
comparing this congruence with hyperbisimulation or hyperequivalence turns
out to be problematic, because the DBTS et involves also non-prime transitions
which are essential to make et adequate with respect to st (see Figure 4 for
an example of a useful but not prime transition). Thus, when comparing two
processes P , Q using ∼et, we have to consider also non-prime transitions; in
these cases, the resulting agents are non-prime, and their connection with the
descendants of P and Q in the original semantics is still unclear.

394 D. Grohmann and M. Miculan

6 Conclusions

In this paper, we have presented directed bigraphical reactive systems and di-
rected bigraphical transition systems, that is wide reactive and transition sys-
tems built over directed bigraphs. We have shown that the bisimilarity induced
by the IPO construction is always a congruence; moreover, under a mild condi-
tion, this bisimilarity can be characterized by a smaller LTS whose transitions
(called “engaged”) are only those really relevant for the agents. As an applica-
tion, we have presented the first encoding of the Fusion calculus as a DBRS;
then, using the general constructions given in this paper, we have defined a
bisimilarity for Fusion which is also a congruence, without the need of a closure
under substitutions.

The exact relation between this equivalence and those defined in the literature
(i.e., hyperbisimilarity and hyperequivalence) is still under investigation. The
issue is that for DBRSs, engaged transitions of prime agents may include also
non-prime transitions, yielding non-prime agents as results. This happens in the
case of Fusion calculus, and these transitions are not easily interpreted in terms
of the labelled transition systems by which hyperbisimilarity is defined.

Another possible future work concerns the application of the theory developed
in this paper for verification of properties of systems represented as DBRSs. Be-
side using standard bisimilarity for checking behavioural equivalence, the com-
pact DBTS can be used also for model checking purposes.

Acknowledgements. The authors wish to thank Robin Milner and the anonymous
referees for their helpful comments.

References

1. Grohmann, D., Miculan, M.: An algebra for directed bigraphs. In: Mackie, I., Plump,
D. (eds.) Pre-proceedings of TERMGRAPH 2007. ENTCS, Elsevier, Amsterdam
(2007)

2. Grohmann, D., Miculan, M.: Directed bigraphs. In: Proc. XXIII MFPS. ENTCS,
vol. 173, pp. 121–137. Elsevier, Amsterdam (2007)

3. Jensen, O.H., Milner, R.: Bigraphs and transitions. In: Proc. POPL (2003)
4. Jensen, O.H., Milner, R.: Bigraphs and mobile processes (revised). Technical report

UCAM-CL-TR-580, Computer Laboratory, University of Cambridge (2004)
5. Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CON-

CUR 2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001)
6. Milner, R.: Pure bigraphs: Structure and dynamics. Inf. Comput. 204(1) (2006)
7. Parrow, J., Victor, B.: The fusion calculus: Expressiveness and symmetry in mobile

processes. In: Proceedings of LICS ’98, pp. 176–185. IEEE Computer Society Press,
Los Alamitos (1998)

8. Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Proc. LICS 2005,
20th IEEE Symposium on Logic in Computer Science, Chicago, IL, USA, 26-29
June 2005, pp. 311–320. IEEE Computer Society, Los Alamitos (2005)

Asynchronous Games:
Innocence Without Alternation�

Paul-André Melliès and Samuel Mimram

Équipe PPS, CNRS and Université Paris 7, 2 place Jussieu, case 7017,
75251 Paris cedex 05, France

mellies@pps.jussieu.fr, smimram@pps.jussieu.fr

Abstract. The notion of innocent strategy was introduced by Hyland and Ong
in order to capture the interactive behaviour of λ-terms and PCF programs. An
innocent strategy is defined as an alternating strategy with partial memory, in
which the strategy plays according to its view. Extending the definition to non-
alternating strategies is problematic, because the traditional definition of views is
based on the hypothesis that Opponent and Proponent alternate during the inter-
action. Here, we take advantage of the diagrammatic reformulation of alternating
innocence in asynchronous games, in order to provide a tentative definition of
innocence in non-alternating games. The task is interesting, and far from easy.
It requires the combination of true concurrency and game semantics in a clean
and organic way, clarifying the relationship between asynchronous games and
concurrent games in the sense of Abramsky and Melliès. It also requires an inter-
active reformulation of the usual acyclicity criterion of linear logic, as well as a
directed variant, as a scheduling criterion.

1 Introduction

The alternating origins of game semantics. Game semantics was invented (or rein-
vented) at the beginning of the 1990s in order to describe the dynamics of proofs and
programs. It proceeds according to the principles of trace semantics in concurrency
theory: every program and proof is interpreted by the sequences of interactions, called
plays, that it can have with its environment. The novelty of game semantics is that this
set of plays defines a strategy which reflects the interactive behaviour of the program
inside the game specified by the type of the program.

Game semantics was originally influenced by a pioneering work by Joyal [16] build-
ing a category of games (called Conway games) and alternating strategies. In this set-
ting, a game is defined as a decision tree (or more precisely, a dag) in which every edge,
called move, has a polarity indicating whether it is played by the program, called Pro-
ponent, or by the environment, called Opponent. A play is alternating when Proponent
and Opponent alternate strictly – that is, when neither of them plays two moves in a
row. A strategy is alternating when it contains only alternating plays.

The category of alternating strategies introduced by Joyal was later refined by
Abramsky and Jagadeesan [2] in order to characterize the dynamic behaviour of proofs

� This work has been supported by the ANR Invariants algébriques des systèmes informatiques
(INVAL).

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 395–411, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

396 P.-A. Melliès and S. Mimram

in (multiplicative) linear logic. The key idea is that the tensor product of linear logic,
noted ⊗, may be distinguished from its dual, noted Γ, by enforcing a switching policy
on plays – ensuring for instance that a strategy of A ⊗ B reacts to an Opponent move
played in the subgame A by playing a Proponent move in the same subgameA.

Thenotion ofpointergamewas then introduced by Hyland and Ong,and independently
by Nickau, in order to characterize the dynamic behaviour of programs in the program-
ming language PCF – a simply-typed λ-calculus extended with recursion, conditional
branching and arithmetical constants. The programs of PCF are characterized dynami-
cally as particular kinds of strategies with partial memory – called innocent because they
react to Opponent moves according to their own view of the play. This view is itself a play,
extracted from the current play by removing all its “invisible”or “inessential” moves. This
extraction is performed by induction on the length of the play, using the pointer structure
of the play, and the hypothesis that Proponent and Opponent alternate strictly.

This seminal work on pointer games led to the first generation of game semantics for
programming languages. The research programme – mainly guided by Abramsky and
his collaborators – was extraordinarily successful: by relaxing the innocence constraint
on strategies, it suddenly became possible to characterize the interactive behaviour of
programs written in PCF (or in a call-by-value variant) extended with imperative fea-
tures like states, references, etc. However, because Proponent and Opponent strictly
alternate in the original definition of pointer games, these game semantics focus on
sequential languages like Algol or ML, rather than on concurrent languages.

Concurrent games. This convinced a little community of researchers to work on the
foundations of non-alternating games – where Proponent and Opponent are thus al-
lowed to play several moves in a row at any point of the interaction. Abramsky and
Melliès [3] introduced a new kind of game semantics to that purpose, based on con-
current games – see also [1]. In that setting, games are defined as partial orders (or
more precisely, complete lattices) of positions, and strategies as closure operators on
these partial orders. Recall that a closure operator σ on a partial order D is a func-
tion σ : D −→ D satisfying the following properties:

(1) σ is increasing: ∀x ∈ D, x ≤ σ(x),
(2) σ is idempotent: ∀x ∈ D, σ(x) = σ(σ(x)),
(3) σ is monotone: ∀x, y ∈ D, x ≤ y ⇒ σ(x) ≤ σ(y).

The order on positions x ≤ y reflects the intuition that the position y contains more
information than the position x. Typically, one should think of a position x as a set
of moves in a game, and x ≤ y as set inclusion x ⊆ y. Now, Property (1) expresses
that a strategy σ which transports the position x to the position σ(x) increases the
amount of information. Property (2) reflects the intuition that the strategy σ delivers all
its information when it transports the position x to the position σ(x), and thus transports
the position σ(x) to itself. Property (3) is both fundamental and intuitively right, but also
more subtle to justify. Note that the interaction induced by such a strategy σ is possibly
non-alternating, since the strategy transports the position x to the position σ(x) by
“playing in one go” all the moves appearing in σ(x) but not in x.

Asynchronous transition systems. Every closure operator σ is characterized by the
set fix(σ) of its fixpoints, that is, the positions x satisfying x = σ(x). So, a strategy

Asynchronous Games: Innocence Without Alternation 397

is expressed alternatively as a set of positions (the set of fixpoints of the closure oper-
ator) in concurrent games, and as a set of alternating plays in pointer games. In order
to understand how the two formulations of strategies are related, one should start from
an obvious analogy with concurrency theory: pointer games define an interleaving se-
mantics (based on sequences of transitions) whereas concurrent games define a truly
concurrent semantics (based on sets of positions, or states) of proofs and programs.
Now, Mazurkiewicz taught us this important lesson: a truly concurrent semantics may
be regarded as an interleaving semantics (typically a transition system) equipped with
asynchronous tiles – represented diagrammatically as 2-dimensional tiles

x
m
����
� n

��

y1

n ��

∼ y2

m����
�

z

(1)

expressing that the two transitions m and n from the state x are independent, and con-
sequently, that their scheduling does not matter from a truly concurrent point of view.
This additional structure induces an equivalence relation on transition paths, called
homotopy, defined as the smallest congruence relation ∼ identifying the two schedul-
ings m · n and n · m for every tile of the form (1). The word homotopy should be
understood mathematically as (directed) homotopy in the topological presentation of
asynchronous transition systems as n-cubical sets [15]. This 2-dimensional refinement
of usual 1-dimensional transition systems enables to express simultaneously the inter-
leaving semantics of a program as the set of transition paths it generates, and its truly
concurrent semantics, as the homotopy classes of these transition paths. When the un-
derlying 2-dimensional transition system is contractible in a suitable sense, explained
later, these homotopy classes coincide in fact with the positions of the transition system.

Asynchronous games. Guided by these intuitions, Melliès introduced the notion of
asynchronous game, which unifies in a surprisingly conceptual way the two heteroge-
neous notions of pointer game and concurrent game. Asynchronous games are played
on asynchronous (2-dimensional) transition systems, where every transition (or move)
is equipped with a polarity, expressing whether it is played by Proponent or by Oppo-
nent. A play is defined as a path starting from the root (noted ∗) of the game, and a
strategy is defined as a well-behaved set of alternating plays, in accordance with the fa-
miliar principles of pointer games. Now, the difficulty is to understand how (and when)
a strategy defined as a set of plays may be reformulated as a set of positions, in the spirit
of concurrent games.

The first step in the inquiry is to observe that the asynchronous tiles (1) offer an alter-
native way to describe justification pointers between moves. For illustration, consider
the boolean game B, where Opponent starts by asking a question q, and Proponent an-
swers by playing either true or false. The game is represented by the decision tree

∗
q��
q

true
���

��false
����
�

F V

(2)

398 P.-A. Melliès and S. Mimram

where ∗ is the root of the game, and the three remaining positions are called q, F and
V (V for “Vrai” in French). At this point, since there is no concurrency involved, the
game may be seen either as an asynchronous game, or as a pointer game. Now, the
game B ⊗ B is constructed by taking two boolean games “in parallel.” It simulates a
very simple computation device, containing two boolean memory cells. In a typical
interaction, Opponent starts by asking with qL the value of the left memory cell, and
Proponent answers trueL; then, Opponent asks with qR the value of the right memory
cell, and Proponent answers falseR. The play is represented as follows in pointer
games:

qL · trueL
��

· qR · falseR
��

The play contains two justification pointers, each one represented by an arrow starting
from a move and leading to a previous move. Typically, the justification pointer from
the move trueL to the move qL indicates that the answer trueL is necessarily played
after the question qL. The same situation is described using 2-dimensional tiles in the
asynchronous game B⊗ B below:

∗ ⊗ ∗
qL

 !!!
!!! qR

����
���

�

q ⊗ ∗
trueL

!!			
			 qR

""

��""

∼ ∗ ⊗ q
qL
		

 		
falseR

""��
���

�

V ⊗ ∗
qR ""��
���

�
∼ q ⊗ q

trueL
		

!!		 falseR

""

""""

∼ ∗ ⊗ F

qL!!###
###

V ⊗ q

falseR """"
"""

"
∼ q ⊗ F

trueL!!			
			

V ⊗ F

(3)

The justification pointer between the answer trueL and its question qL is replaced here
by a dependency relation between the two moves, ensuring that the move trueL cannot
be permuted before the move qL. The dependency itself is expressed by a “topological”
obstruction: the lack of a 2-dimensional tile permuting the transition trueL before the
transition qL in the asynchronous game B⊗ B.

This basic correspondence between justification pointers and asynchronous tiles al-
lows a reformulation of the original definition of innocent strategy in pointer games
(based on views) in the language of asynchronous games. Surprisingly, the reformula-
tion leads to a purely local and diagrammatic definition of innocence in asynchronous
games, which does not mention the notion of view any more. This diagrammatic refor-
mulation leads then to the important discovery that innocent strategies are positional in
the following sense. Suppose that two alternating plays s, t : ∗ −→ x with the same tar-
get position x are elements of an innocent strategy σ, and that m is an Opponent move
from position x. Suppose moreover that the two plays s and t are equivalent modulo
homotopy. Then, the innocent strategy σ extends the play s·m with a Proponent move n
if and only if it extends the play t ·m with the same Proponent move n. Formally:

s ·m · n ∈ σ and s ∼ t and t ∈ σ implies t ·m · n ∈ σ. (4)

Asynchronous Games: Innocence Without Alternation 399

From this follows that every innocent strategy σ is characterized by the set of positions
(understood here as homotopy classes of plays) reached in the asynchronous game. This
set of positions defines a closure operator, and thus a strategy in the sense of concurrent
games. Asynchronous games offer in this way an elegant and unifying point of view on
pointer games and concurrent games.

Concurrency in game semantics. There is little doubt that a new generation of game
semantics is currently emerging along this foundational work on concurrent games. We
see at least three converging lines of research. First, authors trained in game semantics
– Ghica, Laird and Murawski – were able to characterize the interactive behaviour of
various concurrent programming languages like Parallel Algol [12] or an asynchronous
variant of the π-calculus [17] using directly (and possibly too directly) the language of
pointer games. Then, authors trained in proof theory and game semantics – Curien and
Faggian – relaxed the sequentiality constraints required by Girard on designs in ludics,
leading to the notion of L-net [9] which lives at the junction of syntax (expressed as
proof nets) and game semantics (played on event structures). Finally, and more recently,
authors trained in process calculi, true concurrency and game semantics – Varacca and
Yoshida – were able to extend Winskel’s truly concurrent semantics of CCS, based on
event structures, to a significant fragment of the π-calculus, uncovering along the way
a series of nice conceptual properties of confusion-free event structures [25].

So, a new generation of game semantics for concurrent programming languages is
currently emerging... but their various computational models are still poorly connected.
We would like a regulating theory here, playing the role of Hyland and Ong pointer
games in traditional (that is, alternating) game semantics. Asynchronous games are cer-
tainly a good candidate, because they combine interleaving semantics and causal se-
mantics in a harmonious way. Unfortunately, they were limited until now to alternating
strategies [20]. The key contribution of this paper is thus to extend the asynchronous
framework to non-alternating strategies in a smooth way.

Asynchronous games without alternation. One particularly simple recipe to construct
an asynchronous game is to start from a partial order of events where, in addition, every
event has a polarity, indicating whether it is played by Proponent or Opponent. This
partial order (M,) is then equipped with a compatibility relation satisfying a series
of suitable properties – defining what Winskel calls an event structure. A position x of
the asynchronous game is defined as a set of compatible events (or moves) closed under
the “causality” order:

∀m,n ∈M, m n and n ∈ x implies m ∈ x.

Typically, the boolean game B described in (2) is generated by the event structure

q
$$$ %%

%

true false

where q is an Opponent move, and false and true are two incompatible Propo-
nent moves, with the positions q, V, F defined as q = {q}, V = {q, true} and
F = {q, false}. The tensor product B⊗B of two boolean games is then generated by

400 P.-A. Melliès and S. Mimram

putting side by side the two event structures, in the expected way. The resulting asyn-
chronous game looks like a flower with four petals, one of them described in (3). More
generally, every formula of linear logic defines an event structure – which generates in
turn the asynchronous game associated to the formula. For instance, the event structure
induced by the formula

(B⊗ B) � B (5)

contains the following partial order of compatible events:

q

���
��� &&&

&&&

qL qR

trueL false falseR

(6)

which may be seen alternatively as a (maximal) position in the asynchronous game
associated to the formula.

This game implements the interaction between a boolean function (Proponent) of
type (5) and its two arguments (Opponent). In a typical play, Opponent starts by playing
the move q asking the value of the boolean output; Proponent reacts by asking with qL
the value of the left input, and Opponent answers trueL; then, Proponent asks with qR
the value of the right input, and Opponent answers falseR; at this point only, using the
knowledge of its two arguments, Proponent answers false to the initial question:

q · qL · trueL · qR · falseR · false (7)

Of course, Proponent could have explored its two arguments in the other order, from
right to left, this inducing the play

q · qR · falseR · qL · trueL · false (8)

The two plays start from the empty position ∗ and reach the same position of the asyn-
chronous game. They may be seen as different linearizations (in the sense of order
theory) of the partial order (6) provided by the game. Each of these linearizations may
be represented by adding causality (dotted) edges between moves to the original partial
order (6), in the following way:

q

���
���

��
��

��
��

��
�

qL

trueL

qR

falseR

false

q
���

���

''
''
''
''
''
'

qR

trueR

qL

falseL

false

(9)

The play (7) is an element of the strategy representing the left implementation of the
strict conjunction, whereas the play (8) is an element of the strategy representing its
right implementation. Both of these strategies are alternating. Now, there is also a par-
allel implementation, where the conjunction asks the value of its two arguments at the

Asynchronous Games: Innocence Without Alternation 401

same time. The associated strategy is not alternating anymore: it contains the play (7)
and the play (8), and moreover, all the (possibly non-alternating) linearizations of the
following partial order:

q

���
��� &&&

&&&

qL qR

trueL falseR

false

(10)

This illustrates an interesting phenomenon, of a purely concurrent nature: every play s
of a concurrent strategy σ coexists with other plays t in the strategy, having the same
target position x – and in fact, equivalent modulo homotopy. It is possible to reconstruct
from this set of plays a partial order on the events of x, refining the partial order on
events provided by the game. This partial order describes entirely the strategy σ under
the position x: more precisely, the set of plays in σ reaching the position x coincides
with the set of the linearizations of the partial order.

Our definition of innocent strategy will ensure the existence of such an underlying
“causality order” for every position x reached by the strategy. Every innocent strategy
will then define an event structure, obtained by putting together all the induced partial
orders. The construction requires refined tools from the theory of asynchronous transi-
tion systems, and in particular the fundamental notion of cube property.

Ingenuous strategies. We introduce in Section 4 the notion of ingenuous strategy, de-
fined as a strategy regulated by an underlying “causality order” on moves for every
reached position, and satisfying a series of suitable diagrammatic properties. One dif-
ficulty is that ingenuous strategies do not compose properly. Consider for instance the
ingenuous strategy σ of type B⊗ B generated by the partial order:

qL qR

trueL falseR

(11)

The strategy answers trueL to the question qL, but answers falseR to the question qR
only if the question qL has been already asked. Composing the strategy σ with the right
implementation of the strict conjunction pictured on the right-hand side of (9) induces a
play q ·qR stopped by a deadlock at the position {q, qR}. On the other hand, composing
the strategy with the left or the parallel implementation is fine, and leads to a complete
interaction.

This dynamic phenomenon is better understood by introducing two new binary con-
nectives 	 and
 called “before” and “after”, describing sequential composition in
asynchronous games. The game A 	 B is defined as the 2-dimensional restriction of
the game A⊗B to the plays s such that every move played before a move in A is also
in A; or equivalently, every move played after a moveB is also in B. The gameA
B
is simply defined as the game B 	A, where the componentB thus starts.

The ingenuous strategy σ in B ⊗ B specializes to a strategy in the subgame B 	 B,
which reflects it, in the sense that every play s ∈ σ is equivalent modulo homotopy to
a play t ∈ σ in the subgame B 	 B. This is not true anymore when one specializes the
strategy σ to the subgame B
B, because the play qL ·trueL ·qR ·falseR is an element

402 P.-A. Melliès and S. Mimram

of σ which is not equivalent modulo homotopy to any play t ∈ σ in the subgame B
B.
For that reason, we declare that the strategy σ is innocent in the game B 	 B but not in
the game B⊗ B.

Innocent strategies. This leads to an interactive criterion which tests dynamically whe-
ther an ingenuous strategy σ is innocent for a given formula of linear logic. The criterion
is based on scheduling conditions which recast, in the framework of non-alternating
games, the switching conditions formulated by Abramsky and Jagadeesan for alter-
nating games [2]. The idea is to switch every tensor product ⊗ of the formula as 	
or
 and to test whether every play s in the strategy σ is equivalent modulo homo-
topy to a play t ∈ σ in the induced subgame. Every such switching reflects a choice
of scheduling by the counter-strategy: an innocent strategy is thus a strategy flexible
enough to adapt to every scheduling of the tensor products by Opponent. An ingen-
uous strategy satisfies the scheduling criterion if and only if the underlying proof-
structure satisfies a directed (and more liberal) variant of the acyclicity criterion
introduced by Girard [13] and reformulated by Danos and Regnier [10]. A refinement
based on the notion of synchronized clusters of moves enables then to strengthen the
scheduling criterion, and to make it coincide with the usual non-directed acyclicity
criterion.

We will establish in Section 4 that every ingenuous strategy may be seen alternatively
as a closure operator, whose fixpoints are precisely the halting positions of the strat-
egy. This connects (non alternating) asynchronous games to concurrent games. However,
there is a subtle mismatch between the interaction of two ingenuous strategies seen as
sets of plays, and seen as sets of positions. Typically, the right implementation of the
strict conjunction in (9) composed to the strategy σ in (11) induces two different fix-
points in the concurrent game model: the deadlock position {q, qR} reached during the
asynchronous interaction, and the complete position {q, qL, trueL, qR, trueR, false}
which is never reached interactively. The innocence assumption is precisely what ensures
that this will never occur: the fixpoint computed in the concurrent game model is unique,
and coincides with the position eventually reached in the asynchronous game model. In
particular, innocent strategies compose properly.

2 The Cube Property

The cube property expresses a fundamental causality principle in the diagrammatic lan-
guage of asynchronous transition systems [5,24,26]. The property is related to stability
in the sense of Berry [6]. It was first noticed by Nielsen, Plotkin and Winskel in [21],
then reappeared in [22] and [14,18] and was studied thoroughly by Kuske in his PhD
thesis; see [11] for a survey. The most natural way to express the property is to start
from what we call an asynchronous graph. Recall that a graph G = (V,E, ∂0, ∂1) con-
sists of a set V of vertices (or positions), a set E of edges (or transitions), and two
functions ∂0, ∂1 : E → V called respectively source and target functions. An asyn-
chronous graph G = (G, %) is a graph G together with a relation % on coinitial and
cofinal transition paths of length 2. Every relation s % t is represented diagrammatically
as a 2-dimensional tile

Asynchronous Games: Innocence Without Alternation 403

x
m
����
� n

��

y1

p ��

∼ y2

q����
�

z

(12)

where s = m ·p and t = n · q. In this diagram, the transition q is intuitively the residual
of the transition m after the transition n. One requires the two following properties for
every asynchronous tile:

1. m
= n and p
= q,
2. the pair of transitions (n, q) is uniquely determined by the pair of transitions (m, p),

and conversely.

The main difference with the asynchronous tile (1) occurring in the asynchronous tran-
sition systems defined in [26,23] is that the transitions are not labelled by events: so, the
2-dimensional structure is purely “geometric” and not deduced from an independence
relation on events. What matters is that the 2-dimensional structure enables one to define
a homotopy relation ∼ on paths in exactly the same way. Moreover, every homotopy
class of a path s = m1 · · ·mk coincides with the set of linearizations of a partial order
on its transitions if, and only if, the asynchronous graph satisfies the following cube
property:

Cube property: a hexagonal diagram induced by two coinitial and cofinal paths
m · n · o : x −→→ y and p · q · r : x −→→ y is filled by 2-dimensional tiles as
pictured in the left-hand side of the diagram below, if and only it is filled by
2-dimensional tiles as pictured in the right-hand side of the diagram:

x
m
##���
�

��

p ��

∼

x2

q

��
x1

n

��

∼
x3

##((
(

��
∼

y1

r��))
)

y2 o
�� y

⇐⇒

x
m
����
� ∼

p �� x2

��((
(

q

��

x1

n

��
∼

�� y3
∼

��

y1

r��(((
(

y2 o
�� y

The cube property is for instance satisfied by every asynchronous transition system and
every transition system with independence in the sense of [26,23]. The correspondence
between homotopy classes and sets of linearizations of a partial order adapts, in our
setting, a standard result on pomsets and asynchronous transition systems with dynamic
independence due to Bracho, Droste and Kuske [7].

Every asynchronous graphG equipped with a distinguished initial position (noted ∗)
induces an asynchronous graph [G] whose positions are the homotopy classes of paths
starting from the position ∗, and whose edges m : [s] −→ [t] between the homotopy
classes of the paths s : ∗ −→→ x and t : ∗ −→→ y are the edges m : x −→ y such
that s ·m ∼ t. When the original asynchronous graph G satisfies the cube property, the
resulting asynchronous graph [G] is “contractible” in the sense that every two coinitial
and cofinal paths are equivalent modulo homotopy.

404 P.-A. Melliès and S. Mimram

So, we will suppose from now on that all our asynchronous graphs satisfy the cube
property and are therefore contractible. The resulting framework is very similar to the
domain of configurations of an event structure. Indeed, every contractible asynchronous
graph defines a partial order on its set of positions, defined by reachability: x ≤ y
when x −→→ y. Moreover, this order specializes to a finite distributive lattice under
every position x, rephrasing – by Birkhoff representation theorem – the fact already
mentioned that the homotopy class of a path ∗ −→→ x coincides with the linearizations of
a partial order on its transitions. Finally, every transition may be labelled by an “event”
representing the transition modulo a “zig-zag” relation, identifying the moves m and q
in every asynchronous tile (12). The idea of “zig-zag” is folklore: it appears for instance
in [23] in order to translate a transition system with independence into a labelled event
structure.

3 Positionality in Asynchronous Games

Before considering 2-Player games, we express the notion of a positional strategy in
1-Player games. A 1-Player game (G, ∗) is simply defined as an asynchronous graphG
together with a distinguished initial position ∗. A play is defined as a path starting
from ∗, and a strategy is defined as a set of plays of the 1-Player game, closed under
prefix. A strategy σ is called positional when for every three paths s, t : ∗ −→→ x and
u : x −→→ y, we have

s · u ∈ σ and s ∼ t and t ∈ σ implies t · u ∈ σ. (13)

This adapts the definition of (4) to a non-polarized setting and extends to the non-
alternating setting. Note that a positional strategy is the same thing as a subgraph of
the 1-Player game, where every position is reachable from ∗ inside the subgraph. This
subgraph inherits a 2-dimensional structure from the underlying 1-Player game; it thus
defines an asynchronous graph, denoted Gσ .

The advantage of considering asynchronous graphs instead of event structures ap-
pears at this point: the “event” associated to a transition is deduced from the 2-dimensio-
nal geometry of the graph. So, the “event” associated to a transition m in the graph Gσ

describes the “causality cascade” leading the strategy to play the transition m ; whereas
the “event” associated to the same transition m in the 1-Player game G is simply the
move of the game. This subtle difference is precisely what underlies the distinction
between the formula (5) and the various strategies (9) and (10). For instance, there are
three “events” associated to the output move false in the parallel implementation of the
strict conjunction, each one corresponding to a particular pair of inputs (true, false),
(false, false), and (false, true). This phenomenon is an avatar of Berry stability,
already noticed in [19].

From now on, we only consider positional strategies satisfying two additional prop-
erties:

1. forward compatibility preservation: every asynchronous tile of the shape (12) in the
1-Player gameG belongs to the subgraphGσ of the strategy σ when its two coinitial

Asynchronous Games: Innocence Without Alternation 405

transitions m : x −→ y1 and n : x −→ y2 are transitions in the subgraph Gσ .
Diagrammatically,

x
σ m

����
� n∈σ

��

y1

p ��

∼ y2

q��
z

implies

x
σ m

����
� n∈σ

��

y1

σ p ��

∼ y2

q∈σ����
�

z

where the dotted edges indicate edges in G.
2. backward compatibility preservation: dually, every asynchronous tile of the shape

(12) in the 1-Player game G belongs to the subgraph Gσ of the strategy σ when
its two cofinal transitions p : y1 −→ z and q : y2 −→ z are transitions in the
subgraph Gσ .

These two properties ensure that the asynchronous graphGσ is contractible and satisfies
the cube property. Contractibility means that every two cofinal plays s, t : ∗ −→→ x of
the strategy σ are equivalent modulo homotopy inside the asynchronous graph Gσ –
that is, every intermediate play in the homotopy relation is an element of σ. Moreover,
there is a simple reformulation as a set of plays of a positional strategy satisfying the
two preservation properties: it is (essentially) a set of plays satisfying (1) a suitable cube
property and (2) that s ·m ∈ σ and s · n ∈ σ implies s ·m · p ∈ σ and s · n · q ∈ σ
when m and n are the coinitial moves of a tile (12). This characterization enables us to
regard a positional strategy either as a set of plays, or as an asynchronous subgraph of
the game.

4 Ingenuous Strategies in Asynchronous Games

A 2-Player game (G, ∗, λ) is defined as an asynchronous graph G = (V,E, %) to-
gether with a distinguished initial position ∗, and a function λ : E → {−1,+1} which
associates a polarity to every transition (or move) of the graph. Moreover, the equali-
ties λ(m) = λ(q) and λ(n) = λ(p) are required to hold in every asynchronous tile (12)
of the asynchronous graph G. The convention is that a movem is played by Proponent
when λ(m) = +1 and by Opponent when λ(m) = −1.

A strategy σ is called ingenuous when it satisfies the following properties:

1. it is positional, and satisfies the backward and forward compatibility preservation
properties of Section 3,

2. it is deterministic, in the following concurrent sense: every pair of coinitial moves
m : x −→ y1 and n : x −→ y2 in the strategy σ where the move m is played by
Proponent, induces an asynchronous tile (12) in the strategy σ. Diagrammatically,

x
σ m

����
� n∈σ

���
��

y1 y2 implies

x
σ m

����
� n∈σ

��

y1

σ p ��

∼ y2

q∈σ����
�

z

406 P.-A. Melliès and S. Mimram

3. it is courteous, in the following sense: every asynchronous tile (12) where the two
moves m : x −→ y1 and p : y1 −→ z are in the strategy σ, and where m is a
Proponent move, is an asynchronous tile in the strategy σ. Diagrammatically,

x
σ m

����
� n

��
y1

σ p ��

∼ y2

q��
z

implies

x
σ m

����
� n∈σ

��

y1

σ p ��

∼ y2

q∈σ����
�

z

when λ(m) = +1.

Note that, for simplicity, we express this series of conditions on strategies seen as asyn-
chronous subgraphs. However, the conditions may be reformulated in a straightforward
fashion on strategies defined as sets of plays. The forward and backward compatibility
preservation properties of Section 3 ensure that the set of plays of the strategy σ reach-
ing the same position x is regulated by a “causality order” on the moves occurring in
these plays – which refines the “justification order” on moves (in the sense of pointer
games) provided by the asynchronous game.

Our concurrent notion of determinism is not exactly the same as the usual notion of
determinism in sequential games: in particular, a strategy may play several Proponent
moves from a given position, as long as it converges later. Courtesy ensures that a
strategy σ which accepts an Opponent move n after playing an independent Proponent
move m, is ready to delay its own action, and to accept the move n before playing the
move m. Together with the receptivity property introduced in Section 6, this ensures
that the “causality order” on moves induced by such a strategy refines the underlying
“justification order” of the game, by adding only order dependencies m n where m
is an Opponent move and n is a Proponent move. This adapts to the non-alternating
setting the fact that, in alternating games, the causality order p q provided by the
view of an innocent strategy coincides with the justification order when p is Proponent
and q is Opponent.

The experienced reader will notice that an ingenuous (and not necessarily receptive)
strategy may add order dependencies m n between two Opponent moves m and n.
In the next Section, we will see that this reflects an unexpected property of concurrent
strategies expressed as closure operators.

5 Ingenuous Strategies in Concurrent Games

In this section, we reformulate ingenuous strategies in asynchronous games as strategies
in concurrent games. The assumption that our 2-Player games are played on contractible
asynchronous graphs induces a partial order on the set of positions, defined by reach-
ability: x ≤ y when x −→→ y. The concurrent game associated to an asynchronous
gameG is defined as the ideal completion of the partial order of positions reachable (in
a finite number of steps) from the root ∗. So, the positions in the concurrent game are
either finite when they are reachable from the root, or infinite when they are defined as
an infinite directed subset of finite positions. The complete lattice D is then obtained
by adding a top element& to the ideal completion. Considering infinite as well as finite

Asynchronous Games: Innocence Without Alternation 407

positions introduces technicalities that we must confront in order to cope with infinite
interactions, and to establish the functoriality property at the end of Section 6.

Now, we will reformulate ingenuous strategies in the asynchronous game G as con-
tinuous closure operators on the complete lattice D. By continuous, we mean that the
closure operator preserves joins of directed subsets. Every closure operator σ on a com-
plete lattice D induces a set of fixpoints:

fix(σ) = { x ∈ D | σ(x) = x } (14)

closed under arbitrary meets. Moreover, when the closure operator σ is continuous, the
set fix(σ) is closed under joins of directed subsets. Conversely, every subset X of the
complete lattice D closed under arbitrary meets defines a closure operator

σ : x �→
∧
{ y ∈ X | x ≤ y } (15)

which is continuous when the subset X is closed under joins of directed subsets. More-
over, the two translations (14) and (15) are inverse operations.

Now, every ingenuous strategy σ defines a set halting(σ) of halting positions. We
say that a finite position x is halting when (1) the position is reached by the strategy σ
and (2) there is no Proponent move m : x −→ y in the strategy σ. The definition
of a halting position can be extended to infinite positions by ideal completion: infinite
positions are thus defined as downward-closed directed subsets x̂ of finite positions.
We do not provide the details here for lack of space. It can be shown that the set of
halting positions of an ingenuous strategy σ is closed under arbitrary meets, and under
joins of directed subsets. It thus defines a continuous closure operator, noted σ◦, defined
by (15). The closure operator σ◦ satisfies a series of additional properties:

1. The domain dom(σ◦) is closed under (arbitrary) compatible joins,
2. For every pair of positions x, y ∈ dom(σ◦) such that x ≤ y, either σ◦(x) = σ◦(y)

or there exists an Opponent move m : σ◦(x) −→ z such that z ≤P σ◦(z) and
σ◦(z) ≤ σ◦(y).

Here, the domain dom(σ◦) of the closure operator σ◦ is defined as the set of posi-
tions x ∈ D such that σ◦(x)
= &; and the Proponent reachability order ≤P refines
the reachability order ≤ by declaring that x ≤P y means, for two finite positions x
and y, that there exists a path x −→→ y containing only Proponent moves; and then, by
extending the definition of ≤P to all positions (either finite or infinite) in D by ideal
completion.

Conversely, every continuous closure operator τ which satisfies the two additional
properties mentioned above induces an ingenuous strategy σ in the following way. The
dynamic domain of the closure operator τ is defined as the set of positions x ∈ dom(τ)
such that x ≤P τ(x). So, a position x is in the dynamic domain of τ when the closure
operator increases it in the proper way, that is, without using any Opponent move. The
ingenuous strategy σ induced by the closure operator τ is then defined as the set of
plays whose intermediate positions are all in the dynamic domain of τ . This defines
an inverse to the operation σ �→ σ◦ from ingenuous strategies to continuous closure
operators satisfying the additional properties 1 and 2. This pair of constructions thus
provides a one-to-one correspondence between the ingenuous strategies and continuous
closure operators satisfying the additional properties 1 and 2.

408 P.-A. Melliès and S. Mimram

6 Innocent Strategies

Despite the one-to-one correspondence between ingenuous strategies and concurrent
strategies described in Section 5, there is a subtle mismatch between the two notions
– which fortunately disappears when ingenuity is refined into innocence. On the one
hand, it is possible to construct a category G of asynchronous games and ingenuous
strategies, where composition is defined by “parallel composition+hiding” on strategies
seen as sets of plays. On the other hand, it is possible to construct a category C of con-
current games and concurrent strategies, defined in [3], where composition coincides
with relational composition on the sets of fixpoints of closure operators. Unfortunately
– and here comes the mismatch – the translation G → C described in Section 5 is not
functorial, in the sense that it does not preserve composition of strategies. This is nicely
illustrated by the example of the ingenuous strategy (11) whose composition with the
right implementation of the strict conjunction (9) induces a deadlock. More conceptu-
ally, this phenomenon comes from the fact that the category G is compact closed: the
tensor product⊗ is identified with its dual Γ.

This motivates a strengthening of ingenuous strategies by a scheduling criterion
which distinguishes the tensor product from its dual, and plays the role, in the non-
alternating setting, of the switching conditions introduced by Abramsky and Jagadeesan
for alternating games [2]. The criterion is sufficient to ensure that strategies do not dead-
lock during composition. In order to explain it here, we limit ourselves, for simplicity, to
formulas of multiplicative linear logic (thus constructed using⊗ and Γ and their units 1
and ⊥) extended with the two lifting modalities ↑ and ↓. The tensor product, as well
as its dual, are interpreted by the expected “asynchronous product” of asynchronous
graphs: in particular, every play s of A ⊗ B may be seen as a pair of plays (sA, sB)
of A and B modulo homotopy. The two connectives⊗ and Γ are then distinguished by
attaching a label ⊗ or Γ to every asynchronous tile (12) appearing in the game. Typi-
cally, an asynchronous tile (12) between a move m in A and a move n in B is labelled
by ⊗ in the asynchronous game A ⊗ B and labelled by Γ in the asynchronous game
A ΓB. The lifting modality ↑ (resp. ↓) is then interpreted as the operation of “lifting” a
game with an initial Opponent (resp. Proponent) move. Note that there is a one-to-one
relationship between the lifting modalities ↑ and ↓ appearing in the formula, and the
moves of the asynchronous game G which denotes the formula. A nice aspect of our
asynchronous approach is that we are able to formulate our scheduling criterion in two
alternative but equivalent ways, each of them capturing a particular point of view on the
correctness of proofs and strategies:

1. a scheduling criterion based on a switching as “before” 	 or “after”
 of every
tensor product ⊗ in the underlying formula of linear logic. As explained in the
introduction, the scheduling criterion requires that every path s in the strategy σ
is equivalent modulo homotopy to a path t in the strategy σ which respects the
scheduling indicated by the switching. This is captured diagrammatically by ori-
enting every ⊗-tile as 	 or
 according to the switching, and by requiring that
every play s ∈ σ normalizes to a 2-dimensional normal form t ∈ σ w.r.t. these
semi-commutations [8] or standardization tiles [18].

2. a directed acyclicity criterion which reformulates the previous scheduling crite-
rion along the lines of Girard’s long trip criterion [13] and Danos-Regnier’s

Asynchronous Games: Innocence Without Alternation 409

acyclicity criterion [10]. Every position x reached by an ingenuous strategy σ
induces a partial order on the moves appearing in the position x. Every rela-
tion m n of the partial order induces a jump between the lifting modalities
associated to the moves m and n in the formula. The acyclicity criterion then re-
quires that every switching of the Γ connectives as “Left” or “Right” (that is, in the
sense of Girard) induces a graph with no directed cycles.

The scheduling criterion ensures that the operation σ �→ σ◦ defines a lax functor, in
the sense that every fixpoint of σ◦; τ◦ is also a fixpoint of (σ; τ)◦. Now, an ingenuous
strategy σ is called asynchronous when it additionally satisfies the following receptivity
property: for every play s : ∗ −→→ x and for every move m : x −→ y,

s ∈ σ and λ(m) = −1 implies s ·m ∈ σ.

The category A is then defined as follows: its objects are the asynchronous games
equipped with ⊗-tiles and Γ-tiles, and its morphisms A → B are the asynchronous
strategies of A � B, defined as A∗ ΓB, satisfying the scheduling criterion – whereA∗

is the asynchronous game A with Opponent and Proponent interchanged. The schedul-
ing criterion ensures that the operation σ �→ σ◦ defines a strong monoidal functor
A → C from the category A to the category C of concurrent games and concurrent
strategies – thus extending the programme of [4,20] in the non-alternating setting.

The notion of asynchronous strategy is too liberal to capture the notion of innocent
strategy, at least because there exist asynchronous strategies which are not definable
as the interpretation of a proof of MLL extended with lifting modalities ↑ and ↓. The
reason is that the scheduling criterion tests only for directed cycles, instead of the usual
non-directed cycles. On the other hand, it should be noted that the directed acyclic-
ity criterion coincides with the usual non-directed acyclicity criterion in the situation
treated in [2] – that is, when the formula is purely multiplicative (i.e. contains no lifting
modality), every variable X and X⊥ is interpreted as a game with a Proponent and an
Opponent move, and every axiom link is interpreted as a “bidirectional” copycat strat-
egy. The full completeness result in [3] uses a similar directed acyclicity criterion for
MALL. Hence, directed acyclicity is a fundamental, but somewhat hidden, concept of
game semantics.

On the other hand, we would like to mirror the usual non-directed acyclicity crite-
rion in our asynchronous and interactive framework. This leads us to another stronger
scheduling criterion based on the idea that in every play s played by an asynchronous
strategy σ, an Opponent movem and a Proponent move n appearing in the play, and di-
rectly related by the causality order m n induced by σ can be played synchronously.
We write m � n in that case, and say that two moves are synchronized in s when
they lie in the same equivalence class generated by �. A cluster of moves t in the
play s = m1 · · ·mk is then defined as a path t = mi · · ·mi+j such that all the moves
appearing in t are synchronized. Every play s in the strategy σ can be reorganized
as a sequence of maximal clusters, using a standardization mechanism [18,19]. The
resulting clustered play is unique, modulo permutation of clusters, noted∼OP . This re-
lation generalizes to the non-alternating case the relation ∼OP introduced in [20]. This
leads to

410 P.-A. Melliès and S. Mimram

3. a clustered scheduling criterion based, just as previously, on a switching as “be-
fore” 	 or “after”
 of every tensor product⊗ in the underlying formula of linear
logic. The difference is that we ask that every clustered play s in the strategy σ
may be reorganized modulo∼OP as a clustered play which respects the scheduling
indicated by the switching.

An asynchronous strategy is called innocent when it satisfies this stricter scheduling cri-
terion. Although this tentative definition of innocence is fine conceptually, we believe
that it has to be supported by further proof-theoretic investigations. An interesting as-
pect of our scheduling criteria is that they may be formulated in a purely diagrammatic
and 2-dimensional way: in particular, the switching conditions are expressed here using
the underlying logic MLL with lifting modalities ↑ and ↓ for clarity only, and may be
easily reformulated diagrammatically.

Acknowledgments. We would like to thank Martin Hyland together with Pierre-Louis
Curien, Claudia Faggian, Russ Harmer, Daniele Varacca, and Nobuko Yoshida for spon-
taneous and lively blackboard discussions.

References

1. Abramsky, S.: Sequentiality vs. concurrency in games and logic. In: MSCS (2003)
2. Abramsky, S., Jagadeesan, R.: Games and Full Completeness for Multiplicative Linear

Logic. The Journal of Symbolic Logic 59(2), 543–574 (1994)
3. Abramsky, S., Melliès, P.-A.: Concurrent games and full completeness. In: LICS (1999)
4. Baillot, P., Danos, V., Ehrhard, T., Regnier, L.: Timeless Games. In: CSL (1997)
5. Bednarczyk, M.A.: Categories of asynchronous systems. PhD thesis (1988)
6. Berry, G.: Modèles complètement adéquats et stables des lambda-calculs typés. Thèse de

Doctorat d’État, Université Paris VII (1979)
7. Bracho, F., Droste, M., Kuske, D.: Representation of computations in concurrent automata

by dependence orders. Theoretical Computer Science 174(1-2), 67–96 (1997)
8. Clerbout, M., Latteux, M., Roos, Y.: The book of traces, ch. 12, pp. 487–552 (1995)
9. Curien, P.L., Faggian, C.: L-Nets, Strategies and Proof-Nets. In: CSL (2005)

10. Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical
Logic 28(3), 181–203 (1989)

11. Droste, M., Kuske, D.: Automata with concurrency relations – a survey. Advances in Logic,
Artificial Intelligence and Robotics, pp. 152–172 (2002)

12. Ghica, D.R., Murawski, A.S.: Angelic Semantics of Fine-Grained Concurrency. In:
Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 211–225. Springer, Heidelberg
(2004)

13. Girard, J.-Y.: Linear logic. TCS 50, 1–102 (1987)
14. Gonthier, G., Lévy, J.-J., Melliès, P.-A.: An abstract standardisation theorem. In: LICS (1992)
15. Goubault, É.: Geometry and Concurrency: A User’s Guide. MSCS 10(4), 411–425 (2000)
16. Joyal, A.: Remarques sur la theorie des jeux à deux personnes. Gazette des Sciences Mathé-

matiques du Quebec 1(4), 46–52 (1977)
17. Laird, J.: A game semantics of the asynchronous π-calculus. In: Abadi, M., de Alfaro, L.

(eds.) CONCUR 2005. LNCS, vol. 3653, Springer, Heidelberg (2005)
18. Melliès, P.-A.: Axiomatic Rewriting 1: A diagrammatic standardization theorem. In: LNCS,

pp. 554–638. Springer, Heidelberg (1992)

Asynchronous Games: Innocence Without Alternation 411

19. Melliès, P.-A.: Axiomatic rewriting 4: A stability theorem in rewriting theory. In: LICS
(1998)

20. Melliès, P.-A.: Asynchronous games 2: the true concurrency of innocence. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, Springer, Heidelberg (2004)

21. Nielsen, M., Plotkin, G., Winskel, G.: Petri Nets, Event Structures and Domains, Part I.
Theoretical Computer Science 13, 85–108 (1981)

22. Panangaden, P., Shanbhogue, V., Stark, E.W.: Stability and sequentiality in data flow net-
works. In: Paterson, M.S. (ed.) Automata, Languages and Programming. LNCS, vol. 443,
pp. 253–264. Springer, Heidelberg (1990)

23. Sassone, V., Nielsen, M., Winskel, G.: Models for concurrency: Towards a classification.
Theoretical Computer Science 170(1), 297–348 (1996)

24. Shields, M.W.: Concurrent Machines. The Computer Journal 28(5), 449–465 (1985)
25. Varacca, D., Yoshida, N.: Typed Event Structures and the π-calculus. In: MFPS (2006)
26. Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of Logic in Computer Sci-

ence, vol. 3, pp. 1–148. Oxford University Press, Oxford (1995)

Bisimulation and Logical Preservation for
Continuous-Time Markov Decision Processes

Martin R. Neuhäußer1,2 and Joost-Pieter Katoen1,2

1 Software Modeling and Verification Group
RWTH Aachen University, Germany
2 Formal Methods and Tools Group

University of Twente, The Netherlands
{neuhaeusser,katoen}@cs.rwth-aachen.de

Abstract. This paper introduces strong bisimulation for continuous-
time Markov decision processes (CTMDPs), a stochastic model which
allows for a nondeterministic choice between exponential distributions,
and shows that bisimulation preserves the validity of CSL. To that end,
we interpret the semantics of CSL—a stochastic variant of CTL for
continuous-time Markov chains—on CTMDPs and show its measure-
theoretic soundness. The main challenge faced in this paper is the proof
of logical preservation that is substantially based on measure theory.

1 Introduction

Discrete–time probabilistic models, in particular Markov decision processes
(MDP) [20], are used in various application areas such as randomized distributed
algorithms and security protocols. A plethora of results in the field of concur-
rency theory and verification are known for MDPs. Efficient model–checking
algorithms exist for probabilistic variants of CTL [9,11], linear–time [30] and
long–run properties [15], process algebraic formalisms for MDPs have been de-
veloped and bisimulation is used to minimize MDPs prior to analysis [18].

In contrast, CTMDPs [26], a continuous–time variant of MDPs, where state
residence times are exponentially distributed, have received scant attention.
Whereas in MDPs nondeterminism occurs between discrete probability distribu-
tions, in CTMDPs the choice between various exponential distributions is nonde-
terministic. In case all exponential delays are uniquely determined, a continuous–
time Markov chain (CTMC) results, a widely studied model in performance and
dependability analysis.

This paper proposes strong bisimulation on CTMDPs—this notion is a con-
servative extension of bisimulation on CTMCs [13]—and investigates which kind
of logical properties this preserves. In particular, we show that bisimulation pre-
serves the validity of CSL [3,5], a well–known logic for CTMCs. To that end, we
provide a semantics of CSL on CTMDPs which is in fact obtained in a similar
way as the semantics of PCTL on MDPs [9,11]. We show the semantic soundness
of the logic using measure–theoretic arguments, and prove that bisimilar states
preserve full CSL. Although this result is perhaps not surprising, its proof is

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 412–427, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bisimulation and Logical Preservation 413

non–trivial and strongly relies on measure–theoretic aspects. It shows that rea-
soning about CTMDPs, as witnessed also by [31,7,10] is not straightforward. As
for MDPs, CSL equivalence does not coincide with bisimulation as only maximal
and minimal probabilities can be logically expressed.

Apart from the theoretical contribution, we believe that the results of this pa-
per have wider applicability. CTMDPs are the semantic model of stochastic Petri
nets [14] that exhibit confusion, stochastic activity networks [28] (where absence
of nondeterminism is validated by a “well–specified” check), and is strongly re-
lated to interactive Markov chains which are used to provide compositional seman-
tics to process algebras [19] and dynamic fault trees [12]. Besides, CTMDPs have
practical applicability in areas such as stochastic scheduling [17,1] and dynamic
power management [27]. Our interest in CTMDPs is furthermore stimulated by
recent results on abstraction—where the introduction of nondeterminism is the
key principle—of CTMCs [21] in the context of probabilistic model checking.

In our view, it is a challenge to study this continuous–time stochastic model
in greater depth. This paper is a small, though important, step towards a better
understanding of CTMDPs. More details and all proofs can be found in [25].

2 Continuous-Time Markov Decision Processes

Continuous-time Markov decision processes extend continuous-time Markov
chains by nondeterministic choices. Therefore each transition is labelled with
an action referring to the nondeterministic choice and the rate of a negative
exponential distribution which determines the transition’s delay:

Definition 1 (Continuous-time Markov decision process). A tuple C =
(S,Act ,R,AP ,L) is a labelled continuous-time Markov decision process if S
is a finite, nonempty set of states, Act a finite, nonempty set of actions and
R : S×Act×S → �≥0 a three-dimensional rate matrix. Further, AP is a finite
set of atomic propositions and L : S → 2AP is a state labelling function.

The set of actions that are enabled in a state s ∈ S is denoted Act(s) :=
{α ∈ Act | ∃s′ ∈ S. R(s, α, s′) > 0}. A CTMDP is well-formed if Act(s)
= ∅ for
all s ∈ S, that is, if every state has at least one outgoing transition. Note that
this can easily be established for any CTMDP by adding self-loops.

s0 s1

s2

s3
α, 0.5

β, 15

β, 5

α, 0.1

α, 0.1

α, 0.5

α, 1

Fig. 1. Example of a CTMDP

Example 1. When entering state s1 of the CT-
MDP in Fig. 1 (without state labels) one ac-
tion from the set of enabled actions Act(s1) =
{α, β} is chosen nondeterministically, say α.
Next, the rate of the α-transition determines
its exponentially distributed delay. Hence for
a single transition, the probability to go from
s1 to s3 within time t is 1 − e−R(s1,α,s3)t =
1− e−0.1t.

If multiple outgoing transitions exist for the chosen action, they compete ac-
cording to their exponentially distributed delays: In Fig. 1 such a race condition

414 M.R. Neuhäußer and J.-P. Katoen

occurs if action β is chosen in state s1. In this situation, two β-transitions (to
s2 and s3) with rates R(s1, β, s2) = 15 and R(s1, β, s3) = 5 become available
and state s1 is left as soon as the first transition’s delay expires. Hence the
sojourn time in state s1 is distributed according to the minimum of both expo-
nential distributions, i.e. with rate R(s1, β, s2) + R(s1, β, s3) = 20. In general,
E(s, α) :=

∑
s′∈S R(s, α, s′) is the exit rate of state s under action α. Then

R(s1, β, s2)/E(s1, β) = 0.75 is the probability to move with β from s1 to s2, i.e.
the probability that the delay of the β-transition to s2 expires first. Formally,
the discrete branching probability is P(s, α, s′) := R(s,α,s′)

E(s,α) if E(s, α) > 0 and 0
otherwise. By R(s, α,Q) :=

∑
s′∈Q R(s, α, s′) we denote the total rate to states

in Q ⊆ S.

Definition 2 (Path). Let C = (S,Act ,R,AP,L) be a CTMDP. Pathsn(C) :=
S×(Act ×�≥0 × S)n is the set of paths of length n in C; the set of finite paths in
C is defined by Paths�(C) =

⋃
n∈� Pathsn and Pathsω(C) := (S ×Act ×�≥0)

ω

is the set of infinite paths in C. Paths(C) := Paths�(C) ∪ Pathsω(C) denotes the
set of all paths in C.

We write Paths instead of Paths(C) whenever C is clear from the context. Paths

are denoted π = s0
α0,t0−−−→ s1

α1,t1−−−→ · · · αn−1,tn−1−−−−−−−→ sn where |π| is the length of π.
Given a finite path π ∈ Pathsn, π↓ is the last state of π. For n < |π|, π[n] := sn
is the n-th state of π and δ(π, n) := tn is the time spent in state sn. Further,

π[i..j] is the path-infix si
αi,ti−−−→ si+1

αi+1,ti+1−−−−−−→ · · · αj−1,tj−1−−−−−−→ sj of π for i<j≤|π|.
We write

α,t−−→ s′ for a transition with action α at time point t to a successor
state s′. The extension of a path π by a transition m is denoted π ◦m. Finally,
π@t is the state occupied in π at time point t ∈ �≥0, i.e. π@t := π[n] where n
is the smallest index such that

∑n
i=0 ti > t.

Note that Def. 2 does not impose any semantic restrictions on paths, i.e. the
set Paths usually contains paths which do not exist in the underlying CTMDP.
However, the following definition of the probability measure (Def. 4) justifies
this as it assigns probability zero to those sets of paths.

2.1 The Probability Space

In probability theory (see [2]), a field of sets F ⊆ 2Ω is a family of subsets of a
set Ω which contains the empty set and is closed under complement and finite
union. A field F is a σ-field1 if it is also closed under countable union, i.e. if for all
countable families {Ai}i∈I of sets Ai ∈ F it holds

⋃
i∈I Ai ∈ F. Any subset A of

Ω which is in F is called measurable. To measure the probability of sets of paths,
we define a σ-field of sets of combined transitions which we later use to define
σ-fields of sets of finite and infinite paths: For CTMDP C = (S,Act ,R,AP ,L),
the set of combined transitions is Ω = Act ×�≥0 × S. As S and Act are finite,
the corresponding σ-fields are FAct := 2Act and FS := 2S ; further, Distr(Act)
and Distr(S) denote the sets of probability distributions on FAct and FS . Any
1 In the literature [22], σ-fields are also called σ-algebras.

Bisimulation and Logical Preservation 415

combined transition occurs at some time point t ∈ �≥0 so that we can use the
Borel σ-field B(�≥0) to measure the corresponding subsets of �≥0.

A Cartesian product is a measurable rectangle if its constituent sets are ele-
ments of their respective σ-fields, i.e. the set A×T ×S is a measurable rectangle
if A ∈ FAct , T ∈ B(�≥0) and S ∈ FS . We use FAct ×B(�≥0) × FS to denote
the set of all measurable rectangles2. It generates the desired σ-field F of sets of
combined transitions, i.e. F := σ

(
FAct ×B(�≥0)× FS

)
.

Now F may be used to infer the σ-fields FPathsn of sets of paths of length n:
FPathsn is generated by the set of measurable (path) rectangles, i.e. FPathsn :=
σ
(
{S0 ×M0 × · · · ×Mn | S0 ∈ FS ,Mi ∈ F, 0 ≤ i ≤ n}

)
. The σ-field of sets of in-

finite paths is obtained using the cylinder-set construction [2]: A set Cn of
paths of length n is called a cylinder base; it induces the infinite cylinder Cn =
{π ∈ Pathsω | π[0..n] ∈ Cn}. A cylinder Cn is measurable if Cn ∈ FPathsn ; Cn

is a rectangle if Cn = S0 × A0 × T0 × · · · × An−1 × Tn−1 × Sn and Si ⊆ S,
Ai ⊆ Act and Ti ⊆ �≥0. It is a measurable rectangle, if Si ∈ FS , Ai ∈ FAct

and Ti ∈ B(�≥0). Finally, the σ-field of sets of infinite paths is defined as
FPathsω := σ

(⋃∞
n=0 {Cn | Cn ∈ FPathsn}

)
.

2.2 The Probability Measure

To define a semantics for CTMDP we use schedulers3 to resolve the nondetermin-
istic choices. Thereby we obtain probability measures on the probability spaces
defined above. A scheduler quantifies the probability of the next action based on
the history of the system: If state s is reached via finite path π, the scheduler
yields a probability distribution over Act(π↓). The type of schedulers we use is
the class of measurable timed history-dependent randomized schedulers [31]:

Definition 3 (Measurable scheduler). Let C be a CTMDP with action set
Act. A mapping D : Paths�×FAct → [0, 1] is a measurable scheduler if D(π, ·) ∈
Distr(Act(π↓)) for all π ∈ Paths� and the functions D(·, A) : Paths� → [0, 1]
are measurable for all A ∈ FAct . THR denotes the set of measurable schedulers.

In Def. 3, the measurability condition states that for any B ∈ B([0, 1]) and
A ∈ FAct the set {π ∈ Paths� | D(π,A) ∈ B} ∈ FPaths	 , see [31]. In the follow-
ing, note that D(π, ·) is a probability measure with support ⊆ Act(π↓); further
P(s, α, ·) ∈ Distr(S) if α ∈ Act(s). Let ηE(π↓,α)(t) := E(π↓, α)·e−E(π↓,α)t denote
the probability density function of the negative exponential distribution with pa-
rameter E(π↓, α). To derive a probability measure on FPathsω , we first define a
probability measure on (Ω,F): For history π ∈ Paths�, let μD(π, ·) : F → [0, 1]
such that

μD(π, M) :=
�
Act
D(π, dα)

�
�≥0

ηE(π↓,α)(dt)
�

S
IM (α, t, s) P(π↓, α, ds).

Then μD(π, ·) defines a probability measure on F where the indicator function
IM (α, t, s) := 1 if the combined transition (α, t, s) ∈M and 0 otherwise [31]. For
a measurable rectangle A× T × S′ ∈ F we obtain
2 Despite notation, FAct ×B(�≥0)× FS is not a Cartesian product.
3 Schedulers are also called policies or adversaries in the literature.

416 M.R. Neuhäußer and J.-P. Katoen

μD(π,A× T × S′) =
�
α∈A

D(π, {α}) ·P(π↓, α, S′) ·
�

T

E(π↓, α) · e−E(π↓,α)tdt. (1)

Intuitively, μD(π,A×T ×S′) is the probability to leave π↓ via some action in A
within time interval T to a state in S′. To extend this to a probability measure
on paths, we now assume an initial distribution ν ∈ Distr(S) for the probability
to start in a certain state s; instead of ν({s}) we also write ν(s).

Definition 4 (Probability measure [31]). For initial distribution ν ∈
Distr(S) the probability measure on FPathsn is defined inductively:

Pr0
ν,D : FPaths0 → [0, 1] : Π �→

�
s∈Π

ν(s) and for n > 0

Prn
ν,D : FPathsn → [0, 1] : Π �→

�
Pathsn−1

Prn−1
ν,D (dπ)

�
Ω

IΠ(π ◦m) μD(π, dm).

By Def. 4 we obtain measures on all σ-fields FPathsn . This extends to a measure
on (Pathsω,FPathsω) as follows: First, note that any measurable cylinder can
be represented by a base of finite length, i.e. Cn = {π ∈ Pathsω | π[0..n] ∈ Cn}.
Now the measures Prn

ν,D on FPathsn extend to a unique probability measure
Prω

ν,D on FPathsω by defining Prω
ν,D(Cn) = Prn

ν,D(Cn). Although any measurable
rectangle with base Cm can equally be represented by a higher-dimensional base
(more precisely, if m < n and Cn = Cm × Ωn−m then Cn = Cm), the Ionescu–
Tulcea extension theorem [2] is applicable due to the inductive definition of the
measures Prn

ν,D and assures the extension to be well defined and unique.
Definition 4 inductively appends transition triples to the path prefixes of

length n to obtain a measure on sets of paths of length n+1. In the proof of The-
orem 3, we use an equivalent characterization that constructs paths reversely,
i.e. paths of length n+ 1 are obtained from paths of length n by concatenating
an initial triple from the set S ×Act ×�≥0 to the suffix of length n:

Definition 5 (Initial triples). Let C = (S,Act ,R,AP ,L) be a CTMDP, ν ∈
Distr(S) and D a scheduler. Then the measure μν,D : FS×Act×�≥0 → [0, 1] on
sets I of initial triples (s, α, t) is defined as

μν,D(I) =
�

S
ν(ds)

�
Act

D(s, dα)
�
�≥0

II(s, α, t) ηE(s,α)(dt).

This allows to decompose a path π = s0
α0,t0−−−→ · · · αn−1,tn−1−−−−−−−→ sn into an initial

triple i = (s0, α0, t0) and the path suffix π[1..n]. For this to be measure preserv-
ing, a new νi ∈ Distr(S) is defined based on the original initial distribution ν of
Prn

ν,D on FPathsn which reflects the fact that state s0 has already been left with
action α0 at time t0. Hence νi is the initial distribution for the suffix-measure
on FPathsn−1 . Similarly, a scheduler Di is defined which reproduces the decisions
of the original scheduler D given that the first i-step is already taken. Hence
Prn−1

νi,Di
is the adjusted probability measure on FPathsn−1 given νi and Di.

Lemma 1. For n ≥ 1 let I × Π ∈ FPathsn be a measurable rectangle, where
I ∈ FS × FAct ×B(�≥0). For i = (s, α, t) ∈ I, let νi := P(s, α, ·) and Di(π) :=
D(i ◦ π). Then Prn

ν,D(I ×Π) =
∫
I Prn−1

νi,Di
(Π) μν,D(di).

Bisimulation and Logical Preservation 417

Proof. By induction on n:

– induction start (n = 1): Let Π ∈ FPaths0 , i.e. Π ⊆ S.

Pr1
ν,D(I ×Π) =

�
Paths0
Pr0

ν,D(dπ)
�

Ω

II×Π(π ◦m) μD(π, dm) (* Definition 4 *)

=
�

S
ν(ds0)

�
Ω

II×Π(s0 ◦m) μD(s0, dm) (* Paths0 = S *)

=
�

S
ν(ds0)

�
Act
D(s0, dα0)

�
�≥0

ηE(s0,α0)(dt0)
�

S
II×Π(s0

α0,t0−−−−→ s1) P(s0, α0, ds1)

=
�

I

μν,D(ds0, dα0, dt0)
�

S
IΠ(s1) P(s0, α0, ds1) (* definition of μν,D*)

=
�

I

μν,D(di)
�

S
IΠ(s1) νi(ds1) (* i = (s0, α0, t0) *)

=
�

I

Pr0
νi,Di

(Π) μν,D(di). (* Definition 4 *)

– induction step (n > 1): Let I×Π×M be a measurable rectangle in FPathsn+1

such that I ∈ FS × FAct ×B(�≥0) is a set of initial triples, Π ∈ FPathsn−1

and M ∈ F is a set of combined transitions. Using the induction hypothesis
Prn

ν,D(I ×Π) =
∫
I
Prn−1

νi,Di
(Π) μν,D(di) we derive:

Prn+1
ν,D (I ×Π ×M) =

�
I×Π

μD(π, M) Prn
ν,D(dπ) (* Definition 4 *)

=
�

I×Π

μD(i ◦ π′, M) Prn
ν,D(d(i ◦ π′)) (* π ! i ◦ π′ *)

=
�

I

�
Π

μD(i ◦ π′, M) Prn−1
νi,Di

(dπ′) μν,D(di) (* ind. hypothesis *)

=
�

I

�
Π

μDi(π
′, M) Prn−1

νi,Di
(dπ′) μν,D(di) (* definition of Di *)

=
�

I

Prn
νi,Di

(Π ×M) μν,D(di). (* Definition 4 *)

()
A class of pathological paths that are not ruled out by Def. 2 are infinite paths
whose duration converges to some real constant, i.e. paths that visit infinitely
many states in a finite amount of time. For n = 0, 1, 2, . . . , an increasing sequence
rn ∈ �≥0 is Zeno if it converges to a positive real number. For example, rn :=∑n

i=1
1
2n converges to 1, hence is Zeno. The following theorem justifies to rule

out such Zeno behaviour:

Theorem 1 (Converging paths theorem). The probability measure of the
set of converging paths is zero.

Proof. Let ConvPaths :=
{
s0

α0,t0−−−→ s1
α1,t1−−−→ · · · |

∑n
i=0 ti converges

}
. Then for

π ∈ ConvPaths the sequence ti converges to 0. Thus there exists k ∈ � such that
ti ≤ 1 for all i ≥ k. Hence ConvPaths ⊆

⋃
k∈� S×Ωk×(Act×[0, 1]×S)ω. Similar

to [5, Prop. 1], it can be shown that Prω
ν,D

(
S ×Ωk × (Act × [0, 1]× S)ω

)
= 0

for all k ∈ �. Thus also Prω
ν,D

(⋃
k∈� S×Ωk×(Act×[0, 1]×S)ω

)
= 0. ConvPaths

418 M.R. Neuhäußer and J.-P. Katoen

is a subset of a set of measure zero; hence, on FPathsω completed4 w.r.t. Prω
ν,D

we obtain Prω
ν,D(ConvPaths) = 0. ()

3 Strong Bisimulation

Strong bisimulation [8,23] is an equivalence on the set of states of a CTMDP
which relates two states if they are equally labelled and exhibit the same stepwise
behaviour. As shown in Theorem 4, strong bisimilarity allows one to aggregate
the state space while preserving transient and long run measures.

In the following we denote the equivalence class of s under equivalence R ⊆
S×S by [s]R= {s′ ∈ S | (s, s′) ∈ R}; if R is clear from the context we also write
[s]. Further, SR := {[s]R | s ∈ S} is the quotient space of S under R.

Definition 6 (Strong bisimulation relation). Let C = (S,Act ,R,AP,L)
be a CTMDP. An equivalence R ⊆ S × S is a strong bisimulation relation if
L(u) = L(v) for all (u, v) ∈ R and R(u, α,C) = R(v, α, C) for all α ∈ Act and
all C ∈ SR.

Two states u and v are strongly bisimilar (u ∼ v) if there exists a strong
bisimulation relation R such that (u, v) ∈ R. Strong bisimilarity is the union of
all strong bisimulation relations.

Formally, ∼ = {(u, v) ∈ S × S | ∃ str. bisimulation rel. R with (u, v) ∈ R} de-
fines strong bisimilarity which itself is (the largest) strong bisimulation relation.

Definition 7 (Quotient). Let C = (S,Act ,R,AP ,L) be a CTMDP. Then C̃ :=
(S̃,Act , R̃,AP , L̃) where S̃ := S∼, R̃([s] , α, C) := R(s, α, C) and L̃([s]) := L(s)
for all s ∈ S, α ∈ Act and C ∈ S̃ is the quotient of C under strong bisimilarity.

To distinguish between a CTMDP C and its quotient, let P̃ denote the quotient’s
discrete branching probabilities and Ẽ its exit rates. Note however, that exit rates
and branching probabilities are preserved by strong bisimilarity, i.e. E(s, α) =
Ẽ([s] , α) and P̃([s] , α, [t]) =

∑
t′∈[t] P(s, α, t′) for α ∈ Act and s, t ∈ S.

Example 2. Consider the CTMDP over the set AP = {a} of atomic propositions
in Fig. 2(a). Its quotient under strong bisimilarity is outlined in Fig. 2(b).

4 Continuous Stochastic Logic

Continuous stochastic logic [3,5] is a state-based logic to reason about
continuous-time Markov chains. In this context, its formulas characterize strong
bisimilarity [16] as defined in [5]; moreover, strongly bisimilar states satisfy the
same CSL formulas [5]. In this paper, we extend CSL to CTMDPs along the lines
of [6] and further introduce a long-run average operator [15]. Our semantics is
based on ideas from [9,11] where variants of PCTL are extended to (discrete
time) MDPs.
4 We may assume FPathsω to be complete, see [2, p. 18ff].

Bisimulation and Logical Preservation 419

s0

∅
s1

∅

s3

{a}

β, 1

α, 2
α, 1

α, 5

α, 0.1
s2

{a}

α,1
α, 0.1

α, 0.5
α, 0.5

(a) CTMDP C

[s0]
∅

[s1]

∅

[s2]

{a}

β, 1
α, 3

α, 0.5
α, 1

α, 5 α, 0.1

(b) Quotient C̃

Fig. 2. Quotient under strong bisimilarity

4.1 Syntax and Semantics

Definition 8 (CSL syntax). For a ∈ AP, p ∈ [0, 1], I ⊆ �≥0 a nonempty
interval and � ∈ {<,≤,≥, >}, CSL state and CSL path formulas are defined by

Φ ::= a | ¬Φ | Φ ∧ Φ | ∀"pϕ| L"pΦ and ϕ ::= XIΦ | ΦUIΦ.

The Boolean connectives ∨ and → are defined as usual; further we extend the
syntax by deriving the timed modal operators “eventually” and “always” using
the equalities �IΦ ≡ ttUIΦ and �IΦ ≡ ¬�I¬Φ where tt := a ∨ ¬a for some
a ∈ AP . Similarly, the equality ∃"pϕ ≡ ¬∀�pϕ defines an existentially quantified
transient state operator.

Example 3. Reconsider the CTMDP from Fig. 2(a). The transient state formula
∀>0.1�[0,1]a states that the probability to reach an a-labelled state within at
most one time unit exceeds 0.1 no matter how the nondeterministic choices in
the current state are resolved. Further, the long-run average formula L<0.25¬a
states that for all scheduling decisions, the system spends less than 25% of its
execution time in non-a states, on average.

Formally the long-run average is derived as follows: For B ⊆ S, let IB denote an
indicator with IB(s) = 1 if s ∈ B and 0 otherwise. Following the ideas of [15,24],
we compute the fraction of time spent in states from the set B on an infinite
path π up to time bound t ∈ �≥0 and define avgB,t(π) = 1

t

∫ t

0 IB(π@t′)dt′.
As avgB,t is a random variable, its expectation can be derived given an initial
distribution ν ∈ Distr(S) and a measurable schedulerD ∈ THR, i.e. E (avgB,t) =∫
Pathsω avgB,t(π) Prων,D(dπ). Having the expectation for fixed time bound t, we

now let t→∞ and obtain the long-run average as limt→∞ E (avgB,t).

Definition 9 (CSL semantics). Let C = (S,Act ,R,AP ,L) be a CTMDP,
s, t ∈ S, a ∈ AP, � ∈ {<,≤,≥, >} and π ∈ Pathsω. Further let νs(t) := 1 if
s = t and 0 otherwise. The semantics of state formulas is defined by

420 M.R. Neuhäußer and J.-P. Katoen

s |= a ⇐⇒ a ∈ L(s)

s |= ¬Φ ⇐⇒ not s |= Φ

s |= Φ ∧ Ψ ⇐⇒ s |= Φ and s |= Ψ

s |= ∀�pϕ ⇐⇒ ∀D ∈ THR. Prω
νs,D {π ∈ Pathsω | π |= ϕ}) p

s |= L�pΦ ⇐⇒ ∀D ∈ THR. lim
t→∞

�
Pathsω

avgSat(Φ),t(π) Prω
νs,D(dπ)) p.

Path formulas are defined by

π |= XIΦ ⇐⇒ π[1] |= Φ ∧ δ(π, 0) ∈ I

π |= ΦUIΨ ⇐⇒ ∃t ∈ I.
�
π@t |= Ψ ∧

�
∀t′ ∈ [0, t). π@t′ |= Φ

��
where Sat(Φ) := {s ∈ S | s |= Φ} and δ(π, n) is the time spent in state π[n].

In Def. 9 the transient-state operator ∀"pϕ is based on the measure of the set
of paths that satisfy ϕ. For this to be well defined we must show that the set
{π ∈ Pathsω | π |= ϕ} is measurable:

Theorem 2 (Measurability of path formulas). For any CSL path formula ϕ
the set {π ∈ Pathsω | π |= ϕ} is measurable.

Proof. For next formulas, the proof is straightforward. For until formulas, let
π = s0

α0,t0−−−→ s1
α1,t1−−−→ · · · ∈ Pathsω and assume π |= ΦUIΨ . By Def. 9 it

holds π |= ΦUIΨ iff ∃t ∈ I.
(
π@t |= Ψ ∧ ∀t′ ∈ [0, t). π@t′ |= Φ

)
. As we may

exclude Zeno behaviour by Theorem 1, there exists n ∈ � with π@t = π[n] = sn
such that I and the period of time

[∑n−1
i=0 ti,

∑n
i=0 ti

)
spent in state sn overlap;

further sn |= Ψ and si |= Φ for i = 0, . . . , n − 1. Note however, that sn must
also satisfy Φ except for the case of instantaneous arrival where

∑n−1
i=0 ti ∈ I.

Accordingly, the set {π ∈ Pathsω | π |= ΦUIΨ} can be represented by the union

∞�
n=0

�
π ∈ Pathsω

���
n−1�
i=0

ti ∈ I ∧ π[n] |= Ψ ∧ ∀m < n. π[m] |= Φ
�

(2)

∪
∞�

n=0

�
π ∈ Pathsω

��� �
n−1�
i=0

ti,

n�
i=0

ti

�
∩ I �= ∅ ∧ π[n] |= Ψ ∧ ∀m ≤ n. π[m] |= Φ

�
. (3)

It suffices to show that the subsets of (2) and (3) induced by any n ∈ � are
measurable cylinders. In the following, we exhibit the proof for (3) and closed
intervals I = [a, b] as the other cases are similar. For fixed n ≥ 0 we show that
the corresponding cylinder base is measurable using a discretization argument:

�
π ∈ Pathsn+1

��� �
n−1�
i=0

ti,
n�

i=0

ti

�
∩
	
a, b

�= ∅ ∧ π[n] |= Ψ ∧ ∀m ≤ n. π[m] |= Φ

�

=
∞�

k=1

�
c0+···+cn≥ak

d0+···+dn−1≤bk
ci<di

n−1�
i=0

�
Sat(Φ)×Act×

ci

k
,
di

k

��
× Sat(Φ ∧ Ψ)×Act×

 cn

k
,∞

�
×S (4)

where ci, dj ∈ �. To shorten notation, let c :=
∑n−1

i=0 ti and d :=
∑n

i=0 ti.

Bisimulation and Logical Preservation 421

t2t1t0 t3 t4
ΦΦΦ

s4s3s2s1s0

Φ Φ ∧ Ψ

s5

dc

b

π =

c0
k

d0
k

c1
k

d1
k

c2
k

d2
k

c3
k

d3
k c4

k

a

Fig. 3. Discretization of intervals with n = 4 and I = (a, b)

⊆: Let π = s0
α0,t0−−−→ s1

α1,t1−−−→ · · · αn,tn−−−−→ sn+1 be in the set on the left-hand
side of equation (4). The intervals (c, d) and [a, b] overlap, hence c < b and d > a
(see top of Fig. 3). Further π[i] |= Φ for i = 0, . . . , n and π[n] |= Ψ . To show that
π is in the set on the right-hand side, let ci = <ti · k − 1= and di = ti · k + 1�
for k > 0. Then ci

k < ti <
di

k approximates the sojourn times ti as depicted in
Fig. 3. Further let ε =

∑n
i=0 ti − a and choose k0 such that n+1

k0
≤ ε to obtain

a =
n�

i=0

ti − ε ≤
n�

i=0

ti −
n + 1

k0
≤

n�
i=0

ci + 1
k0

− n + 1
k0

=
n�

i=0

ci

k0
.

Thus ak ≤
∑n

i=0 ci for all k ≥ k0. Similarly, we obtain k′0 ∈ � s.t.
∑n−1

i=0 di ≤ bk
for all k ≥ k′0. Hence for large k, π is in the set on the right-hand side.
⊇: Let π be in the set on the right-hand side of equation (4) with corresponding

values for ci, di and k. Then ti ∈
(
ci

k ,
di

k

)
. Hence a ≤

∑n
i=0

ci

k <
∑n

i=0 ti = d and
b ≥

∑n−1
i=0

di

k >
∑n−1

i=0 ti = c so that the time-interval (c, d) of state sn and the
time interval I = [a, b] of the formula overlap. Further, π[m] |= Φ for m ≤ n and
π[n] |= Ψ ; thus π is in the set on the left-hand side of equation (4).

The right-hand side of equation (4) is measurable, hence also the cylinder
base. This extends to its cylinder and the countable union in equation (3). ()

4.2 Strong Bisimilarity Preserves CSL

We now prepare the main result of our paper. To prove that strong bisimilarity
preserves CSL formulas we establish a correspondence between certain sets of
paths of a CTMDP and its quotient which is measure-preserving:

Definition 10 (Simple bisimulation closed). Let C = (S,Act ,R,AP ,L) be
a CTMDP. A measurable rectangle Π = S0×A0 ×T0× · · · ×An−1× Tn−1× Sn

is simple bisimulation closed if Si ∈
(
S̃ ∪ {∅}

)
for i = 0, . . . , n. Further, let

Π̃ = {S0} ×A0 × T0 × · · · ×An−1 × Tn−1 × {Sn} be the corresponding rectangle
in the quotient C̃.

An essential step in our proof strategy is to obtain a scheduler on the quotient.
The following example illustrates the intuition for such a scheduler.

422 M.R. Neuhäußer and J.-P. Katoen

s0

∅
s1

∅

s2

{a}

s3

{a}

1
4

2
3

1
12

α, 1

α, 1

α, 2α, 3

β, 0.5 α, 0.5

α, 0.5 β, 0.5

(a) CTMDP C and initial distr.

[s0]

∅ [s2]

{a}

[s3]

{a}

11
12

1
12α, 0.5

β, 0.5

α, 1 α, 1

α, 2

α, 3

(b) Quotient C̃

Fig. 4. Derivation of the quotient scheduler

Example 4. Let C be the CTMDP in Fig. 4(a) where ν(s0) = 1
4 , ν(s1) = 2

3
and ν(s2) = 1

12 . Assume a scheduler D where D(s0, {α}) = 2
3 , D(s0, {β}) = 1

3 ,
D(s1, {α}) = 1

4 and D(s1, {β}) = 3
4 . Intuitively, a scheduler Dν

∼ that mimics D’s
behaviour on the quotient C̃ in Fig. 4(b) can be defined by

Dν
∼([s0] , {α}) =

�
s∈[s0] ν(s) · D(s, {α})�

s∈[s0] ν(s)
=

1
4 ·

2
3 + 2

3 ·
1
4

1
4 + 2

3

=
4
11

and

Dν
∼([s0] , {β}) =

�
s∈[s0] ν(s) · D(s, {β})�

s∈[s0] ν(s)
=

1
4 ·

1
3 + 2

3 ·
3
4

1
4 + 2

3

=
7
11

.

Even though s0 and s1 are bisimilar, the scheduler D decides differently for
the histories π0 = s0 and π1 = s1. As π0 and π1 collapse into π̃ = [s0] on
the quotient, Dν

∼ can no longer distinguish between π0 and π1. Therefore D’s
decision for any history π ∈ π̃ is weighed w.r.t. the total probability of π̃.

Definition 11 (Quotient scheduler). Let C = (S,Act ,R,AP ,L) be a CT-
MDP, ν ∈ Distr(S) and D ∈ THR. First, define the history weight of finite
paths of length n inductively as follows:

hw0(ν,D, s0) := ν(s0) and

hwn+1(ν,D, π
αn,tn−−−−→ sn+1) := hwn(ν,D, π) · D(π, {αn}) ·P(π↓, αn, sn+1).

Let π̃ = [s0]
α0,t0−−−→ · · · αn−1,tn−1−−−−−−−→ [sn] be a timed history of C̃ and Π = [s0] ×

{α0} × {t0} × · · · × {αn−1} × {tn−1} × [sn] be the corresponding set of paths in
C. The quotient scheduler Dν

∼ on C̃ is then defined as follows:

Dν
∼
(
π̃, αn

)
:=

∑
π∈Π hwn(ν,D, π) · D(π, {αn})∑

π∈Π hwn(ν,D, π)
.

Further, let ν̃ ([s]) :=
∑

s′∈[s] ν(s
′) be the initial distribution on C̃.

A history π̃ of C̃ corresponds to a set of paths Π in C; given π̃, the quotient
scheduler decides by multiplying D’s decision on each path in Π with its cor-
responding weight and normalizing with the weight of Π afterwards. Now we

Bisimulation and Logical Preservation 423

obtain a first intermediate result: For CTMDP C, if Π is a simple bisimulation
closed set of paths, ν an initial distribution and D ∈ THR, the measure of Π in
C coincides with the measure of Π̃ in C̃ which is induced by ν̃ and Dν

∼:

Theorem 3. Let C be a CTMDP with set of states S and ν ∈ Distr(S). Then
Prω

ν,D(Π) = Prω
ν̃,Dν

∼
(Π̃) where D ∈ THR and Π simple bisimulation closed.

Proof. By induction on the length n of cylinder bases. The induction base holds
for Pr0

ν,D
(
[s]

)
=

∑
s′∈[s] ν(s

′) = ν̃
(
[s]

)
= Pr0

ν̃,Dν
∼

(
{[s]}

)
. With the induction

hypothesis that Prn
ν,D(Π) = Prn

ν̃,Dν
∼
(Π̃) for all ν ∈ Distr(S), D ∈ THR and

bisimulation closed Π ⊆ Pathsn we obtain the induction step:

Prn+1
ν,D

�
[s0]× A0 × T0 ×Π

�
=
�

[s0]×A0×T0

Prn

P(s,α,·),D(s
α,t−−→·)

(Π) μν,D(ds, dα, dt)

=
�

s∈[s0]
ν(ds)

�
α∈A0

D(s, dα)
�

T0

Prn

P(s,α,·),D(s
α,t−−→·)

(Π) ηE(s,α)(dt)

=
�

s∈[s0]

ν(s)
�

α∈A0

D(s, {α})
�

T0

Prn

P(s,α,·),D(s
α,t−−→·)

(Π) ηẼ([s0],α)(dt)

i.h.=
�

s∈[s0]

�
α∈A0

�
T0

Prn

P̃([s0],α,·),Dν
∼([s0]

α,t−−→·)
(Π̃) · ν(s) · D(s, {α}) ηẼ([s0],α)(dt)

=
�

α∈A0

�
T0

Prn

P̃([s0],α,·),Dν
∼([s0]

α,t−−→·)
(Π̃) ·

�
s∈[s0]

ν(s) · D(s, {α})

�
ηẼ([s0],α)(dt)

=
�

α∈A0

�
T0

Prn

P̃([s0],α,·),Dν
∼([s0]

α,t−−→·)
(Π̃) · ν̃([s0]) · Dν

∼([s0] , {α}) ηẼ([s0],α)(dt)

=
�

{[s0]}
ν̃(d [s])

�
A0

Dν
∼([s], dα)

�
T0

Prn

P̃([s],α,·),Dν
∼([s]

α,t−−→·)
(Π̃) ηẼ([s],α)(dt)

=
�

{[s0]}×A0×T0

Prn

P̃([s],α,·),Dν
∼([s]

α,t−−→·)
(Π̃) μ̃ν̃,Dν

∼(d [s] , dα, dt)

= Prn+1
ν̃,Dν

∼

�
{[s0]} × A0 × T0 × Π̃

�

where μ̃ν̃,Dν
∼ is the extension of μν,D (Def. 5) to sets of initial triples in C̃:

μ̃ν̃,Dν
∼: FS̃×Act×�≥0

→[0, 1] : I �→
�

S̃
ν̃(d [s])

�
Act
Dν

∼([s] , dα)
�
�≥0

II([s] , α, t) ηẼ([s],α)(dt). �

According to Theorem 3, the quotient scheduler preserves the measure for simple
bisimulation closed sets of paths, i.e. for paths, whose state components are
equivalence classes under ∼. To generalize this to sets of paths that satisfy a
CSL path formula, we introduce general bisimulation closed sets of paths:

Definition 12 (Bisimulation closed). Let C = (S,Act ,R,AP ,L) be a CT-
MDP and C̃ its quotient under strong bisimilarity. A measurable rectangle Π =
S0×A0× T0× · · · ×An−1 ×Tn−1× Sn is bisimulation closed if Si =

⊎ki

j=0 [si,j]

for ki ∈ � and 0 ≤ i ≤ n. Let Π̃ =
⋃k0

j=0

{
[s0,j]

}
× A0 × T0 × · · · × An−1 ×

Tn−1 ×
⋃kn

j=0

{
[sn,j]

}
be the corresponding rectangle in the quotient C̃.

424 M.R. Neuhäußer and J.-P. Katoen

Lemma 2. Any bisimulation closed set of paths Π can be represented as a finite
disjoint union of simple bisimulation closed sets of paths.

Proof. Direct consequence of Def. 12. ()

Corollary 1. Let C be a CTMDP with set of states S and ν ∈ Distr(S) an
initial distribution. Then Prω

ν,D(Π) = Prω
ν̃,Dν

∼
(Π̃) for any D ∈ THR and any

bisimulation closed set of paths Π.

Proof. Follows directly from Lemma 2 and Theorem 3. ()

Using these extensions we can now prove our main result:

Theorem 4. Let C be a CTMDP with set of states S and u, v ∈ S. Then u ∼ v
implies u |= Φ iff v |= Φ for all CSL state formulas Φ.

Proof. By structural induction on Φ. If Φ = a and a ∈ AP the induction base
follows as L(u) = L(v). In the induction step, conjunction and negation are
obvious.

Let Φ = ∀"pϕ and Π = {π ∈ Pathsω | π |= ϕ}. To show u |= ∀"pϕ implies
v |= ∀"pϕ it suffices to show that for any V ∈ THR there exists U ∈ THR with
Prω

νu,U(Π) = Prω
νv ,V(Π). By Theorem 2 the set Π is measurable, hence Π =⊎∞

i=0 Πi for disjoint Πi ∈ FPathsω . By induction hypothesis for path formulas
XIΦ and ΦUIΨ the sets Sat(Φ) and Sat(Ψ) are disjoint unions of ∼-equivalence
classes. The same holds for any Boolean combination of Φ and Ψ . Hence Π =⊎∞

i=0 Πi where the Πi are bisimulation closed. For all V ∈ THR and π = s0
α0,t0−−−→

· · · αn−1,tn−1−−−−−−−→ sn let U(π) := Vνv
∼

(
[s0]

α0,t0−−−→ · · · αn−1,tn−1−−−−−−−→ [sn]
)
. Thus U mimics

on π the decision of Vνv
∼ on π̃. In fact Uνu

∼ = Vνv
∼ since

Uνu
∼ (π̃, αn) =

�
π∈Π hwn(νu,U , π) · Vνv

∼
�
π̃, αn

�
�

π∈Π hwn(νu,U , π)

and Vνv
∼

(
π̃, αn

)
is independent of π. With ν̃u = ν̃v and by Corollary 1 we obtain

Prω
νu,U(Πi) = Prω

ν̃u,Uνu∼
(Π̃i) = Prω

ν̃v ,Vνv∼
(Π̃i) = Prω

νv ,V(Πi) which carries over to
Π for Π is a countable union of disjoint sets Πi.

Let Φ = L"pΨ . Since u ∼ v, it suffices to show that for all s ∈ S it holds
s |= L"pΨ iff [s] |= L"pΨ . The expectation of avgSat(Ψ),t for t ∈ �≥0 can be
expressed as follows:
�

Pathsω

�
1
t

� t

0
ISat(Ψ)(π@t′)dt′

�
Prω

νs,D(dπ) =
1
t

� t

0
Prω

νs,D
�
π ∈ Pathsω | π@t′ |= Ψ

�
dt′.

Further, the sets
{
π ∈ Pathsω | π@t′ |= Ψ

}
and

{
π ∈ Pathsω | π |= �[t′,t′]Ψ

}
have the same measure and the induction hypothesis applies to Ψ . Applying the
previous reasoning for the until case to the formula tt U[t′,t′]Ψ once, we obtain

Prω
νs,D

�
π ∈ Pathsω(C) | π |= �

[t′,t′]Ψ
�

= Prω
ν̃s,Dνs∼

�
π̃ ∈ Pathsω(C̃) | π̃ |= �

[t′,t′]Ψ
�

for all t′ ∈ �≥0. Thus the expectations of avgSat(Ψ),t on C and C̃ are equal for all
t ∈ �≥0 and the same holds for their limits if t→∞. This completes the proof
as for u ∼ v we obtain u |= L"pΨ iff [u] |= L"pΨ iff [v] |= L"pΨ iff v |= L"pΨ . ()

Bisimulation and Logical Preservation 425

This theorem shows that bisimilar states satisfy the same CSL formulas. The
reverse direction, however, does not hold in general. One reason is obvious: In
this paper we use a purely state-based logic whereas our definition of strong
bisimulation also accounts for action names. Therefore it comes to no surprise
that CSL cannot characterize strong bisimulation. However, there is another
more profound reason which is analogous to the discrete-time setting where ex-
tensions of PCTL to Markov decision processes [29,4] also cannot express strong
bisimilarity: CSL and PCTL only allow to specify infima and suprema as prob-
ability bounds under a denumerable class of randomized schedulers; therefore
intuitively, CSL cannot characterize exponential distributions which neither con-
tribute to the supremum nor to the infimum of the probability measures of a
given set of paths. Thus the counterexample from [4, Fig 9.5] interpreted as a
CTMDP applies verbatim to our case.

5 Conclusion

In this paper we define strong bisimulation on CTMDPs and propose a nonde-
terministic extension of CSL to CTMDP that allows to express a wide class of
performance and dependability measures. Using a measure-theoretic argument
we prove our logic to be well-defined. Our main contribution is the proof that
strong bisimilarity preserves the validity of CSL formulas. However, our logic is
not capable of characterizing strong bisimilarity. To this end, action-based logics
provide a natural starting point.

Acknowledgements. This research has been performed as part of the QUPES
project that is financed by the Netherlands Organization for Scientific Research
(NWO). Daniel Klink and David N. Jansen are kindly acknowledged for many
fruitful discussions.

References

1. Abdeddäım, Y., Asarin, E., Maler, O.: On optimal scheduling under uncertainty.
In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619,
pp. 240–253. Springer, Heidelberg (2003)

2. Ash, R.B., Doléans-Dade, C.A.: Probability & Measure Theory, 2nd edn. Academic
Press, London (2000)

3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Model-checking continous-time
Markov chains. ACM Trans. Comput. Log. 1, 162–170 (2000)

4. Baier, C.: On Algorithmic Verification Methods for Probabilistic Systems. Habili-
tation Thesis, University of Mannheim (1998)

5. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algo-
rithms for continuous-time Markov chains. IEEE TSE 29, 524–541 (2003)

6. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Nonuniform CTMDPs.
unpublished manuscript (2004)

426 M.R. Neuhäußer and J.-P. Katoen

7. Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.R.: Efficient computation of
time-bounded reachability probabilities in uniform continuous-time Markov deci-
sion processes. Theor. Comp. Sci. 345, 2–26 (2005)

8. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for Markov chains. Information and Computation 200, 149–214 (2005)

9. Baier, C., Kwiatkowska, M.Z.: Model checking for a probabilistic branching time
logic with fairness. Distr. Comp. 11, 125–155 (1998)

10. Beutler, F.J., Ross, K.W.: Optimal policies for controlled Markov chains with a
constraint. Journal of Mathematical Analysis and Appl. 112, 236–252 (1985)

11. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) Foundations of Software Technology and The-
oretical Computer Science. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg
(1995)

12. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: Dynamic fault tree analysis using
input/output interactive Markov chains. In: Dependable Systems and Networks,
IEEE Computer Society Press, Los Alamitos (2007)

13. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of
Applied Probability 31, 59–75 (1994)

14. Chiola, G., Marsan, M.A., Balbo, G., Conte, G.: Generalized stochastic Petri nets:
A definition at the net level and its implications. IEEE TSE 19, 89–107 (1993)

15. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University (1997)

16. Desharnais, J., Panangaden, P.: Continuous stochastic logic characterizes bisimu-
lation of continuous-time Markov processes. Journal of Logic and Algebraic Pro-
gramming 56, 99–115 (2003)

17. Feinberg, E.A.: Continuous time discounted jump Markov decision processes: A
discrete-event approach. Mathematics of Operations Research 29, 492–524 (2004)

18. Givan, R., Dean, T., Greig, M.: Equivalence notions and model minimization in
Markov decision processes. Artificial Intelligence 147, 163–223 (2003)

19. Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg
(2002)

20. Howard, R.A.: Dynamic Probabilistic Systems. John Wiley and Sons, West Sussex,
England (1971)

21. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for
continuous-time Markov chains. In: CAV. LNCS, Springer, Heidelberg (2007)

22. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains, 2nd edn.
Springer, Heidelberg (1976)

23. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94, 1–28 (1991)

24. López, G.G.I., Hermanns, H., Katoen, J.-P.: Beyond memoryless distributions:
Model checking semi-Markov chains. In: de Luca, L., Gilmore, S.T. (eds.) PROB-
MIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 57–70.
Springer, Heidelberg (2001)

25. Neuhäußer, M.R.: Bisimulation and logical preservation for continuous-time
markov decision processes. Technical Report 10, RWTH Aachen (2007)

26. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley and Sons, West Sussex, England (1994)

Bisimulation and Logical Preservation 427

27. Qiu, Q., Pedram, M.: Dynamic power management based on continuous-time
Markov decision processes. In: DAC, pp. 555–561. ACM Press, New York (1999)

28. Sanders, W.H., Meyer, J.F.: Stochastic activity networks: Formal definitions and
concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) Lectures on For-
mal Methods and Performance Analysis. LNCS, vol. 2090, pp. 315–343. Springer,
Heidelberg (2001)

29. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic
Journal of Computing 2, 250–273 (1995)

30. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: FOCS, pp. 327–338. IEEE Computer Society Press, Los Alamitos (1985)

31. Wolovick, N., Johr, S.: A characterization of meaningful schedulers for continuous-
time Markov decision processes. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006.
LNCS, vol. 4202, pp. 352–367. Springer, Heidelberg (2006)

Strategy Synthesis for Markov Decision Processes and
Branching-Time Logics

Tomáš Brázdil� and Vojtěch Forejt��

Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno,

Czech Republic
{brazdil,forejt}@fi.muni.cz

Abstract. We consider a class of finite 1 1
2 -player games (Markov decision pro-

cesses) where the winning objectives are specified in the branching-time temporal
logic qPECTL∗ (an extension of the qualitative PCTL∗). We study decidability
and complexity of existence of a winning strategy in these games. We identify a
fragment of qPECTL∗ called detPECTL∗ for which the existence of a winning
strategy is decidable in exponential time, and also the winning strategy can be
computed in exponential time (if it exists). Consequently we show that every for-
mula of qPECTL∗ can be translated to a formula of detPECTL∗ (in exponential
time) so that the resulting formula is equivalent to the original one over finite
Markov chains. From this we obtain that for the whole qPECTL∗, the existence
of a winning finite-memory strategy is decidable in double exponential time. An
immediate consequence is that the existence of a winning finite-memory strategy
is decidable for the qualitative fragment of PCTL∗ in triple exponential time. We
also obtain a single exponential upper bound on the same problem for the quali-
tative PCTL. Finally, we study the power of finite-memory strategies with respect
to objectives described in the qualitative PCTL.

1 Introduction

We study 1 1
2 -player games (Markov decision processes), which have been applied in

various contexts, from computer science and engineering (models of network systems,
models of industrial processes, etc.) to biology [13,9,12]. A 1 1

2 -player game G is a
directed graph whose vertices are partitioned into two disjoint sets V� and V©. For
each vertex of V© there is a fixed probability distribution on outgoing transitions. A
play is initiated by putting a token on some vertex. This token is then moved from
vertex to vertex by one ‘real’ player � and one ‘virtual’ player ©, who choose their
moves in vertices of V� and V©, respectively. Player © chooses his moves randomly
according to the fixed distribution. Player � chooses his moves according to a strategy.
Generally, strategies may depend on history of the play and may be either randomized or
deterministic (we denote HR and HD the classes of the history-dependent randomized
and deterministic strategies, respectively). In this paper we also consider finite-memory

� Supported by “Institute for Theoretical Computer Science (ITI)”, project No. 1M0545.
�� Supported by the Czech Science Foundation, project No. 102/05/H050.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 428–444, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Strategy Synthesis for Markov Decision Processes and Branching-Time Logics 429

strategies that depend on a finite-state information about the history of the play 1. The
classes of randomized and deterministic finite-memory strategies are denoted FR and
FD, respectively.

Once player � fixes his strategy σ for the game G, we obtain a Markov chain G(σ)
where the states are finite paths inG, andws

x→ wst if and only if (s, t) is a transition in
G and x is either the fixed probability assigned to (s, t) (if s ∈ V©), or the probability
of (s, t) assigned by player � in ws. Now we may ask whether the resulting Markov
chain G(σ) satisfies a given property. A winning objective is a property of Markov
chains to be achieved by player �. A strategy σ is called winning if the Markov chain
G(σ) satisfies the winning objective.

Winning objectives can be expressed using various formalisms. For example, various
kinds of linear-time objectives, such as Büchi, parity, and Rabin objectives, were inten-
sively studied in the past (see, e.g., [7,8,6]). In this paper we concentrate on a different
kind of winning objectives specified by formulae of a branching-time temporal logic.

Let us note that the semantics of branching-time formulae can be defined directly for
1 1

2 -player games (see, e.g., [2]). In that case strategies are chosen separately for each
temporal operator occurring in a formula. This approach is different from the one taken
in this paper and results on model-checking such games are not related to our results.

The problem of solving games with branching-time winning objectives was for the
first time studied in [11], where the existence of a winning memoryless randomized
strategy for objectives expressed in PCTL (see, e.g., [10]) was shown to be in PSPACE.
Results of [11] were substantially extended in [3] where also history dependent strate-
gies were taken into account. The most relevant results of [3] are the following. First,
the existence of a winning HD (and also HR, FR and FD) strategy is undecidable for
1 1

2 -player games with objectives specified in (quantitative) PCTL. Second, the problem
of existence of a winning HD strategy is EXPTIME-complete for 1 1

2 -player games
with objectives specified in the L(F=1,G=1, F>0) 2 fragment of the qualitative PCTL.

The question is whether the positive result about the fragment L(F=1,G=1, F>0)
can be extended to more expressive logics at least for finite-memory strategies. In this
paper we address this problem and show that the existence of a winning finite-memory
strategy is decidable even for a powerful temporal logic qPECTL∗. We also show that
the winning finite-memory strategy can always be effectively synthesized. This problem
is well motivated because in practice one usually does not only want to know whether a
strategy exists but also wants to implement the strategy. Finite-memory strategies have
the advantage of being easy to implement.

The logic qPECTL∗ is the qualitative fragment of the logic PECTL∗ defined in [5].
PECTL∗ is a generalization of the logic PCTL∗ (see, e.g., [5,2]) which is a proba-
bilistic version of the well-known logic CTL∗. Of course, PECTL∗ contains the logic
PCTL. Hence, our results on qPECTL∗ have immediate consequences for the qualita-
tive PCTL∗ (denoted qPCTL∗) and the qualitative PCTL (denoted qPCTL).

1 More formally, a finite-memory (randomized) strategy is represented by a deterministic finite-
state automaton and a function which assigns a distribution on outgoing transitions to the
current vertex of the play and the state of the automaton after reading the history of the play.

2 Formulae of L(F=1, G=1, F>0) are built up from literals using conjunction, disjunction, and
the temporal operators F=1, G=1, F>0 (negation is applied only to atomic propositions).

430 T. Brázdil and V. Forejt

Our contribution: The main results of this paper are summarized below.

– We show that the existence of a winning FR (or FD) strategy for objectives de-
scribed by qPCTL, qPECTL∗, and qPCTL∗ formulae is decidable in single expo-
nential, double exponential, and triple exponential time, respectively. We also show
that the winning strategy can effectively be computed with the same complexity.
Moreover, we show that all these problems can be solved in time polynomial in the
size of games.

– In the course of the proof of the above results we identify a fragment of qPECTL∗,
called detPECTL∗, and show that the existence of a winning HR (or HD) strat-
egy for objectives described in detPECTL∗ is decidable in time exponential in the
size of formulae and polynomial in the size of games. The fragment detPECTL∗

contains the logic L(F=1,G=1, F>0), and hence our results improve on the corre-
sponding results of [3] by considering a more general logic, randomized strategies,
and providing a polynomial time upper bound in the size of games.

– Finally, it has been shown in [3] that an infinite-memory strategy is needed for
satisfying a formula of the fragment L(G>0, F>0) of qPCTL. We extend this re-
sult and provide (in a sense) complete classification of the power of finite-memory
strategies for various fragments of qPCTL.

Plan of the paper: In Section 2 we review basic definitions for Markov chains and
games. We also introduce the logic qPECTL∗ and its fragments. In Section 3 we con-
sider the problem of existence of a winning history-dependent strategy for objectives
described in detPECTL∗. In Section 4 we consider the same problem for finite-memory
strategies and qPECTL∗. Finally, Section 5 deals with the classification of fragments of
qPCTL with respect to the power of finite-memory strategies.

2 Basic Definitions

In this section we introduce basic notions of Markov chains, probabilistic temporal log-
ics, and games. Most definitions (except the definition of qPECTL∗) are taken
from [3].

We start by recalling basic notions of probability theory. Let A be a finite set. A
probability distribution on A is a function f : A→ [0, 1] such that

∑
a∈A f(a) = 1. A

distribution f is Dirac if f(a) = 1 for some a ∈ A. The set of all distributions on A is
denotedD(A).

A σ-field over a set X is a set F ⊆ 2X that includes X and is closed under comple-
ment and countable union. A measurable space is a pair (X,F) where X is a set called
sample space andF is a σ-field overX . A probability measure over a measurable space
(X,F) is a function P : F → R≥0 such that, for each countable collection {Xi}i∈I of
pairwise disjoint elements of F , P(

⋃
i∈I Xi) =

∑
i∈I P(Xi), and moreoverP(X)=1.

A probability space is a triple (X,F ,P) where (X,F) is a measurable space and P is
a probability measure over (X,F).

Strategy Synthesis for Markov Decision Processes and Branching-Time Logics 431

2.1 Markov Chains

A Markov chain is a triple M = (S,→,Prob) where S is a finite or countably infinite
set of states, → ⊆ S × S is a transition relation, and Prob is a function which to each
transition s → t of M assigns its probability Prob(s → t) ∈ (0, 1] so that for every
s ∈ S we have

∑
s→t Prob(s→ t) = 1.

In the rest of this paper we also write s
x→ t instead of Prob(s → t) = x. A path in

M is a finite or infinite sequencew = s0, s1, . . . of states such that si → si+1 for every
i. The length of a given path w is the number of transitions in w. We also use w(i) to
denote the state si of w (by writing w(i) = s we implicitly impose the condition that
the length of w is at least i). The prefix s0, s1, . . . , si of w is denoted by wi. A run is an
infinite path. The sets of all finite paths and all runs of M are denoted FPath and Run,
respectively. Similarly, the sets of all finite paths and runs that start in a given s ∈ S are
denoted FPath(s) and Run(s), respectively.

We say that a set C ⊆ S is a bottom strongly connected component (BSCC) of M
if for all s, t ∈ C there is a path from s to t in M , and whenever there is a path from
s ∈ C to t ∈ S, then t ∈ C. Note that if we restrict the set of states of M to a BSCC C,
we obtain a Markov chain.

Each w ∈ FPath determines a basic cylinder Run(w) which consists of all runs
that start with w. To every s ∈ S we associate the probability space (Run(s),F ,P)
where F is the σ-field generated by all basic cylinders Run(w) where w starts with
s, and P : F → [0, 1] is the unique probability measure such that P(Run(w)) =
Πm−1

i=0 xi where w = s0, · · · , sm and si
xi→ si+1 for every 0 ≤ i < m (if m=0, we put

P(Run(w)) = 1).

2.2 The Logic qPECTL∗

A Büchi automaton is a tuple B = (B,Σ, δ, qI , F), where Σ is a finite alphabet, B is
a finite set of states, δ ⊆ B ×Σ × B is a transition relation (we write q

a→ q′ instead
of (q, a, q′) ∈ δ), qI is the initial state, and F ⊆ B is a set of accepting states. The
automaton B is deterministic if for each q ∈ B and each a ∈ Σ, there is at most one
q′ ∈ B such that q

a→ q′.
The symbol Σω denotes the set of all infinite words over the alphabet Σ. A com-

putation of B on a word w = w(0)w(1) · · · ∈ Σω is a sequence ω = q0, q1, . . . of

states of B such that q0 = qI and for all i ≥ 0 we have qi
w(i)→ qi+1. A computation

ω of B is accepting if a state of F occurs infinitely many times in ω. The automaton B
accepts a word w ∈ Σω if there exists an accepting computation of B on w. The set of
all w ∈ Σω accepted by B is denoted L(B).

The logic qPECTL∗ has the following syntax:

Φ ::= a | ¬a | B∼�(Φ1, · · · , Φn)

Here a ranges over the set Ap of atomic propositions,∼- ∈ {=1, <1, >0,=0}, n ≥ 1,
B is a Büchi automaton over an alphabet Σ ⊆ 2{1,...,n}, and each Φi is a qPECTL∗

formula.
The semantics of qPECTL∗ formulae is defined below. Let M = (S,→,Prob) be a

Markov chain and let ν : Ap → 2S be a valuation. We define s |=ν a iff s ∈ ν(a), and

432 T. Brázdil and V. Forejt

s |=ν ¬a iff s
∈ ν(a). The semantics of a qPECTL∗ formula Φ = B∼�(Φ1, · · · , Φn),
where B is a Büchi automaton with the alphabet Σ ⊆ 2{1,...,n}, is defined as fol-
lows: First, we can assume that the semantics of the qPECTL∗ formulae Φ1, . . . , Φn

has already been defined. For every state s of M , let Run(s, Φ) be the set of all runs
w ∈ Run(s) satisfying the following condition: There is a word v ∈ L(B) such that
for all i ≥ 0 and all k ∈ v(i) holds w(i) |=ν Φk . We stipulate that s |=ν Φ if and only
if P(Run(s, Φ)) ∼ -.

We say that formulae Φ and Ψ are equivalent (Φ ≡ Ψ) iff for each state s of an
arbitrary Markov chain M and for arbitrary valuation ν holds: s |=ν Φ iff s |=ν Ψ .

Remark 1. Note that once a formula B∼�(Φ1, . . . , Φn), a Markov chain M , and a valu-
ation ν are fixed, we can say that B (or any automaton with the alphabetΣ ⊆ 2{1,...,n})
accepts a run w of M if there is a word v ∈ L(B) such that for all i ≥ 0 we have∧

k∈v(i) w(i) |=ν Φk. Then, e.g., P(Run(s, Φ)) is the probability that B accepts a run
of Run(s). We can also say that the automaton B goes from a state q0 to qi+1 after
reading a finite path s0, . . . , si in M if there is a sequence q0, . . . , qi+1 of states of B
and a wordX0, . . . , Xi such that qj

Xj→ qj+1 and
∧

k∈Xj
w(j) |=ν Φk for all 0 ≤ j ≤ i.

For computational purposes we assume that each formula is represented as a directed
acyclic multigraph obtained from the parse tree of the formula by merging similar sub-
trees. For example, the formula B∼�

1 (B∼�
1 (a, a, a),B∼�

1 (a, a, a),B∼�
2 (B∼�

1 (a, a, a))) is
represented by a multigraph with four nodesn1, n2, n3, n4 labeled withB∼�

1 ,B∼�
2 ,B∼�

1 ,

a, respectively, and transitions: n1
1,2→ n3 (here the numbers 1, 2 stand for the first and

the second argument), n1
3→ n2, n2

1→ n3, n3
1,2,3→ n4. Here n1 corresponds to the

whole formula.

Expressing other operators in qPECTL∗. The logic qPECTL∗, as defined above, is
very powerful and succinct, and hence ideal for theoretical considerations. However, it
is easier to express complex properties when we have some additional operators. We
show that all operators of qPCTL can be expressed in qPECTL∗. We define automata
B∧, B∨ as follows:

B∨:
{1}, {2}

∅

B∧:
{1, 2}

∅

It is easy to see that formulae B=1
∨ (Φ1, Φ2) and B=1

∧ (Φ1, Φ2) are equivalent to logical
disjunction and conjunction, respectively, of Φ1 and Φ2. Hence, in what follows we
write Φ1 ∨ Φ2 and Φ1 ∧ Φ2 instead of B=1

∨ (Φ1, Φ2) and B=1
∧ (Φ1, Φ2), respectively.

We also define Büchi automata representing ‘next’, ‘until’ and ‘release’ (the dual of
‘until’) operators:

BX:

∅

∅ {1}
BU:

{2}

∅{1}

BR:
{1, 2}

∅{2}

We write X∼�Φ1, Φ1U∼�Φ2 and Φ1R∼�Φ2 instead of B∼�
X (Φ1), B∼�

U (Φ1, Φ2) and
B∼�

R (Φ1, Φ2), respectively. We also define ‘future’ and ‘globally’ operators as follows:

Strategy Synthesis for Markov Decision Processes and Branching-Time Logics 433

Let tt and ff stand for a ∨ ¬a and a ∧ ¬a, respectively, for some a ∈ Ap. Let F∼�Φ
stands for ttU∼�Φ, and let G∼�Φ stands for ffR∼�Φ.

Given a formula of the form B∼�(Φ1, . . . , Φn), we write ¬B∼�(Φ1, . . . , Φn) to stand
for B��(Φ1, . . . , Φn), where ‘�-’ is ‘=1’, ‘<1’, ‘>0’, or ‘=0’, depending on whether
‘�-’ is ‘<1’, ‘=1’, ‘=0’, or ‘>0’, respectively. This clearly corresponds to the logical
operation of negation. Note that Φ1R∼�Φ2 is equivalent to ¬(¬Φ1U∼�¬Φ2).

Now qPCTL is the fragment of qPECTL∗ consisting of all formulae of the following
form:

Φ ::= a | ¬a | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | X∼�Φ1 | Φ1U∼�Φ2 | Φ1R∼�Φ2

Here ∼- ranges over {=1,=0, <1, >0}.
One can also show that all formulae of qPCTL∗ (for definition see, e.g., [5]) can be

translated to equivalent qPECTL∗ formulae. This translation employs the algorithm for
translating LTL formulae to Büchi automata (see, e.g., [15]) which results in a single
exponential blow-up in the size of formulae.

The logic detPECTL∗. Now we define the deterministic fragment of qPECTL∗ (called
detPECTL∗), which generalizes the fragmentL(F=1, F>0,G=1) defined in [3] (see also
Section 5). This fragment (together with Theorem 6) plays the crucial role in the proof
of Theorem 8.

Given an automaton B with an alphabet Σ ⊆ 2{1,...,n}, we say that a state q of B
is terminal iff there is a transition q

∅→ q and no transition of the form q
X→ q′ where

q
= q′ in B. A formula Φ of qPECTL∗ is a detPECTL∗ formula if all subformulae of Φ
of the form B∼�(Φ1, · · · , Φn) satisfy the following conditions:

1. ‘∼-’ is either ‘=1’ or ‘>0’;
2. if ‘∼-’ is ‘>0’, then all accepting states of B are terminal;
3. All states q of B satisfy the following condition: For distinct nonterminal states q′

and q′′ such that q
A→ q′ and q

B→ q′′, we have that
∧

i∈A∪B Φi is not satisfied in
any state of any Markov chain for any valuation (this must hold even for A = B).

Observe that X=1, X>0, U=1, U>0, and R=1 are operators of detPECTL∗.

2.3 Games and Strategies

A 1 1
2 -player game (or Markov decision process) is a tupleG = (V,E, (V�, V©),Prob)

where V is a finite set of vertices, E ⊆ V × V is a set of transitions, (V�, V©) is a
partition of V , and Prob is a probability assignment which to each v ∈ V© assigns
a positive probability distribution on the set of its outgoing transitions. For technical
convenience, we assume that each vertex has at least one outgoing transition.

The game is played by a player � who selects the moves in the V� vertices, and a
“virtual” player © who selects the moves in the V© vertices according to the corre-
sponding probability distribution.

A strategy for player � is a function σ which to each vs ∈ V ∗V� assigns a prob-
ability distribution on the set of outgoing transitions of s. We say that a strategy σ is

434 T. Brázdil and V. Forejt

deterministic if σ(vs) is a Dirac distribution for each vs ∈ V ∗V�. Consistently with
[1,11,3], we use HR and HD to denote the classes of all (history-dependent random-
ized) strategies and (history-dependent) deterministic strategies, respectively. A special
type of strategies are strategies with finite-memory, which are formally defined as pairs
(A, f) whereA = (Q, V, δ, q0) is a deterministic finite-state automaton over the alpha-
bet V of vertices and f is a function which to each pair (q, s) ∈ Q×V� assigns a prob-
ability distribution on the set of outgoing transitions of s. The pair (A, f) determines a
unique strategy σ(A, f) such that σ(A, f)(vs) = f(q, s), where q = δ(q0, vs). Intu-
itively, the states ofA represent a finite memory of size |Q|where selected properties of
the history of a play are stored. We denote FR and FD the classes of all finite-memory
strategies and finite-memory deterministic strategies, respectively.

Each strategy σ for player � determines a unique play of the game G, which is a
Markov chain G(σ) where V + is the set of states, and vs

x→ vst iff (s, t) ∈ E and one
of the following conditions holds:

– s ∈ V© and Prob(s, t) = x;
– s ∈ V� and σ(vs) assigns x to (s, t).

For every vs ∈ V ∗V we denote last(vs) = s. For every run w of G(σ) and every
i ≥ 0, we define w[i] = last(w(i)) (note that w(i) is a finite sequence of vertices of the
game G).

An objective is a pair (ν, Φ), where ν : Ap → 2V is a valuation and Φ a qPECTL∗

formula. Note that each valuation ν : Ap → 2V determines a valuation ν : Ap → 2V +

defined by ν(a) = {vs ∈ V ∗V | s ∈ ν(a)}. For a given objective (ν, Φ), each state
of G(σ) either does or does not satisfy Φ. A (ν, Φ)-winning strategy for player � in
a vertex s ∈ V is a strategy σ such that s |=ν Φ. We are interested in the following
problem:

Synthesis problem: Given a vertex s and an objective (ν, Φ),

is there a (ν, Φ)-winning strategy for player � in s ?

Moreover, if the winning strategy exists, then return its finite representation.

Remark 2. Let σ be a finite-memory strategy determined by (A, f) where A =
(Q, V, δ, q0). Observe, that the chain G(σ) can be seen as an ‘unfolding’ of a finite
Markov chain. Formally, let≈ ⊆ V +×V + be an equivalence defined as follows: u ≈ v
if and only if δ(q0, u) = δ(q0, v) and last(u) = last(v). Given v ∈ V + we denote
[v] = {u | u ≈ v}, the equivalence class of v, and we denoteV +/ ≈ = {[v] | v ∈ V +}.
Let us define a finite Markov chain Ḡ(σ) where V +/ ≈ is a set of states, and [v] x→ [vs]
in Ḡ(σ) if and only if v

x→ vs in G(σ). Each valuation ν : Ap → 2V determines a val-
uation ν̄ : Ap → 2V +/≈ defined by ν(a) = {[vs] | s ∈ ν(a)}. Now, it is easy to verify
that for every qPECTL∗ formula Φ, every valuation ν, and every state v of G(σ), we
have that v |=ν Φ iff [v] |=ν̄ Φ.

Strategy Synthesis for Markov Decision Processes and Branching-Time Logics 435

3 The Synthesis Problem for detPECTL∗

In this section we prove that the synthesis problem is decidable in exponential time for
both HR and HD strategies and detPECTL∗ objectives. The proof follows similar lines
as the analogous proof for HD strategies and theL(F=1,G=1, F>0) fragment of qPCTL
(see [3]). However, new technical difficulties arise from the use of automata connectives
and randomization.

Similarly to [3], we reduce the synthesis problem for detPECTL∗ to the problem
of solving 1 1

2 -player games for a different type of objectives (and strategies) defined
as follows. Let G = (V,E, (V�, V©), P rob) be a 1 1

2 -player game. A mixed Büchi
objective is a pair (P,O) where P,O ⊆ V . A strategy σ is (P,O)-winning in a vertex s
iff all runs in G(σ) initiated in s visit a vertex of P infinitely often, and almost all runs
initiated in s visit a vertex of O infinitely often. To be able to control randomization
in games we introduce a new restriction on strategies defined as follows: Given a set
> ⊆ V�, we say that a (HR) strategy σ is >-must iff for every v ∈ V ∗, each s ∈ > and
each (s, t) ∈ E we have σ(vs)(s, t) > 0, and for each t ∈ V�\> we have that σ(vt)
is a Dirac distribution. Intuitively, a strategy is >-must if it always assigns non-zero
probability to all successors of vertices of > and behaves deterministically in vertices
of V�\>.

Let us fix a gameG = (V,E, (V�, V©), P rob), a vertex sin of G, a detPECTL∗ for-
mula Φ, and a valuation ν. The following lemma allows us to assume that the branching
degree of all vertices of G is at most two (we sketch the proof in [4]).

Lemma 3. There is a 1 1
2 -player game Ḡ, a vertex s̄in, a formula Φ̄, and a valuation ν̄

(computable in polynomial time), such that each vertex of Ḡ has at most two successors,
and there is a (ν, Φ)-winning strategy in sin iff there is a (ν̄, Φ̄)-winning strategy in s̄in.
Moreover, each (ν, Φ)-winning FR (FD) strategy in sin can be polynomially translated
to a (ν̄, Φ̄)-winning FR (FD) strategy in s̄in, and vice versa.

We construct a game G′, a vertex s′in of G′, a mixed Büchi objective (P,O), and a set
>, such that there is a (P,O)-winning >-must HR strategy in s′in iff there is (ν, Φ)-
winning HR strategy in sin. The size of G′ will be single exponential in the size of Φ
and polynomial in the size of G.

To simplify our presentation we introduce some additional notation. We say that
a Büchi automaton B corresponds to a formula Ψ if and only if Ψ is of the form
B∼�(Φ1, . . . , Φn) (for some ∼- and Φ1, . . . , Φn). For technical convenience, we as-
sume that each Büchi automaton corresponds to at most one subformula of Φ and that
all automata occurring in Φ have pairwise disjoint sets of states. Let States denote
the set of all states of all automata occurring in Φ, and let States>0 and States=1

denote sets of states of all automata that correspond to subformulae of Φ of the form
B>0(Φ1, . . . , Φn) and B=1(Φ1, . . . , Φn), respectively. By L(s) we denote the set of
all literals (i.e., atomic propositions and negated atomic propositions) satisfied in the
vertex s.

Now we present a formal definition of the gameG′. An intuition behind the definition
is given below.

Formal definition of G′. We define G′ = (V ′, E′, (V ′�, V ′©), P rob′) where the set V ′

consists of vertices of the following three forms:

436 T. Brázdil and V. Forejt

– f -vertices are of the form (s,A)f , where s ∈ V and A ⊆ States× {◦, *}.
– g-vertices are of the form (s,D)g , where

D ⊆ {(t, B) | (s, t) ∈ E,B ⊆ States× {◦, *}}

is a non-empty set, for each t there is at most one pair of the form (t, B) in D, and
if s ∈ V© and (s, t) ∈ E, then D contains a pair of the form (t, B).

– distinguished vertices s′in and dead.

To V ′© we put all g-vertices whose first component belongs to V©, and we put V ′� =
V ′\V ′©. To formally define E′ we need some additional notation. Given a formula of
the form Ψ = B∼�(Φ1, . . . , Φn), we denote Rep(Ψ) the tuple (q0, *) where q0 is the

initial state of B. Given a literal Ψ , we define Rep(Ψ) = Ψ . Given a transition q
X→ q′

of an automaton corresponding to a formula of the form B∼�(Φ1, . . . , Φn), we denote

Start(q X→ q′) the set of all Rep(Φi) where i ∈ X . The set of transitions E′ is defined
as follows:

– ((s,A)f , (s,D)g) ∈ E′ for all (s,A)f and (s,D)g satisfying the following: for ev-

ery (q, x) ∈ A there exists (q′, x′) satisfying q
X→ q′ andStart(q X→ q′) ⊆ A ∪ L(s)

and

x′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

* if q′ is accepting;

◦ if q′ ∈ States=1 is not accepting and A ∩ (States=1 × {◦}) = ∅;
◦ if q′ ∈ States>0 is not accepting and A ∩ (States>0 × {◦}) = ∅;
x otherwise.

and either (q′, x′) ∈
⋂

(t,B)∈D B or (q′, x′) ∈
⋃

(t,B)∈D B, depending on whether

q ∈ States=1 or q ∈ States>0, respectively.
– ((s,A)f , dead) ∈ E′ for all f -vertices, and (dead, dead) ∈ E′;
– ((s,D)g , (t, B)f) ∈ E′ for all (t, B) ∈ D;
– (s′in, (sin, A)f) ∈ E′ for all A ⊆ States×{◦, *} satisfyingRep(Φ) ∈ A (here we

assume that Φ is not a literal, because otherwise the synthesis problem is trivially
solved)

We define Prob ′((s,D)g , (t, B)f) = Prob(s, t) whenever s ∈ V© and (t, B) ∈ D.
Let P be the set of all vertices of the form (s,A)f such that A does not contain any

pair of the form (q, ◦) where q ∈ States>0. Let O be the set of all vertices of the form
(s,A)f such that A does not contain any pair of the form (q, ◦) where q ∈ States=1.

Let > be the set of all g-vertices of the form (s,D)g where s ∈ V�.

Intuition behind G′. The game G′ simulates the game G (in the first component of
vertices) and at the same time maintains some information about subformulae of Φ (the
second component of vertices). Each step of the simulated play of G corresponds to
two steps in G′. The first step, going from the current f -vertex to a g-vertex, updates
the information aboutΦ. The next one, going from the g-vertex to an f -vertex, simulates
a move in G.

Strategy Synthesis for Markov Decision Processes and Branching-Time Logics 437

While playing the game G′, player � simulates a play of the game G and at the
same time simulates computations of Büchi automata corresponding to subformulae of
Φ, verifying that these subformulae are satisfied in appropriate places in the simulated
play. Given an f -vertex (s,A)f , every pair (q, x) ∈ A represents a running instance of
an automaton which is in the state q. (Here x maintains the information whether this
particular instance recently entered an accepting state.)

Going from the f -vertex (s,A)f to a g-vertex (s, {(t1, B1), (t2, B2)})g, player �

simulates one computational step for each running instance (q, x) ∈ A. More con-
cretely, let (q, x) ∈ A where q is a state of an automaton corresponding to B∼�(Φ1, . . . ,

Φn). Player � chooses a transition q
X→ q′ such that Start(q X→ q′) ⊆ A∪L(s), which

intuitively means that the running instances of automata corresponding to formulae of
{Φi | i ∈ X} have already been initiated in (s,A)f . Then (q′, x′) (here x′ is an appro-
priate update of x) is put either to both B1, B2 or to at least one of them, depending on
whether ‘∼-’ is either ‘=1’ or ‘>0’, respectively. Note that in the case ‘=1’, the simu-
lated computation goes to the same state q′ for both successors. To ensure correctness
of the simulation, we need Φ to be a detPECTL∗ formula (intuitively this means that
there is at most one ‘correct’ non-terminal successor q′ of q after reading the current
state).

Note that the definition of x′ and the winning objective (P,O) ensure that all run-
ning instances of automata corresponding to formulae of the form B=1(. . .) are almost
surely accepting (i.e., enter an accepting state infinitely many times), and that all run-
ning instances of automata corresponding to formulae of the form B>0(. . .) are surely
accepting (i.e., enter a terminal accepting state). Note that the sets B1 and B2 may, in
addition to the obligatory contents, contain arbitrary pairs from States× {◦, *}. This
may be used by player � to initiate new running instances needed in the next simulation
step to perform transitions of Büchi automata (see above).

Finally, going from the g-vertex (s, {(t1, B1), (t2, B2)})g to an f -vertex, player �

randomly chooses one of the successors (t1, B1)f , (t2, B2)f , by which he chooses a
successor in the simulated play. The >-must restriction ensures that each of the succes-
sors is chosen with non-zero probability, which prevents player � from erasing pairs of
States>0 × {◦, *}.

The following lemma is proved in [4].

Lemma 4. There is a (ν, Φ)-winning HR strategy in sin if and only if there is a (P,O)-
winning>-must HR strategy in s′in. Moreover, each (P,O)-winning>-must FR strategy
(A, f) in s′in induces a (ν, Φ)-winning FR strategy in sin computable in time polyno-
mial in the size of (A, f).

It has been shown in [3] that the existence of a winning HD strategy in 1 1
2 -player games

with mixed Büchi objectives is decidable in polynomial time, and moreover, that the
existence of a winning HD strategy in such games implies the existence of a winning
FD strategy computable in polynomial time. By a slight modification of the proof from
[3] we obtain the following analogy for >-must HR strategies:

Lemma 5. The existence of a winning >-must HR strategy in 1 1
2 -player games with

mixed Büchi objectives is decidable in polynomial time. Moreover, in these games, the

438 T. Brázdil and V. Forejt

existence of a winning >-must HR strategy implies the existence of a winning >-must
FR strategy computable in polynomial time.

Applying Lemma 4 and Lemma 5 we obtain the following theorem.

Theorem 6. The existence of a winning HR (HD) strategy in 1 1
2 -player games with

detPECTL∗ objectives is decidable in time exponential in the size of formulae and poly-
nomial in the size of games. Moreover, in these games, the existence of a winning HR
(HD) strategy implies the existence of a winning FR (FD) strategy computable in time
exponential in the size of formulae and polynomial in the size of games.

Proof (Sketch). For HR strategies, the result follows immediately from Lemma 4 and
Lemma 5. For HD strategies, it suffices to slightly modify the construction of the game
G′ by erasing all g-vertices (s,D)g such that s ∈ V� and |D| > 1. Now for> = ∅, each
>-must strategy in s′in is deterministic. An inspection of the proof of Lemma 4 reveals
that the lemma remains valid even for deterministic strategies. Now using Lemma 5 we
obtain the desired result.

4 The Synthesis Problem for qPECTL∗ and Finite-Memory
Strategies

In this section we show how to solve the synthesis problem for qPECTL∗ and finite-
memory strategies. We show that, in fact, the logic qPECTL∗ and its fragment
detPECTL∗ are expressively equivalent over finite Markov chains, and then obtain the
solution to the synthesis problem as an immediate corollary of our previous results. To
formally capture this equivalence, we write Φ ≡fin Ψ whenever for arbitrary state s of
arbitrary finite Markov chain and arbitrary valuation ν, holds s |=ν Φ iff s |=ν Ψ . The
main aim of this section is formalized by the following theorem.

Theorem 7. For every qPECTL∗ formula Φ there is a detPECTL∗ formula Ψ , com-
putable in exponential time, such that Φ ≡fin Ψ . Moreover, if Φ is a qPCTL formula,
then Ψ is computable in polynomial time.

An immediate corollary of Theorem 7, Theorem 6, and Remark 2 is the following

Theorem 8. For both FR and FD strategies, the synthesis problem for qPCTL,
qPECTL∗, and qPCTL∗ objectives can be solved in single exponential, double exponen-
tial, and triple exponential time, respectively. Moreover, in all these cases, the synthesis
problem can be solved in time polynomial in the size of games.

The rest of this section is devoted to the proof of Theorem 7. Let us fix a qPECTL∗ for-
mula Φ. First, observe that we may assume (w.l.o.g.) that for each subformula of Φ of
the form B∼�(Φ1, . . . , Φn), every state s of an arbitrary Markov chain and an arbitrary
valuation ν, there is exactly one letterA in the alphabet ofB such that s |=ν

∧
i∈A Φi. In-

deed, ifΦ does not have this property, it suffices to substitute each subformula ofΦ of the
form B∼�(Φ1, . . . , Φn) with a formula of the form B̄∼�(Φ1, . . . , Φn,¬Φ1, . . . ,¬Φn),
where B̄ is obtained from B by substituting each transition of the form q

A→ q′ with all

Strategy Synthesis for Markov Decision Processes and Branching-Time Logics 439

transitions of the form q
A′∪A′′
→ q′ whereA ⊆ A′ ⊆ {1, . . . , n} and A′′ = {m+n|m ∈

{1, . . . , n}\A′}, and consequently making the transition function total. Observe that
although the alphabet of B̄ may be exponentially larger than the alphabet of B, the
number of states increases only by 1 due to making the transition function total. Observe
also that the size of the (graph representing) resulting formula is polynomial in the size
of Φ.

Now, to determinize the formula Φ, it suffices to determinize (syntactically) transi-
tion relations of all Büchi automata in Φ. However, the problem is that deterministic
Büchi automata are strictly weaker than non-deterministic Büchi automata. We solve
this problem by first translating the Büchi automata to equivalent deterministic Rabin
automata (using results of [14]) and then encoding the deterministic Rabin automata to
detPECTL∗ formulae.

First, let us formally define the notion of deterministic Rabin automata. A determin-
istic Rabin automatonR is a tuple (Q,Σ, γ, q0, Acc), where Q is a finite set of states,
Σ is an input alphabet, γ : Q × Σ → Q is a transition function, q0 is an initial state,
and Acc = {(C1, D1), . . . , (Ck, Dk)}, where C1, . . . , Ck, D1, . . . , Dk ⊆ Q, specifies
the acceptance condition. A word w ∈ Σω is accepted by R iff there is a sequence
ω = q0, q1, . . . of states of R such that for all i ≥ 0 we have γ(qi, w(i)) = qi+1, and
there is j ∈ {1, . . . , k} such that some state of Cj occurs infinitely often in ω and no
state of Dj occurs infinitely often in ω. We denote L(R) the set of all words accepted
byR. The following proposition was proved in [14].

Theorem 9 ([14]). Given a Büchi automaton B = (B,Σ, δ, qI , F) there is an effec-
tively computable deterministic Rabin automaton R = (Q,Σ, γ, q0, Acc) such that
L(R) = L(B), |R| = 2O(|B| log |B|) and |Acc| = O(|B|).

Now let B∼�(Φ1, . . . , Φn) be a subformula of Φ and let us assume that Φ1, . . . , Φn are
already detPECTL∗ formulae. Let us denoteΣ the alphabet of B, and let us fix a Rabin
automatonR = (Q,Σ, γ, q0, Acc), whereAcc = {(C1, D1), . . . , (Ck, Dk)}, such that
L(R) = L(B). Let us assume (w.l.o.g.) that the transition function ofR is total.

Let us first assume that ‘∼-’ is either of the form ‘>0’ or ‘=1’. Based on R, we
define deterministic Büchi automata Bfin and Bq,i, for all q ∈ Q and 1 ≤ i ≤ k, such
that

B∼�(Φ1, . . . , Φn) ≡fin B∼�
fin(Φ1, . . . , Φn, Ψ1, . . . , Ψ
)

where each Ψj is of the form B=1
q,i (Φ1, . . . , Φn) for one of the automata Bq,i (i.e., � =

|Q| ·k). In what follows we denote index(q, i) the number j such that Ψj is the formula
B=1

q,i (Φ1, . . . , Φn).
Before we formally define Bfin and Bq,i, let us explain the intuition behind the def-

inition. Let us fix a state s0 of a finite Markov chain M and a valuation ν, and let us
assume that B (and hence also R) accepts a run of Run(s0) (see Remark 1) with a
probability greater than 0 (the explanation is analogous for the probability =1). Be-
cause M is finite, there is a finite path v ∈ FPath(s0) such that R accepts almost
all runs of Run(v). Here, however, using basic results of the theory of finite Markov
chains, one can say even more. There is a finite path v ∈ FPath(s0) such that almost all

440 T. Brázdil and V. Forejt

w ∈ Run(v) satisfy the following condition: the automatonR, after reading the prefix
v of w, enters a state of Cj infinitely often and no state of Dj at all, for a suitable j.
We define Bfin and Bq,i so that B>0

fin(Φ1, . . . , Φn, Ψ1, . . . , Ψ
) expresses precisely this
property.

The automata Bfin and Bq,i are formally defined as follows. Let Bfin = (Q ∪
{qa}, Σ ∪ T, δfin, q0, {qa}), where T = {{n+ 1}, . . . , {n+ �}}, and transitions of B
are defined as follows:

– q
A→ q′ for all A ∈ Σ and q, q′ ∈ Q such that γ(q, A) = q′;

– q
{n+index(q,i)}→ qa for all q ∈ Q and all 1 ≤ i ≤ k;

– qa
∅→ qa;

– nothing else is a transition.

We define Bq,i = (Q,Σ, δq,i, q, Ci) where transitions are defined as follows: for all

q ∈ Q and all A ∈ Σ, we define q
A→ q′ if and only if q, q′
∈ Di and γ(q, A) = q′ (i.e.,

there are no transitions leaving or entering states of Di).

Lemma 10. If ‘∼-’ is either of the form ‘>0’ or ‘=1’, then

B∼�(Φ1, . . . , Φn) ≡fin B∼�
fin(Φ1, . . . , Φn, Ψ1, . . . , Ψ
)

Moreover, the right hand side formula is in detPECTL∗.

Proof (Sketch). The fact that B∼�
fin(Φ1, . . . , Φn, Ψ1, . . . , Ψ
) is a detPECTL∗ formula

follows immediately from our assumption about Φ and from the fact that the automata
Bfin and Bq,i are obtained from the deterministic automatonR either by deleting tran-
sitions or by adding transitions to the newly added terminal state qa.

It remains to prove the equivalence. Let us fix a finite Markov chain M with the set
of states S, a state s0 of M , and a valuation ν. Observe that for every state s of M there
is exactly one As ∈ Σ such that s |=

∧
i∈As

Φi. Now an automaton with the alphabet
Σ accepts a run s0, s1, . . . of M if it accepts the word As0As1 · · · .

First, let us assume that s0 |= B∼�
fin(Φ1, . . . , Φn, Ψ1, . . . , Ψ
). It follows immediately

from the definitions that, with probability ∼-, there is a path s0, s1, . . . , si, si+1 in M
satisfying the following conditions:

– the automaton Bfin (and hence also the automaton R) moves from its initial state
to a state r after reading the word As0 · · ·Asi ;

– si+1 |= B=1
r,j (Φ1, . . . , Φn) for some 1 ≤ j ≤ k (and hence almost all runs of

Run(si+1) are accepted by the Rabin automatonR initiated in r).

However, this immediately implies that, with probability ∼-, the automaton R (and
hence the automaton B) accepts a run of Run(s0).

For the opposite direction, let M × R be a Markov chain (the synchronous prod-
uct of M and R) whose set of states is S × Q and transitions are defined as follows:

(s, q) x→ (t, r) iff s
x→ t and q

As→ r. Given 1 ≤ j ≤ k, we say that a BSCC C of M
is j-accepting iff a state of Cj occurs in (the second component of a state of) C and
no state of Dj occurs in C. Basic results of the theory of Markov chains imply that the

Strategy Synthesis for Markov Decision Processes and Branching-Time Logics 441

probability measure of all runs of Run(s) accepted by R (hence also by B) is equal
to the probability of reaching some j-accepting BSCC of M × R. Thus, if s0 |=
B∼�(Φ1, . . . , Φn), then, with probability ∼-, there is a path (s0, q0), . . . , (si, qi) in
M ×R such that (si, qi) belongs to a j-accepting BSCC. It is easy to show that si |=
B=1

qi,j
(Φ1, . . . , Φn) andBfin moves from q0 to qa after reading the wordAs0 , . . . , Asi−1 ,

{n+ index(qi, j)}. This implies that s0 |= B∼�
fin(Φ1, . . . , Φn, Ψ1, . . . , Ψ
). ()

Now, let us consider the case where ‘∼-’ is either of the form ‘=0’ or ‘<1’. We denote
∼̂- the ‘dual’ of ‘∼-’, i.e., =̂0 is ‘=1’, and <̂1 is ‘>0’. Using very similar arguments,
we prove the following analogy of Lemma 10 (a proof can be found in [4]).

Lemma 11. If ‘∼-’ is either of the form ‘=0’ or ‘<1’, then there are Büchi automata
Bfin and Bq,i, for all q ∈ Q and 1 ≤ i ≤ k, such that

B∼�(Φ1, . . . , Φn) ≡fin B�∼�
fin(Φ1, . . . , Φn, Ψ1, . . . , Ψ
)

where each Ψj is of the form B=1
q,i (Φ1, . . . , Φn) for one of the automata Bq,i (i.e., � =

|Q| · k). Moreover, the right hand side formula is in detPECTL∗.

Using Lemma 10 and Lemma 11 one can easily design an algorithm which transforms
the formula Φ to a detPECTL∗ formula Ψ using appropriate substitutions in a ‘bottom-
up’ manner.

For general qPECTL∗ formulae, the time complexity of the algorithm is single expo-
nential in the size ofΦ. Indeed, by [14] the Rabin automatonR can be computed in time
exponential in the number of states of B and polynomial in the size of the alphabet, and
consequently the automata Bfin and Bq,i are computable in single exponential time. It
follows that the formula Ψ is computable in exponential time (here we make use of the
representation of Ψ as a directed acyclic graph, i.e., we assume that several occurrences
of the same subformula are represented by one vertex).

Now observe that in the case of PCTL formulae, there are only five distinct Büchi
automata used to define Boolean connectives and operators X, U, and R. It follows that
the corresponding Rabin automata have bounded size, and thus each PCTL formula can
be translated to a detPECTL∗ formula in polynomial time. This finishes the proof of
Theorem 7.

5 qPCTL and Finite-Memory Strategies

In this section we study the power of finite-memory strategies w.r.t. the synthesis prob-
lem for 1 1

2 -player games and qPCTL objectives.
Given Y ⊆ {X∼�, F∼�,G∼� | ∼- ∈ {=0, >0, <1,=1}}, we denote L(Y) the

fragment of qPCTL which consists of formulae of the following form:

Φ ::= a | ¬a | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | Y∼� Φ1

where Y∼� ∈ Y . For example, the fragmentL({F=1,G=1, F>0}) (we usually omit the
set brackets and write L(F=1,G=1, F>0)) is the fragment of qPCTL whose formulae
are built up from literals using conjunction, disjunction, and three temporal operators

442 T. Brázdil and V. Forejt

F=1,G=1, F>0 (there is no operation of complement). Note that we work with the op-
erators F∼� and G∼� only for simplicity: All results of this section remain valid even if
one replaces F∼� with U∼�, and G∼� with R∼�.

Definition 12. A fragment L(Y) is finitely determined if for every formula Φ of L(Y),
arbitrary vertex s of a 1 1

2 -player game, and arbitrary valuation ν, the following holds:
If there is a (ν, Φ)-winning strategy in s, then there is a (ν, Φ)-winning finite-memory
strategy in s.

First, we show which fragments are not finitely determined. Then we prove that no
finitely determined fragment is more expressive than the fragment L(X=1,X>0,G=1,
F=1, F>0).

It has been shown in [3] that L(G>0, F>0) is not finitely determined. We extend this
result and show that also L(G>0) is not finitely determined. Let us consider a game G
depicted in the following figure (it is very similar to the corresponding game from [3]):

s0

right2

1/4

3/4

1/4

3/4

left

s1

right1

stop

start s2

We use names of vertices as atomic propositions with an obvious semantics. Let us
denote Φ = G>0(¬stop ∧ (¬left ∨ G>0¬right2)). The proof of the following lemma
is presented in [4].

Lemma 13. There is a (ν, Φ)-winning HD strategy in start. There is no (ν, Φ)-winning
FR strategy in start.

We continue by proving that also L(G=0) is not finitely determined. Let us consider
a formula Ψ = G>0(¬stop ∧ (¬left ∨ F=1G>0¬right2)) and the game G defined
above. It is easy to show, using arguments similar to the proof of Lemma 13, that there
is a (ν, Ψ)-winning HD strategy in start, and no (ν, Ψ)-winning FR strategy in start.
Now we transform Ψ to a L(G=0) formula Ψ ′ such that for an arbitrary strategy we
have start |=ν Ψ iff start |=ν Ψ ′. Using obvious equivalences ¬G>0φ ≡ G=0φ
and F=1φ ≡ G=0¬φ, one can easily show that Ψ is equivalent to ¬χ where χ =
G=0(¬stop ∧ (¬left ∨ G=0G=0¬right2)). Now it is easy to verify that start |=ν

¬χ if and only if start |=ν G=0(¬start ∨ χ). It follows that L(G=0) is not finitely
determined.

Next, let us consider the fragment L(F<1). Using the equivalence G>0φ ≡ F<1¬φ,
one can easily show that Ψ is equivalent to F<1(stop ∨ (left ∧ F<1F<1right2)). It
follows that L(F<1) is not finitely determined.

The last fragments we analyze are L(X=0, F=1), L(X<1, F=1), L(F=0, F=1) and
L(G<1, F=1). Using the equivalences F=1φ ≡ G=0¬φ and ¬F=1φ ≡ G>0¬φ one
can show that Φ = G>0(¬stop ∧ (¬left ∨ G>0¬right2)) is equivalent to ¬χ where
χ = F=1(stop ∨ (left ∧ F=1right2)). Now, using a similar trick as above, we obtain
start |=ν ¬χ iff start |=ν X=0(χ) iff start |=ν X<1(χ) iff start |=ν F=0(start∧χ)
iff start |=ν G<1(¬start ∨ χ).

Strategy Synthesis for Markov Decision Processes and Branching-Time Logics 443

Now we can give a complete classification of finitely determined fragments.

Lemma 14. The fragment L1 = L(X=1,X<1,X>0,X=0,G=1, F>0, F=0,G<1) and
the fragment L2 = L(X=1,X>0,G=1, F>0, F=1) are maximal (w.r.t. inclusion) finitely
determined fragments.

Proof. We have proved above that the fragments L(G>0), L(G=0), L(F<1), L(X=0,
F=1), L(X<1, F=1), L(F=0, F=1) and L(G<1, F=1) are not finitely determined.
Clearly, any fragment which contains one of these fragments is not finitely determined.
On the other hand, it follows from Theorem 6 that the fragment L2 is finitely deter-
mined. By a close inspection of various possibilities, we obtain that the only fragment
we have not yet classified is L1 (and some of its subsets).

However, we show that each formula of L1 can efficiently be translated to L2, which
implies that L1 is finitely determined. Let Ψ be a formula of L1. First, using the equiv-
alences X=0Φ ≡ X=1¬Φ, X<1Φ ≡ X>0¬Φ, F=0Φ ≡ G=1¬Φ, G<1Φ ≡ F>0¬Φ,
one can remove operators X=0, X<1, F=0, G<1 (introducing, however, some nega-
tions to the formula). The negations introduced in the previous step can be pushed
to atomic propositions using equivalences ¬X=1φ ≡ X>0¬φ, ¬X>0φ ≡ X=1¬φ,
¬G=1φ ≡ F>0¬φ, ¬G>0φ ≡ F=1¬φ. ()

Corollary 15. A fragment L(Y), where Y ⊆ {X∼�, F∼�,G∼� | ∼- ∈ {=0, >0, <1,
=1}}, is finitely determined if and only if each formula of L(Y) can be efficiently trans-
lated to an equivalent formula of L(X=1,X>0,G=1, F=1, F>0).

References

1. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis for proba-
bilistic systems. In: Proceedings of IFIP TCS’2004, Kluwer, Dordrecht (2004)

2. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems.
In: Thiagarajan, P.S. (ed.) Foundations of Software Technology and Theoretical Computer
Science. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)

3. Brázdil, T., Brožek, V., Forejt, V., Kučera, A.: Stochastic games with branching-time win-
ning objectives. In: Proceedings of LICS 2006, IEEE Computer Society Press, Los Alamitos
(2006)

4. Brázdil, T., Forejt, V.: Strategy synthesis for Markov decision processes and branching-time
logics. Technical report FIMU-RS-2007-03 (2007)

5. Brázdil, T., Kučera, A., Stražovský, O.: On the decidability of temporal properties of
probabilistic pushdown automata. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS,
vol. 3404, pp. 145–157. Springer, Heidelberg (2005)

6. Chatterjee, K., de Alfaro, L., Henzinger, T.: The complexity of stochastic Rabin and Streett
games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 878–890. Springer, Heidelberg (2005)

7. Chatterjee, K., Jurdzinski, M., Henzinger, T.: Simple stochastic parity games. In: Meinke, K.,
Börger, E., Gurevich, Y. (eds.) CSL 1993. LNCS, vol. 832, pp. 100–113. Springer, Heidelberg
(1994)

8. Chatterjee, K., Jurdzinski, M., Henzinger, T.: Quantitative stochastic parity games. In: Pro-
ceedings of SODA 2004, SIAM, pp. 121–130 (2004)

9. Feinberg, E., Shwartz, A. (eds.): Handbook of Markov Decision Processes. Kluwer, Dor-
drecht (2002)

444 T. Brázdil and V. Forejt

10. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects
of Computing 6, 512–535 (1994)

11. Kučera, A., Stražovský, O.: On the controller synthesis for finite-state Markov decision pro-
cesses. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 541–552.
Springer, Heidelberg (2005)

12. Mahadevan, S.: Partially observable semi-Markov decision processes: Theory and applica-
tions in engineering and cognitive science. In: AAAI: Fall Symposium on Planning with
Partially Observable Markov Decision Processes (1998)

13. Puterman, M.L.: Markov Decision Processes. Wiley, Chichester (1994)
14. Safra, S.: Complexity of automata on infinite objects. PhD thesis (1989)
15. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Banff Higher Order

Workshop, pp. 238–266 (1995)

Timed Concurrent Game Structures�

Thomas Brihaye, François Laroussinie, Nicolas Markey, and Ghassan Oreiby��

Laboratoire Spécification & Vérification – CNRS & ENS Cachan – France

Abstract. We propose a new model for timed games, based on con-
current game structures (CGSs). Compared to the classical timed game
automata of Asarin et al. [8], our timed CGSs are “more concurrent”,
in the sense that they always allow all the agents to act on the sys-
tem, independently of the delay they want to elapse before their action.
Timed CGSs weaken the “element of surprise” of timed game automata
reported by de Alfaro et al. [15].

We prove that our model has nice properties, in particular that model-
checking timed CGSs against timed ATL is decidable via region abstrac-
tion, and in particular that strategies are “region-stable” if winning
objectives are. We also propose a new extension of TATL, containing
ATL∗, which we call TALTL. We prove that model-checking this logic
remains decidable on timed CGSs. Last, we explain how our algorithms
can be adapted in order to rule out Zeno (co-)strategies, based on the
ideas of Henzinger et al. [15,21].

1 Introduction

Verification and model-checking. Over the last 30 years, the crucial role of ver-
ification has been emphasized by the unprecedented development of automated
and embedded systems in various domains such as automotive industry, avionics
or mobile communications.

Model-checking [25] is a technique of formal, model-based verification. This
technique consists in exhaustively and automatically checking that all the be-
haviours of the (model representing the) system are consistent with some given
formal specification. It is classical to represent the system (e.g. a network of
computers and printers) as a finite-state system (a.k.a. Kripke structure), and to
express the specifications (e.g., that any message sent by some computer always
reaches its addressee) in some temporal logic, such as LTL (linear-time temporal
logic) or CTL (computation-tree logic) [17]. Several efficient model-checking tools
have been developped and applied with great success over an abundant number
of industrial case studies [24,13,22].

Since the early 90’s, this setting has been lifted to real-time, in particular
with the introduction of timed automata [2], the extension of temporal logics to
include quantitative requirements [1,4], and the development of efficient algo-
rithms and tools [20,14,9]. This area is now very mature and widely applied for
industrial case studies.
� Work partly supported by project DOTS (ANR-06-SETI-003).

�� This author is supported by a PhD grant from Région Ile-de-France.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 445–459, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

446 T. Brihaye et al.

Control and game theory. Control theory [11,27] is another facet of formal,
model-based verification, geared towards the analysis of open systems, inter-
acting with an (hostile) environment. The ultimate goal of this technique is to
automatically synthesize a controller that will restrict the behaviour of the sys-
tem in order to satisfy some given property. This problem is often encoded as a
game-theoretic problem: the game is played by several players on a board, e.g.
a concurrent game structure (CGS) [6]. CGSs are finite-state automata whose
evolution conforms to the following protocol: at each step, all the players select
one of the moves they are allowed to play, and the next state is looked up in the
transition table of the CGS.

Alternating-time temporal logic (ATL) [5] has been proposed as an extension
of CTL with strategy quantifiers. It can express controllability properties, e.g.
“A has a strategy to eventually get its request served”. Compared to CTL, this
extension comes with no extra cost: it can still be verified in polynomial time [6].

Timed games. Several research works have focused on extending games to the
real-time world. In that view, the best-established model is that of timed game
automata [23,8,15,12,21]. A timed game automaton (TGA) is a timed automaton
whose set of transitions is partitionned amongst the different players. At each
step, each player chooses one of her possible transitions, as well as some amount
of time she would like to wait before firing her selected transition. The player
with the smallest delay is “elected”, and her choices are applied. In case several
player draw a tie, one of them is elected non-deterministically (or there can be
a hierarchy among the players, but this breaks symmetry).

The logic ATL has also been extended to TATL, involving formula clocks to
express timing requirements. It is decidable in exponential time whether a TATL
formula is fulfilled in a timed game automaton [21]. Moreover, it is possible to
restrict to “fair” strategies, ruling out strategies that consist in preventing time
to diverge (a.k.a. Zeno strategies) [15,21].

Our contributions. Timed game automata are more of a game extension of timed
automata than a timed extension of game structures. In this paper, we propose
a timed extension of CGSs, which we call TCGSs. In those games, each player
still chooses a delay and a move she wants to play after that delay, but she also
proposes a function telling which moves she wants to play if someone proposes
a smaller delay. That way, even if an opponent chooses a smaller delay, her
behavior can still be “restricted” by the other players. This also avoids resorting
to non-determinism in case several players choose the same delay. This could be
useful in our example of a communication network, where two messages sent at
the same time would result in a collision.

We prove that our model has nice properties: the functions proposed by the
players can be chosen to be region-based (i.e., they can be constant on each re-
gion), and that the satisfaction of TATL properties is stable by regions. This pro-
vides us with an EXPTIME algorithm for model-checking TATL on our TCGSs,
which we prove can be extended to force the players to play “fairly” w.r.t. di-
vergence of time.

Timed Concurrent Game Structures 447

We also propose a new (to the best of our knowledge) temporal logic TALTL,
which contains TATL and ATL∗ (and can thus express e.g. fairness properties)
while remaining decidable (in 2EXPTIME). As a side result, we obtain that
model-checking the corresponding TCLTL logic (containing TCTL and LTL) on
timed automata is decidable in EXPSPACE.

Related works. As already mentionned, several papers have already dealt with
timed games, especially in the framework of timed game automata. In [28],
Schobbens and Bontemps propose a model for multi-agent games (called “real-
time concurrent game structures”, but that is still different from our TCGSs),
and describe an algorithm for model-checking a timed extension of ATL incor-
porating MITL [3]. Their algorithm relies on event-clock automata, and is very
different to our approach. The complexity of the procedure is not discussed there.

Outline of the paper. The paper is organized as follows: in Section 2, we formally
define our timed concurrent game structures. Section 3 is devoted to showing
that strategies can be made region-based (for region-based objectives). Section 4
proves that region-equivalence is a correct abstraction, and Section 5 describes
the model-checking algorithms for TATL and TALTL. Last, in Section 6, we
explain how our results can be extended to rule out Zeno strategies. Due to
lack of space, proofs are omitted. They are detailed in [10].

2 Definitions

2.1 Untimed Concurrent Game Structures

We briefly recall the definition of concurrent game structures, which are multi-
agent extensions of transition systems [6]. We extend the original definition in not
requiring them to be finite-state, as we will use them for defining the semantics
of our timed game structures. In the whole paper, Σ is a fixed finite alphabet.

Definition 1. A concurrent game structure (CGS for short) is a tuple1 S =
〈Q,Q0, l, δ,Agt,M,Mv,Edg〉 where:

– 〈Q,Q0, l, δ〉 is a transition system with l : Q→ Σ,
– Agt = {a1, ..., ak} is a finite set of agents,
– M is the set of all possible moves of the agents,
– Mv : Q× Agt→ P(M)
 ∅ defines the set of possible moves for each player,
– Edg : Q×Mk → δ is the transition table, assigning a transition to each set of

moves of the agents in each state. We further demand that transitions given
by Edg(q,ma1 , ...,mak

) depart from q.

We write ExecS (resp. ExecFS) for the set of (resp. finite) executions or trajectories
of S (i.e., of the underlying transition system). Let r = (ri)0�i�n ∈ ExecFS . The
length |r| of r is n, the last location last(r) of r is rn and, for any m � n, the
m-th prefix r�m of r is the finite execution (ri)0�i�m.
1 We might omit to mention M when it is clear from the context.

448 T. Brihaye et al.

In a CGS, the transitions to be fired are chosen concurrently by all the agents:
in some location q, each agent al selects a move ml ∈ Mv(q, al). The resulting
transition is indicated by the value of Edg(q, a1, ...ak). We now formalize this
behavior.

Definition 2. Let S = 〈Q,Q0, l, δ,Agt,M,Mv,Edg〉 be a CGS, and a ∈ Agt be
an agent. A strategy for a is a mapping λ : ExecFS → M s.t., for any r ∈ ExecFS ,
λ(r) ∈ Mv(last(r), al). Given a coalition A ⊆ Agt, a strategy for A is a family
λA = (λl)al∈A of strategies, one for each agent in A.

Given a location q and a set of moves ml ∈ Mv(q, al) for some agents al of
a coalition A, the set of possible transitions from q under choices (ml)al∈A is
defined as Next(q, (ml)al∈A) = {Edg(q,m′

1, ...,m
′
l) | ∀al ∈ A. m′

l = ml}. In the
same way, given a finite trajectory r and a strategy λA = (λl)al∈A, we define
Next(r, λA) = Next(last(r), (λl(r))al∈A).

An outcome of strategy λA after a finite execution r of length n is an ex-
ecution r′ = (r′i)i s.t. r is a prefix of r′ and, for any m, (r′n+m, r

′
n+m+1) ∈

Next(r′�n+m, λA). We write2 OutS(r, λA) for the set of outcomes of λA after r.
The aim of a strategy is generally to win the game, i.e., to enforce that any

(infinite) outcome belongs to a given set of winning trajectories. Such a set is
called a winning objective.

2.2 Timed Concurrent Game Structures

Given a set C of clock variables, a clock valuation is a mapping v : C → R+.
Given a valuation v, a delay t ∈ R+ and a subset Z ⊆ C, the valuation v′ = v+ t
is defined by v′(c) = v(c) + t for all c ∈ C, and the valuation v′′ = v[Z ← 0] is
defined by v′′(c) = v(c) if c /∈ Z and v′′(c) = 0 otherwise. We write v0 for the
valuation s.t. v0(c) = 0 for any c ∈ C.

Let M be a positive integer. The set of clock constraints bounded by M is the
set of formulas defined by the following grammar:

Constr(C,M) ? φ ::= c ∼ n | φ ∧ φ

where c ranges over C, n � M is an integer, and ∼ ∈ {<,�,=,�, >}. We write
Constr(C) for the set of unbounded clock constraints (i.e., when M = +∞). That
a clock valuation satisfies a clock constraint is defined in the obvious way.

Definition 3. A timed automaton (TA for short) [2] is a tuple A = 〈Q,Q0, l,
C, Inv, δ〉 where:

– Q is a finite set of locations, those in Q0 being initial;
– l : Q → Σ labels each location with one letter of the alphabet;
– C is a finite set of clock variables;
– Inv : Q→ Constr(C) defines the invariants of each location;

2 We will omit to mention the subscript S when it is clear from the context.

Timed Concurrent Game Structures 449

– δ ⊆ Q × (Q × 2C)(R
+)C

is a finite set of transitions, required to fulfill the
following requirement: if (q, f) ∈ δ, then f is total, and there exists a positive
integer M s.t., if v and v′ are two clock valuations satisfying exactly the same
set of formulas in Constr(C,M), then f(v) = f(v′).

Note that our definition of a transition is unusual. In our setting, a transition is
a (total) function that assigns a location and a set of clocks to be reset to each
valuation of the clocks. While both definitions are expressively equivalent, our
modified definition will facilitate the extension to games.

The semantics of TAs is defined in terms of an infinite (timed) transition
system. Here, we combine a delay transition with an action transition:

Definition 4. With a TA A = 〈Q,Q0, l, C, Inv, δ〉, we associate an infinite timed
transition system (TTS for short) S = 〈S, S0, l

′, R〉 defined as follows:

– S = {(q, v) ∈ Q × (R+)C | v |= Inv(q)}, whose elements are called the states
of A;

– S0 = S ∩ (Q0 × {v0});
– l′((q, v)) = l(q);
– R ⊆ S × R+ × S is such that (s, d, s′) ∈ R iff, writing s = (q, v) and s′ =

(q′, v′), there exists a transition (q, f) ∈ δ and a subset Z ⊆ C s.t.(q, v+d) ∈
S, (q′, Z) = f(v + d), and v′ = v + d[Z ← 0].

A (continuous) execution ρ of A is a (finite or infinite) sequence ((si, di))i s.t.
(si, di, si+1) ∈ R for any i. Given such an execution ρ = ((si, di))i, a position
along ρ is a pair (k, d) ∈ N×R+ where 0 � d � dk. Writing si = (qi, vi) for each i,
the position (k, d) represents the state (qk, vk +d). The set of positions of an ex-
ecution are ordered lexicographically. Given two positions (k, d) and (k′, d′) with
(k, d) � (k′, d′), we define time((k, d), (k′, d′)) to be the delay elapsed between
those two positions, namely (dk − d) +

∑
k<j<k′ dj + d′.

We are now in a position to define our timed concurrent game structures:

Definition 5. A timed concurrent game structure (TCGS for short) is a tu-
ple T = 〈Q,Q0, l, C, Inv, δ,Agt,M,Mv,Edg〉 where

– 〈Q,Q0, l, C, Inv, δ〉 is a TA;
– Agt, M, Mv and Edg have the same properties as in CGSs.

In this paper, we focus on finite-state TCGS, where both Q and M ⊆ N are
finite. This restriction is implicit in the sequel.

In a TCGS, the agents do not only choose the discrete action they want to
play, but also the (non negative real) delay they would like to let elapse before
their action takes place, and the actions they would play if the transition were
to be taken earlier. Formally:

Definition 6. Let T = 〈Q,Q0, l, C, Inv, δ,Agt,M,Mv,Edg〉 be a TCGS, q ∈ Q,
and v ∈ (R+)C. A full move of a player a ∈ Agt from location q under valua-
tion v is a pair (t, f) where t ∈ R+ and f : R+ → Mv(q, a) s.t. v + t |= Inv(q).
We write FM((q, v), a) for the set of full moves of player a in location q un-
der v. We have that FM((q, v), a) = {t ∈ R+ | v + t |= Inv(q)} × (Mv(q, a))R+

.
We write FM(R+,M) for the set R+ ×MR+

of all possible full moves.

450 T. Brihaye et al.

The semantics of a TGCS can then be defined in terms of an infinite CGS:

Definition 7. With a TCGS T = 〈Q,Q0, l, C, Inv, δ,Agt,M,Mv,Edg〉, we asso-
ciate the infinite CGS S = 〈S, S0, l

′, R,Agt,FM(R+,M),Mv′,Edg′〉 defined as
follows:

– 〈S, S0, l
′, R〉 is the TTS associated with the TA 〈Q,Q0, l, C, Inv, δ〉;

– for all (q, v) ∈ S and for all a ∈ Agt, Mv′((q, v), a) = FM((q, v), a);
– Edg′((q, v), ((t1, f1), ..., (tk, fk))) is defined as follows: letting t0 = min{ti |
i � k}, mi = fi(t0) for each i � k, (q, f) = Edg(q, (m1, ...,mk)), and f(v +
t0) = (q′, Z), we have Edg′((q, v), ((t1, f1), ..., (tk, fk))) = ((q, v), t0, (q′, v +
t0[Z ← 0])).

Example 8. Let us consider the 2-player game depicted on Figure 1. In that
figure, transitions are marked e.g. with 〈a, b〉 to indicate that they correspond
to Player 1 playing move a and Player 2 playing move b (moves not drawn are
assumed to be self-loops). One can be convinced that Player 1 has a strategy in
state (q2, x = 0) for always avoiding location q4. A possible full move is depicted
on Figure 2.

q1 q2 q4

q3

〈2,1〉

x≤5

〈2,1〉

x≤5

〈1,2〉

x≥5

〈1,2〉

x≥5

〈2,2〉

x=2

Fig. 1. Example of a TCGS

f

1

2

5 = d

Fig. 2. A full move (d, f)

Remark 9. Even if we were not able to prove it formally, we think that our
TCGSs and the classical model of TGAs [8,15] are incomparable w.r.t. alternat-
ing bisimilarity.

Still, TCGSs can be extended in many ways (e.g. with different invariants
for each player, ...) while remaining decidable (with very little changes to our
algorithms, and in particular with the same complexities). One possible exten-
sion is to have several transition tables, depending on the orders (and possible
equalities) of the delays chosen by the different players. Such an extension would
encompass TGAs (with an extra player for resolving non-determinism).

3 Region Equivalence and Strategies

3.1 Region Equivalence

Fix a family of integer constants Mx, one for each clock x ∈ C. Two clock
valuations v and v′ are equivalent [2], denoted by v ≈t v

′, if, and only if, the
following three conditions hold:

Timed Concurrent Game Structures 451

– for all c ∈ C, either v(c)� = v′(c)� or both v(c) and v′(c) are larger thanMc;
– for all c, c′ ∈ C with v(c) ≤ Mc and v(c′) ≤ Mc′, frac(v(c)) ≤ frac(v(c′)) if

and only if frac(v′(c)) ≤ frac(v′(c′));
– for all c ∈ C with v(c) ≤Mc, frac(v(c)) = 0 if and only if frac(v′(c)) = 0.

The equivalence relation ≈t is extended to states and executions of a TA in the
classical way. An equivalence class for ≈t on states is called a region. We write
[(q, v)] for the region containing (q, v), and RA for the set of all such regions.
Since all the Mx are finite, the number of regions is finite.

Given a state (q, v) of a TA, the timed future of (q, v) Fut(q, v) : R+ → RA is
defined as: Fut(q, v)(t) = [(q, v+t)]. This function is piecewise constant and, since
there are finitely many regions, R+ can be partitioned into finitely many intervals
on which Fut(q, v) is constant. We write Fut(q, v) = I0 I1 I2 · · · Il to denote that
fact. In such a notation, (Ii)i�l is a sequence of intervals partitioning R+ and on
each of which Fut(q, v) is constant. We also require that this list is minimal, i.e.,
for all j � 0 and any t ∈ Ij and t′ ∈ Ij+1, we have Fut(q, v)(t)
= Fut(q, v)(t′).

We also define the immediate successor of a region as the partial function
succ : RA →RA defined by succ(r) = r′ if r′
= r and there exists (q, v) ∈ r and
t ∈ R+ such that (q, v + t) ∈ r′ and ∀0 < t′ < t we have (q, v + t′) ∈ r ∪ r′. We
write succi for the i-th iterate of succ.

3.2 Simplifying Strategies

As is classical when dealing with timed systems, we will restrict to winning
objectives that are region-definable, in the sense that a trajectory that is region-
equivalent to a winning trajectory is also winning. Under this assumption, we
prove that strategies can always be “region-definable”. This is twofold: on the one
hand, region-invariance means that the strategy does not depend on the whole
history but only on its region abstraction; on the other hand, region-uniformity
means that the value returned by the strategy is constant on the intermediate
regions being visited. In order to define formally these notions we define the
notion of isomorphism between two states. This notion will be the key tool in
the proofs of existence of “region-definable” strategies.

Definition 10. Let A be a TA and (q, v), (q′, v′) be two states of A. We say
that a bijection σ : R+ → R+ is an isomorphism for (q, v) and (q′, v′) when:

– (increasing) for all t1, t2 ∈ R+, t1 < t2 iff σ(t1) < σ(t2);
– (future-preserving) for all t ∈ R+, Fut(q, v)(t) = Fut(q′, v′)(σ(t)).

Definition 11. Let T be a TCGS, and λA be a strategy for a coalition A ⊆ Agt.

– λA is region-invariant if, for all finite executions ρ and ρ′ s.t. ρ ≈t ρ
′, there

is an isomorphism σ for last(ρ) and last(ρ′) s.t., writing (d, f) = λA(ρ) and
(d′, f ′) = λA(ρ′), we have d′ = σ(d) and f ′(t) = f(σ−1(t)) for all t ∈ R+.

– λA is region-uniform if, for all finite execution ρ s.t. λA(ρ) = (d, f), the value
of f is constant on regions, i.e., writing (q, v) = last(ρ), for any t, t′ ∈ R+,
if (q, v + t) ≈t (q, v + t′), then f(t) = f(t′).

452 T. Brihaye et al.

Roughly, region-invariance means that the strategy only depends on the projec-
tion of the history on regions, while region-uniformity means that the full-moves
returned by the strategy are region-definable. In order to restrict to region-
uniform and region-invariant strategies, we prove the following results [7]:

Proposition 12. Let T be a TCGS and A ⊆ Agt be a coalition. For any two
finite trajectories r and r′ s.t. r ≈t r

′, for any strategy λA of coalition A, we
can build a region-uniform and region-invariant strategy λ′A s.t., for any ρ′ ∈
Out(r′, λ′A), there exists ρ ∈ Out(r, λA) with ρ ≈t ρ

′.

Corollary 13. Let T be a TCGS, A ⊆ Agt be a coalition and Ω be a region-
invariant winning objective. Let r and r′ be two finite trajectories s.t. r ≈t r

′.
There exists a winning strategy for A after r w.r.t. Ω if, and only if, there exists
a region-uniform and region-invariant winning strategy for A after r′ w.r.t Ω.

4 Region CGS

In this section, for a TCGS T , we define a finite CGS which we call the region
CGS of T . We show that this region CGS is game-bisimilar to the original TCGS.
This region CGS is the “concurrent game version” of the classical region automa-
ton [2]. Before we give the formal definition of the region CGS, we need to define
the time-abstract version of a full move.

Definition 14. Let T = 〈Q,Q0, l, C, Inv, δ,Agt,M,Mv,Edg〉 be a TCGS. A dis-
crete full move of a player a ∈ Agt from a region [(q, v)] is a pair (d, f) where d ∈
N and f : N → Mv(q, a).

We write FM([(q, v)], a) for the set of discrete full moves of player a in re-
gion [(q, v)]. We have that FM([(q, v)], a) =

∣∣Fut((q, v))
∣∣ × (Mv(q, a))N. The set

FM(N,M) denotes the set N×MN of all possible discrete full moves.

As can be expected, the first element of a full move specifies the delay that the
agent would like to wait before firing her transition, in terms of the number of
regions to be visited. The second item is the move function for the intermediary
regions.

Definition 15. With a TCGS T = 〈Q,Q0, l, C, Inv, δ,Agt,M,Mv,Edg〉, we as-
sociate the (finite) region CGS R = 〈S, S0, l

′, R,Agt,FM(N,M),Mv′,Edg′〉 with

– 〈S, S0, l
′, R〉 is the region automaton associated with the TA 〈Q,Q0, l, C, Inv, δ〉;

– for all s ∈ S, for all a ∈ Agt, Mv′(s, a) = FM(s, a);
– Edg′(s, ((d1, f1), ..., (dk, fk))) is defined as follows: let d0 = min{di | i � k},
s′ = succd0(s), mi = fi(d0) for each i � k, (q, f) = Edg(q, (m1, ...,mk)), and
(q′, Z) = f(q, v′) for some (q, v′) ∈ s′ (this does not depend on the choice
of v′ since f is definable with clock constraints); then Edg′(s, ((d1, f1), ...,
(dk, fk))) = [(q′, v′[Z ← 0])].

Timed Concurrent Game Structures 453

Let T be a TGCS and R be its region CGS. With a run r of T , one can naturally
associate a unique run of R, which we denote by [r].

Using Prop 12, it can be proved that this abstraction is correct, in the sense
that a TCGS T and its region abstraction R are game-bisimilar, i.e., that any
strategy in one of those structures can be “mimicked” in the other one [7].

Theorem 16. Let T be a TCGS. Region equivalence induces a game-bisimulation
between (the infinite CGS associated with) T and its region CGS R.

5 Timed ATL

We will study several extensions of the logic ATL defined originally in [5]. We
begin with defining the largest extension, namely TATL∗.

Definition 17. The logic TATL∗ is defined by the following grammar:

TATL∗ ? φs ::= p | c ∼ n | ¬φs | φs ∨ φs | 〈〈A〉〉φp

φp ::= φs | c.φp | φp ∧ φp | φp ∨ φp | φp Uφp | φp Rφp

where p ranges over Σ, c ranges over a finite set of formula clocks, ∼ ∈ {<,�,=,
�, >}, n ∈ N, and A ⊆ Agt. Formulas of the form φs are called state formulas,
while formulas of the form φp are path formulas.

A TATL∗ formula φ is interpreted over a position p along a trajectory r of a
TCGS T w.r.t. a valuation w for formula clocks. The semantics of T , r, p |=w φ
is defined in the usual way for atomic propositions, clock comparisons and the
freeze quantifier “c.ψ” [4], boolean combinators, and (dual) modalities U and R.
As usual, we use Fφ as a shorthand for &Uφ (eventually φ), Gφ for ⊥Rφ (al-
ways φ),

∞
F φ for GFφ, and

∞
G φ for FGφ. The strategy quantifier 〈〈A〉〉ψp

expresses the existence of a strategy for coalition A all of whose outcomes sat-
isfy ψp [5]. The truth value of a state formula φs only depends on the cur-
rent position and the trajectory can then be omitted in that case. We write
T , (q, v) |=w φs when T , r, (0, 0) |=w φs for some trajectory starting in (q, v).

There is no hope of being able to verify TATL∗ as this logic is a superset
of TPTL, which is known to be undecidable on timed automata under our con-
tinuous semantics [4]. We thus focus on fragments of TATL∗ (that inherit their
semantics from the above semantics of TATL∗). We define ATL∗ as being the
(classical) fragment of TATL∗ not involving clocks, and TATL and ATL as the
fragments of TATL∗ and ATL∗, resp., in which path formulas restricted to the
following grammar:

φp ::= φs Uφs | φs Rφs | c.φp.

We also define a new fragment of TATL∗, which we call TALTL, containing both
ATL∗ and TATL:

454 T. Brihaye et al.

Definition 18. The syntax of TALTL is defined by the following grammar:

TALTL ? φs ::= p | c ∼ n | ¬φs | φs ∨ φs | 〈〈A〉〉φp | c.φs

φp ::= φs | φp ∧ φp | φp ∨ φp | φp Uφp | φp Rφp

Remark 19. To our knowledge, TALTL has never been studied earlier, even in the
setting of timed automata. The difference with TATL∗ lies in the fact that clocks
can now only be reset in state formulas, and not in path formulas. We believe
that our new intermediate logic is really interesting for model-checking (despite
is rather high complexity). Indeed, it extends timed branching-time logics with
e.g. fairness (for instance, c.A(

∞
F p⇒ F (q∧F (q′∧c � 10))) is a TCLTL formula,

stating that along fair executions, q and then q′ will occur within 10 time units)
while remaining decidable3.

We begin with proving that TALTL cannot distinguish between two region-
equivalent states of a TCGS. This requires to extend our previous definitions:
given a TCGS T = 〈Q,Q0, l, C, Inv, δ,Agt,Mv,Edg〉 and a set of formula clocks C′
(disjoint from C), we define T ′ = 〈Q,Q0, l, C∪C′, Inv, δ,Agt,Mv,Edg〉. This TCGS
involves C′, but its clocks do not play any role in the semantics. In such an
extended TCGS, we write (q, v, w) for a state of the infinite CGS associated
with T ′, where v is a valuation of clocks in C and w is a valuation of the clocks
in C′. We write proj((q, v, w)) = (q, v), and extend this notation to map trajec-
tories in T ′ to their corresponding trajectory in T .

Theorem 20. Let T be a TCGS, and T ′ be the corresponding TCGS extended
with a set of formula clocks C′. Let φ be a (path- or state-) TALTL formula
built on the clocks in C′. For any region-equivalent states (q, v, w) and (q, v′, w′)
of T ′, and any two region-equivalent trajectories r and r′ starting from (q, v, w)
and (q, v′, w′), resp., we have

T , proj(r), (0, 0) |=w φ iff T , proj(r′), (0, 0) |=w′ φ.

Moreover, if φ is a state formula, then this result holds even if we relax the
hypothesis that r and r′ be region-equivalent.

Remark 21. It should be noticed that the above result fails to hold for TATL∗:
it is easy to find an example of two trajectories visiting the same sequence of
extended regions, but only one of which satisfies formula c.F (q∧c � 1). We don’t
know if the result of Theorem 20 holds for state-formulas of TATL∗.

5.1 Model-Checking

We now describe a region-based algorithm for model-checking TCGSs against
TALTL. Given a TCGS T and a set of formula clocks C′, we consider the TCGS T ′
extending T with the clocks in C′, and write R′ for the associated region CGS.
3 From our results below, it is easy to convince that model-checking TCLTL (i.e.,

TALTL with path quantifiers instead of strategy quantifiers) is in EXPSPACE.

Timed Concurrent Game Structures 455

Our algorithm labels this finite-state CGS with state-subformulas of a given
TALTL state-formula ψ to be checked on T . This is achieved by recursively
filling a boolean table T ([(q, v, w)], ψ), where [(q, v, w)] ranges over the set of
regions of R′ and ψ ranges over the state-subformulas of φ. Our algorithm uses
an extra procedure ATLstar-labeling, which is the classical algorithm for ATL∗

model-checking, as defined in [6].

Theorem 22. Let T be a TCGS, C′ be a set of formula clocks, T ′ be the ex-
tended TCGS with clocks of C′, and R′ be the region CGS corresponding to T ′.
Let φ ∈ TALTL built on formula clocks in C′. Let T be the table obtained after
applying the algorithm described above on R′ and φ. Let (q, v, w) be a state in T ′.
Then T , (q, v) |=w φ iff T ([(q, v, w)], φ) = &.

Of course, a more efficient algorithm is obtained for TATL by replacing ATLstar-
labeling by the PTIME procedure ATL-labeling for ATL formulas. As a corol-
lary, we obtain the following theorem:

Theorem 23. Model-checking TALTL on TCGSs is decidable and 2EXPTIME-
complete. Model-checking TATL on TCGSs is EXPTIME-complete.

Remark 24. Strategies for ATL can always be chosen memoryless. This however
does not extend to TATL, since the region CGS contains extra information about
formula clocks, which are not part of the model.

6 Ruling Out Zeno Strategies

In the previous section, we proved the decidability of the TALTL model-checking
problem with no restriction on the strategies. In particular, a player could achieve
a safety objective by blocking time. In this section, in order to forbid this kind of
unrealistic behaviors, we explain how we can force the players to play “fairly”,
ruling out strategies that consist in preventing time to diverge (a.k.a. Zeno strate-
gies). Zenoness is the fact for an infinite execution to be time-convergent: an
infinite execution ((si, di))i∈N is Zeno if

∑
i∈N di <∞. To forbid Zeno strategies,

we use the framework introduced in [15]. Let us mention that a similar setting
appears in [18] in order to handle Zeno executions of Timed I/O Automata.

Following [15], we begin with detecting Zeno outcomes. In order to do so,
given a TCGS T , we add to it an extra clock z /∈ C which is reset when it
exceeds 1. This is formally achieved as follows: Let T = 〈Q,Q0, l, C, Inv, δ,Agt,
Mv,Edg〉 be a TCGS. We define Tz = 〈Q,Q0, l, Cz, Inv, δz,Agt,Mv,Edg′〉 where
Cz = C ∪ {z} and δz is defined from δ as follows: for each (q, f) ∈ δ, we have
(q, f ′) ∈ δ′ where f ′ : (R+)Cz → Q× 2Cz is defined as follows:

f ′(x1, . . . , xn, z) =

{
(q′, Z) if f ′(x1, . . . , xn) = (q′, Z) and z < 1
(q′, Z ∪ {z}) if f ′(x1, . . . , xn) = (q′, Z) and z ≥ 1.

The transition table Edg′ then is adapted to δz in the obvious way. Given an
infinite executions r of T ′, we clearly have that r is a non-Zeno execution if and
only if clock z is reset infinitely often.

456 T. Brihaye et al.

When an execution is Zeno, it might be the case that only part of the players
are responsible for it. A player is responsible for the Zenoness of an execution
if she is “elected” infinitely many times for her choosing the smallest delay.
A coalition is responsible for Zenoness if at least one of its member is. To record
that information, we decorate the infinite CGS associated to a given TCGS T
with “blames”. This requires to extend the alphabet Σ to Σ′ = Σ×{tick, tick}×
{blA, blĀ, blAgt}. The first two symbols will be used when clock z reaches 1, while
the last three assign a blame to either coalition A, their opponent Ā, or to both.
This is the underlying alphabet in the extended CGS EA defined below:

Definition 25. Let T = 〈Q,Q0, l, Cz, Inv, δ,Agt,Mv,Edg〉 be a TCGS (assumed
to be already extended with a “tick”-clock z), S = 〈S, S0, l

′, R,Agt,Mv′,Edg′〉 be
the associated infinite CGS, and A ⊆ Agt be a coalition. We define the extended
CGS EA = 〈SE , SE0 , lE , RE ,Agt,MvE ,EdgE〉 as follows:

– SE ⊆ S × {tick, tick} × {blA, blĀ, blAgt} and SE0 = S0 × {tick} × {blAgt} are
extensions of S and S0 with some extra informations for keeping track of
whose choice has been considered;

– lE((s, t, b)) = (l′(s), t, b),
– RE ⊆ SE × R+ × SE contains two kinds of transitions:

• for each (s, t, b) ∈ SE , with s = (q, v), and d ∈ R+ s.t. v(z) + d <
1, then for each (s, d, s′) ∈ R and b′ ∈ {blA, blĀ, blAgt}, the transition
((s, t, b), d, (s′, tick, b′)) is in RE ;

• for each (s, t, b) ∈ SE , with s = (q, v), and d ∈ R+ s.t. v(z) + d �
1, then for each (s, d, s′) ∈ R and b′ ∈ {blA, blĀ, blAgt}, the transition
((s, t, b), d, (s′, tick, b′)) is in RE ;

– EdgE is defined from Edg′ as follows: given the set of full moves ((dl, fl)al∈Agt,
we let d0 = min{dl | al ∈ Agt} as before, and set bl to be:
• blA if ∃al ∈ A. dl = d0 and ∀al ∈ Ā. dl > d0;
• blĀ if ∃al ∈ Ā. dl = d0 and ∀al ∈ A. dl > d0;
• blAgt if ∃al ∈ A. dl = d0 and ∃al ∈ Ā. dl = d0;

Then, if Edg′(s, ((d1, f1), ..., (dk, fk))) = (s, d0, s
′), with s = (q, v), we let

EdgE((s, t, b), ((d1, f1), ..., (dk, fk))) = ((s, t, b), d0, (s′, tick, bl))

if v(z) + d0 < 1, and for the other cases,

EdgE((s, t, b), ((d1, f1), ..., (dk, fk))) = ((s, t, b), d0, (s′, tick, bl)).

It should be noticed that this infinite CGS does not correspond to an infinite CGS
associated with a TCGS: it is generally not possible to decorate a TCGS with
the informations about the players to blame. The clock-equivalence is naturally
extended to the state of EA. We say that (s, t, b) ≈t (s′, t′, b′) if and only if
s ≈t s

′, t = t′ and b = b′. We keep the terminology of region for the equivalence
class of an extended state (s, z, t, b) for ≈t. This equivalence relation can also
be extended to executions of EA. The definitions of region-invariant and region-
uniform strategy naturally extend to this context.

Now, for a strategy of coalition A to be winning without Zenoness, all of its
outcomes must either be non-Zeno and winning, or be Zeno and blame agents
in A only finitely many times. We then obtain a theorem similar to Corollary 13:

Timed Concurrent Game Structures 457

Theorem 26. Let T be a TCGS, A ⊆ Agt be a coalition and Ω be a region-
invariant winning objective. Let r and r′ be two isomorphic finite trajectories.
There exists a winning non-Zeno strategy for A after r w.r.t. Ω if, and only
if, there exists a region-uniform and region-invariant winning strategy without
Zenoness for A after r′ w.r.t Ω.

Note that making a strategy region-uniform modifies the blames in the outcomes:
only a weaker version of Prop. 12 holds in this case, but it is sufficient for our
purpose.

In order to model-check TALTL formulas, we define a modified semantics that
captures the notion of “winning without Zenoness”:

Definition 27. Let T = 〈Q,Q0, Σ, l, C, Inv, δ,Agt,M,Mv,Edg〉 be a TCGS, and,
for each coalition A ⊆ Agt, EA = 〈S, S0, l

′, R,Agt,FM(R+,M),Mv′,Edg′〉 be the
extended infinite CGS built in Definition 25. Let s = (q, v) be a state of S,
and w : C′ → R+ be a valuation of the formula clocks. Let φ ∈ TATL∗. That
T , s |=Z

w φ is defined in the same way as T , s |=w φ, except for φ = 〈〈A〉〉ψp:

T , s |=Z
w 〈〈A〉〉ψp ⇔

EA, (s, tick, blA) |=w 〈〈A〉〉 ((
∞
F ¬blĀ ⇒

∞
F tick) ∧ (

∞
F tick ⇒ ψp))

Our first result is that TALTL under this semantics still cannot distinguish be-
tween two region-equivalent states. Note that, though the proof is similar, this
result is not an immediate consequence of Theorem 20 as it is not possible to
directly decorate TCGSs with blames.

Theorem 28. Let T be a TCGS, and T ′ be the corresponding TCGS extended
with a set of formula clocks C′. Let φ be a TALTL formula built on the clocks
in C′. For any region-equivalent states (q, v, w) and (q, v′, w′) of T ′, and any
two region-equivalent trajectories r and r′ starting from (q, v, w) and (q, v′, w′),
resp., we have

T , proj(r), (0, 0) |=Z
w φ iff T , proj(r′), (0, 0) |=Z

w′ φ.

Moreover, if φ is a state-formula, then this result holds even if we relax the
assumption that r and r′ be region-equivalent.

It is then possible to extend the region CGS to include also the informations
about ticks and blames, and to adapt the algorithm for verifying the non-Zeno
semantics. Again, the correctness of the algorithm is not straightforward, as
region-equivalence is sometimes too coarse to keep precise informations about
blames. In the case of TALTL, the algorithm will still rely on ATLstar-labeling,
while for TATL, the state-formulas to verify will be in FairATL with one strong-
fairness constraint [6]. It should be noted that blames in the extended region
CGS do not always correspond to blames in the TCGS extended with formulas
clocks. In the end:

Theorem 29. Under the non-Zenoness semantics, model-checking TALTL on
TCGSs is decidable and 2EXPTIME-complete, model-checking TATL on TCGSs
is EXPTIME-complete.

458 T. Brihaye et al.

7 Conclusion and Perspectives

We have proposed a new model for timed games, by extending concurrent game
structures of [6] to the real-time setting. We proved that our model is compati-
ble with region abstraction, and that TATL can be model-checked in EXPTIME
(because of the binary encoding of the constants in the automaton and in the
formula), matching the complexity obtained in [21] for timed game automata.
We also proposed an extension of TATL that also embeds ATL∗, at the price of
an extra exponential blowup for model-checking.

Table 1. Complexities of model-checking different logics on TCGSs

algo. compl. w.r.t. φ and T theoretical complexity

ATL∗ 22O(|φ|) · 2O(|T |) 2EXPTIME-complete

TATL 2O(|φ|)·O(|T |) EXPTIME-complete

TALTL 22O(|φ|) · 2O(|T |) 2EXPTIME-complete

As a future work, we plan to investigate synthesis of strategies. From our
results, we already know that restriction to region-based strategies will be suffi-
cient. The recent works of Harding et al. [19] could be a source of inspiration for
this direction of research. Beyond non-Zenoness, we also would like to study ro-
bustness issues in timed games [26,16], this notion allows to distinguish inifinitely
quick or precise strategies (that cannot be implemented over a real computer).
Thus it would be interesting to decide the existence of robust strategies.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. &
Comp. 104(1), 2–34 (1993)

2. Alur, R., Dill, D.: A theory of timed automata. TCS 126(2), 183–235 (1994)
3. Alur, R., Feder, T., Henzinger, T.: The benefits of relaxing punctuality.

J. ACM 43(1), 116–146 (1996)
4. Alur, R., Henzinger, T.: A really temporal logic. J. ACM 41(1), 181–204 (1994)
5. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. In:

FOCS’97, pp. 100–109. IEEE Computer Society Press, Los Alamitos (1997)
6. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic.

J. ACM 49(5), 672–713 (2002)
7. Alur, R., Henzinger, T., Kupferman, O., Vardi, M.: Alternating refinement rela-

tions. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp.
163–178. Springer, Heidelberg (1998)

8. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed au-
tomata. In: Proc. Symp. System Structure & Control, pp. 469–474. Elsevier, Am-
sterdam (1998)

Timed Concurrent Game Structures 459

9. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems. LNCS,
vol. 3185, pp. 200–236. Springer, Heidelberg (2004)

10. Brihaye, Th., Laroussinie, F., Markey, N., Oreiby, G.: Timed concurrent game
structures. Technical report, LSV, ENS Cachan, France (2007)

11. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. AMS 138, 295–311 (1969)

12. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

13. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic
model verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 495–499. Springer, Heidelberg (1999)

14. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool Kronos. In: Alur, R.,
Sontag, E.D., Henzinger, T. (eds.) Hybrid Systems III. LNCS, vol. 1066, pp. 208–
219. Springer, Heidelberg (1996)

15. de Alfaro, L., Faella, M., Henzinger, T., Majumdar, R., Stoelinga, M.: The element
of surprise in timed games. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003.
LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003)

16. De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robustness and implementabil-
ity of timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and
FTRTFT 2004. LNCS, vol. 3253, pp. 118–133. Springer, Heidelberg (2004)

17. Emerson, E.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, Formal Models and Sematics, vol. B, pp. 995–1072. Elsevier, Amsterdam
(1990)

18. Gawlick, R., Segala, R., Søgaard-Andersen, J., Lynch, N.: Liveness in timed and
untimed systems. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820,
pp. 166–177. Springer, Heidelberg (1994)

19. Harding, A., Ryan, M., Schobbens, P.-Y.: A new algorithm for strategy synthesis
in LTL games. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440,
pp. 477–492. Springer, Heidelberg (2005)

20. Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real
time systems. Inf. & Comp. 111(2), 193–244 (1994)

21. Henzinger, T., Prabhu, V.: Timed alternating-time temporal logic. In: Asarin, E.,
Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 1–17. Springer, Heidelberg
(2006)

22. Holzmann, G.: The model checker spin. IEEE Trans. Software Engineering 23(5),
279–295 (1997)

23. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems. In: Mayr, E.W., Puech, C. (eds.) STACS 95. LNCS, vol. 900, pp. 229–242.
Springer, Heidelberg (1995)

24. McMillan, K.: Symbolic Model Checking — An Approach to the State Explosion
Problem. PhD thesis, CMU, Pittsburgh, Pennsylvania, USA (1993)

25. Pnueli, A.: The temporal logic of programs. In: FOCS’77, pp. 46–57. IEEE Com-
puter Society Press, Los Alamitos (1977)

26. Puri, A.: Dynamical properties of timed automata. In: Ravn, A.P., Rischel, H.
(eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 210–227. Springer, Heidelberg (1998)

27. Ramadge, P., Wonham, W.: The control of discrete event systems.
Proc. IEEE 77(1), 81–98 (1989)

28. Schobbens, P.-Y., Bontemps, Y.: Real-time concurrent game structures. Personnal
communication (2005)

Pushdown Module Checking with
Imperfect Information�

Benjamin Aminof1, Aniello Murano2, and Moshe Y. Vardi3

1 Hebrew University, Jerusalem 91904, Israel
2 Università degli Studi di Napoli “Federico II”, 80126 Napoli, Italy

3 Rice University, Houston, TX 77251-1892, U.S.A

Abstract. The model checking problem for finite-state open systems
(module checking) has been extensively studied in the literature, both
in the context of environments with perfect and imperfect information
about the system. Recently, the perfect information case has been ex-
tended to infinite-state systems (pushdown module checking). In this pa-
per, we extend pushdown module checking to the imperfect information
setting; i.e., the environment has only a partial view of the system’s
control states and pushdown store content. We study the complexity of
this problem with respect to the branching-time temporal logic CTL,
and show that pushdown module checking, which is by itself harder than
pushdown model checking, becomes undecidable when the environment
has imperfect information. We also show that undecidability relies on
hiding information about the pushdown store. Indeed, we prove that
with imperfect information about the control states, but a visible push-
down store, the problem is decidable and its complexity is the same as
that of (perfect information) pushdown module checking.

1 Introduction

In system modeling we distinguish between closed and open systems [HP85]. In
a closed system all the nondeterministic choices are internal, and resolved by
the system. In an open system there are also external nondeterministic choices,
which are resolved by the environment [Hoa85]. In order to check whether a
closed system satisfies a required property, we translate the system into some
formal model, specify the property with a temporal-logic formula, and check
formally that the model satisfies the formula. Hence, the name model checking
for the verification methods derived from this viewpoint ([CE81, QS81]).

In [KV96, KVW01], Kupferman, Vardi, and Wolper studied open finite-state
systems. In their framework, the open finite-state system is described by a la-
beled state-transition graph called module, whose set of states is partitioned into
a set of system states (where the system makes a transition) and a set of envi-
ronment states (where the environment makes a transition). Given a module M
� Work supported in part by MIUR FIRB Project no. RBAU1P5SS, NSF grants CCR-

9988322, CCR-0124077, CCR-0311326, CCF-0613889, and ANI-0216467, by BSF
grant 9800096, and by gift from Intel.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 460–475, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Pushdown Module Checking with Imperfect Information 461

describing the system to be verified, and a temporal logic formula ϕ specifying
the desired behavior of the system, the problem of model checking a module,
called module checking, asks whether for all possible environments M satisfies
ϕ. In particular, it might be that the environment does not enable all the exter-
nal nondeterministic choices. Module checking thus involves not only checking
that the full computation tree 〈TM , VM 〉 obtained by unwinding M (which cor-
responds to the interaction of M with a maximal environment) satisfies the
specification ϕ, but also that every tree obtained from it by pruning children of
environment nodes (this corresponds to the different choices of different environ-
ments) satisfy ϕ. For example, consider an ATM machine that allows customers
to deposit money, withdraw money, check balance, etc. The machine is an open
system and an environment for it is a subset of the set of all possible infinite
lines of customers, each with its own plans. Accordingly, there are many differ-
ent possible environments to consider. It is shown in [KV96, KVW01] that for
formulas in branching time temporal logics, module checking open finite-state
systems is exponentially harder than model checking closed finite-state systems.

In [KV97] module checking has been extended to a setting where the en-
vironment has imperfect information1 about the state of the system (see also
[CH05, CDHR06], for related work regarding imperfect information). In this
setting, every state of the module is a composition of visible and invisible vari-
ables, where the latter are hidden from the environment. While a composition
of a module M with an environment with perfect information corresponds to
arbitrary disabling of transitions in M, the composition of M with an environ-
ment with imperfect information is such that whenever two computations of the
system differ only in the values of internal variables along them, the disabling
of transitions along them coincide. For example, in the above ATM machine,
a person does not know, before he asks for money, whether or not the ATM
has run out of paper for printing receipts. Thus, the possible behaviors of the
environment are independent of this missing information. Given an open system
M with a partition of M’s variables into visible and invisible, and a tempo-
ral logic formula ϕ, the module-checking problem with imperfect information
asks whether ϕ is satisfied by all trees obtained by pruning children of environ-
ment nodes from 〈TM , VM 〉, according to environments whose nondeterministic
choices are independent of the invisible variables. One of the results shown in
[KV97] is that CTL module checking with imperfect information is Exptime-
complete.

In recent years, model checking of pushdown systems has received a lot of
attention (see for example [Wal96, Wal00, BEM97, EKS03]), largely due to the
ability of pushdown systems to capture the flow of procedure calls and returns
in programs [ABE+05]. Recently, [BMP05] extended these techniques by intro-
ducing open pushdown systems (with perfect information) that interact with
their environment. It is shown in [BMP05] thatCTL pushdown module checking
is 2Exptime-complete and thus much harder than pushdown model checking.

1 In the literature, the term incomplete information is sometimes used to refer to what
we call imperfect information.

462 B. Aminof, A. Murano, and M.Y. Vardi

Consider again the example of the ATM machine, where the information re-
garding the presence of printing paper is invisible to the customers. Suppose
also that the ATM machine shows advertisements, and that it works under the
constraint that the number of advertisements the customer must view, before
the card can be taken out of the machine, is equal to the number of operations
the customer performed. The described machine can be modeled as an open
pushdown system M where control states take care of the operation performed
by the ATM (interacting with customers), and the pushdown store is used to
keep track of the advertisements that remain to be shown. Now, suppose that we
want to verify that in all possible environments, it is always possible for an in-
serted card to be ejected. This requirement can be modeled by theCTL formula
ϕ = AG(insert-card → EFeject-card). Since the presence of printing paper
is invisible to the customers, we have imperfect information about the control
states of the module. If we allow the ATM to push, after each operation the
customer makes, an invisible number (possibly zero) of pending advertisements,
then we also have invisible information in the pushdown store.

In this paper, we extend pushdown module checking by considering environ-
ments with imperfect information about the system’s state and pushdown store
content. To this aim, we first have to define how a pushdown system keeps part of
its internal configuration invisible to the environment and another part visible.
In [PR79], a private pushdown store automata is defined to be a Turing machine
with two tapes: a read only public (visible) one-way input tape, and a possi-
bly private (invisible) work tape, simulating a pushdown store. Unfortunately,
their definition is not suitable for our purpose as it allows for only two levels of
information hiding: either the pushdown store and control state are completely
visible, or completely invisible. The definition we use instead is an extension
of the idea used for finite-state systems. Like in the finite case, we assume the
control states are assignments to boolean control variables, some of which are
visible and some of which are invisible. Similarly, symbols of the pushdown store
are assignments to boolean visible and invisible pushdown store variables.

In [KV97], each state is partitioned into input, output, and invisible variables,
where the environment supplies the input variables, and the system supplies the
output and invisible variables. This idea works well for finite state-systems but
not when we have to deal with imperfect information about the pushdown store.
Note that a symbol pushed now, influences the computation much later, when it
becomes the top of the pushdown store. Indeed, asking the environment to supply
as input part of each symbol in the pushdown, is asking it to intimately partic-
ipate in the internals of the computation, which is less natural. We find it more
natural to think of the environment as choosing the possible transitions at certain
points of the computation. For example, if the environment supplies the current
reading of a physical sensor, we think of it as disabling all the transitions that are
irrelevant for this reading. Thus, we model an open pushdown system with im-
perfect information by partitioning configurations into system and environment
configurations, and also partitioning states and pushdown store symbols into vis-
ible and invisible variables, combining features from both [KV96] and [KV97].

Pushdown Module Checking with Imperfect Information 463

We study the complexity of the pushdown module-checking problem with
imperfect information, with respect to the branching-time logic CTL. We show
that the problem is undecidable in the general case. We also show that un-
decidability relies on hiding information about the pushdown store. Indeed, we
prove thatCTL pushdown module checking with imperfect information about the
internal control states, but a visible pushdown store, is decidable and 2Exptime-
complete. Hence, it is not harder than perfect informationCTL pushdown mod-
ule checking. For the upper bound we use an automata-theoretic approach and
introduce a new automata model, namely semi-alternating pushdown Büchi tree
automata (PD-SBT). These are alternating pushdown Büchi tree automata
[KPV02] where the universality is not allowed on the pushdown store content.
That is, two copies of the automaton that read the same input, from two config-
urations that have the same top of pushdown store, must push the same value
into the pushdown store. Our algorithm reduces the addressed problem to the
emptiness problem of PD-SBT. We show that PD-SBT are equivalent to non-
deterministic pushdown Büchi tree automata, for which the emptiness problem
can be solved in Exptime [KPV02]. Note that alternating pushdown automata,
in contrast to the semi-alternating ones, are not equivalent to nondeterministic
pushdown automata. Indeed, since the emptiness problem of the intersection of
two context free languages is undecidable [HU79], the emptiness problem of al-
ternating pushdown automata is undecidable already in the case of finite words.

2 Preliminaries

Let Υ be a set. An Υ -tree is a prefix closed subset T ⊆ Υ ∗. The elements of
T are called nodes and the empty word ε is the root of T . For v ∈ T , the set
of children of v (in T) is child(T, v) = {v · x ∈ T | x ∈ Υ}. Given a node
v = u · x, with u ∈ Υ ∗ and x ∈ Υ , we define last(v) to be x. We also say that v
corresponds to x. The complete Υ -tree is the tree Υ ∗. For v ∈ T , a (full) path π
of T from v is a minimal set π ⊆ T such that v ∈ π and for each v′ ∈ π such that
child(T, v′)
= ∅, there is exactly one node in child(T, v′) belonging to π. Note
that every infinite word w ∈ Υω can be thought of as an infinite path in the tree
Υ ∗, namely the path containing all the finite prefixes of w. For an alphabet Σ,
a Σ-labeled Υ -tree is a pair 〈T, V 〉 where T is an Υ−tree and V : T → Σ maps
each node of T to a symbol in Σ.

An open system is a system that interacts with its environment and whose be-
havior depends on this interaction. We consider the case where the environment
has imperfect information about the system, i.e., when the system has internal
variables that are not visible to its environment. We describe such a system by
a module M = 〈AP,Ws,We, w0, R, L,∼=〉, where AP is a finite set of atomic
propositions, Ws is a set of system states, and We is a set of environment states.
We assume Ws ∩We = ∅, and call W = Ws ∪We the set of M’s states. w0 ∈ W
is the initial state, R ⊆ W ×W is a total transition relation, L : W → 2AP is
a labeling function that maps each state of M to the set of atomic propositions
that hold in it, and ∼= is an equivalence relation on W .

464 B. Aminof, A. Murano, and M.Y. Vardi

In order to present a unified definition that is general enough to handle both
finite-state and infinite-state systems, we model the fact that the environment
has imperfect information about the states of the system by an equivalence
relation ∼=. States that are indistinguishable by the environment, because the
difference between them is kept invisible by the system, are equivalent according
to ∼=. We write [W] for the set of equivalence classes of W under ∼=. Since states
in the same equivalence class are indistinguishable by the environment, from the
environment’s point of view, the states of the system are actually the equivalence
classes themselves. The equivalence class [w] of w ∈ W , is called the visible part
of w, since it is in a sense what the environment “sees” of w. We write vis(w)
instead of [w], to emphasize this. Note that we can also do the converse. That is,
given a function vis, whose domain is W , we can define the equivalence relation
∼= by letting w ∼= w′ iff vis(w) = vis(w′). We can then think of the range of
vis as the set of the equivalence classes [W] and associate [w] with the value
vis(w).

A module M is closed if We = ∅ (meaning that M does not interact with
any environment) and open otherwise. Since the designation of a state as an
environment state is obviously known to the environment, we require that for
every w,w′ ∈ W such that w ∼= w′, we have that w ∈ We iff w′ ∈ We. Also
note that if w ∼= w′, from the environment’s point of view, the set of atomic
propositions that currently hold in w may just as well be L(w′). We therefore
define the labeling, as seen by the environment, as a function visL : [W] →
22AP

that maps the visible part of a state to a set of possible sets of atomic
propositions: visL([u]) = {L(w) | w ∈ W ∧ w ∼= u}. If it is always the case that
w ∼= w′ =⇒ L(w) = L(w′), we say that the atomic propositions are visible.

For 〈w,w′〉 ∈ R, we say that w′ is a successor of w. The requirement that R be
total means that every state w has at least one successor. A computation ofM is
a sequence w0 ·w1 · · · of states, such that for all i ≥ 0 we have 〈wi, wi+1〉 ∈ R. For
each w ∈ W , we denote by succ(w) the set (possibly empty) of w’s successors.
When the moduleM is in a system state ws, then all successor states are possible
next states. On the other hand, when M is in an environment state we, the
environment decides, based on the visible parts of each successor of we, and
of the history of the computation so far, to which of the successor states the
computation can proceed, and to which it can not.

The set of all (maximal) computations ofM starting from the initial state w0
can be described by an AP -labeled W -tree 〈TM, VM〉 called a computation tree,
which is obtained by unwinding M in the usual way. Each node v = v1 · · · vk
of 〈TM, VM〉 describes the (partial) computation w0 · v1 · · · vk of M, with the
root ε corresponding to w0. The children of v are exactly all nodes of the form
v1 · · · vk · w, where w ranges over all the successors of vk in M. We extend the
definition of the vis function to nodes in the natural way. Thus, the visible
part of a node v is vis(v) = vis(v1) · · · vis(vk). The labeling VM of a node v
depends on the state it corresponds to (its last state), i.e., VM(v) = L(last(v)).
Also, if v corresponds to an environment state, we say that v is an environment
node.

Pushdown Module Checking with Imperfect Information 465

The problem of deciding, for a given CTL formula2 ϕ over the set AP of
atomic propositions, whether 〈TM, VM〉 satisfies ϕ is the usual model checking
problem (formally denoted M |= ϕ) [CE81, QS81]. In model checking, we only
have to consider the computation tree 〈TM, VM〉, since the module we want to
check is closed and thus its behavior is not affected by the environment. On
the other hand, whenever we consider an open module, 〈TM, VM〉 corresponds
to a very specific environment: a maximal environment that never restricts the
set of next states. Therefore, when we examine a branching-time specification
ϕ w.r.t. an open module M, the formula ϕ should hold not only in 〈TM, VM〉,
but in all the trees obtained by pruning from 〈TM, VM〉 subtrees whose roots
are children (successors) of environment nodes, in accordance with all possible
environments. It is important to note that in the case of perfect information (i.e.,
∼= is actually the equality relation), every such pruning corresponds to some en-
vironment; however, in the case of imperfect information, only if the pruning
is consistent with the partial information available to the environment, will the
tree correspond to an actual environment. Formally, if two nodes v and v′ are
indistinguishable, i.e., if vis(v) = vis(v′), then a tree in which the subtree rooted
at v is pruned, but the one rooted at v′ is not pruned, does not correspond to any
environment, and should not be considered. As noted in [KV97], the fact that
given a pruning of 〈TM, VM〉, a finite automaton cannot decide if that pruning
corresponds to an actual environment or not, is the main source of difficulty in
dealing with module checking with imperfect information. Also note that the
knowledge-based subset construction that is used to transform games of imper-
fect information into ones of perfect information (see for example [CDHR06]),
is not applicable in this context, since in general there is no connection between
the satisfiability of a branching time formula on the original structure and its
satisfiability on the one obtained by the knowledge-based subset construction.

Recall that whenever M interacts with an environment ξ, its possible moves
from environment states depends on the behavior of ξ. We can think of an
environment to M as a strategy ξ : [W]∗ → {&,⊥} that maps a finite history
s of a computation, as seen by the environment, to either & or ⊥, meaning
that the environment respectively allows or disallows M to trace s. We say that
the tree 〈[W]∗, ξ〉 maintains the strategy applied by ξ, and we call it a strategy
tree. We denote by M � ξ the AP -labeled W -tree induced by the composition
of 〈TM, VM〉 with ξ; that is, the AP -labeled W -tree obtained by pruning from
〈TM, VM〉 subtrees according to ξ. Note that by the definition above, ξ may
disable all the children of a node v. Since we usually do not want the environment
to completely block the system, we require that at least one child of each node
is enabled. In this case, we say that the composition M� ξ is deadlock free.

To see the interaction of M with ξ, let v ∈ TM be an environment node,
and v′ ∈ TM be one of its children. The subtree rooted in v′ is pruned iff
ξ(vis(v′)) = ⊥. Every two nodes v1 and v2 that are indistinguishable according
to ξ’s imperfect information have vis(v1) = vis(v2). Also, recall that the des-
ignation of a state as an environment state is based only on the visible part of

2 For a definition of the syntax and semantics of CTL see for example [KV96].

466 B. Aminof, A. Murano, and M.Y. Vardi

that state. Thus, if v1 is a child of an environment node then so is v2, and either
both subtrees with roots v1 and v2 are pruned, or both are not. Note that once
ξ(v) = ⊥ for some v ∈ [W]∗, we can ignore ξ(v · t), for all t ∈ [W]∗. Indeed, once
the environment disables the transition to a certain node v, it actually disables
the transitions to all the nodes in the subtree with root v. We can now formally
define the interaction of an open module with an environment with imperfect
information. From now on, unless stated differently, we always refer to modules
that are open, and environments with imperfect information. Given a module
M, and a strategy tree 〈[W]∗, ξ〉 for an environment ξ, an AP -labeled W -tree
〈T, V 〉 corresponds to M� ξ iff the following hold:

– The root of T corresponds to w0.
– For v ∈ T with last(v) ∈ Ws, we have child(T, v) = {v · w1, . . . , v · wn},

where succ(last(v)) = {w1, . . . , wn}.
– For v ∈ T with last(v) ∈ We, there exists a nonempty subset {w1, . . . , wk}

of succ(last(v)) such that child(T, v) = {v · w1, . . . , v · wk}. Furthermore,
for all w in {w1, . . . , wk} we have that ξ(vis(v · w)) = &, while for all w in
succ(last(v)) \ {w1, . . . , wk} we have that ξ(vis(x · w)) = ⊥.

– For every node v ∈ T , we have that V (v) = L(last(v)).

For a moduleM and a temporal logic formula over the set AP , we say thatM
reactively satisfies ϕ, denotedM |=r ϕ, ifM�ξ satisfy ϕ, for every environment
ξ for which M� ξ is deadlock free. The problem of deciding whether M |=r ϕ is
called module checking, and was first introduced and studied in [KV96, KVW01]
for finite-state systems with perfect information. The problem was successively
extended to imperfect information in [KV97]. For CTL formulas it has been
shown that the complexity of both problems is Exptime-complete3.

3 Imperfect Information Pushdown Module Checking

In this section, we extend the notion of module checking with imperfect infor-
mation to infinite-state systems induced by Open Pushdown Systems (OPD).

Definition 1. An OPD is a tuple S = 〈AP,Q, q0, Γ, 0, δ, μ, Env〉, where AP is
a finite set of atomic propositions, Q is the set of (control) states, and q0 ∈ Q
is an initial state. We assume that Q ⊆ 2I∪H where I and H are disjoint
finite sets of visible and invisible control variables, respectively. Γ is a finite
pushdown store alphabet, 0
∈ Γ is the pushdown store bottom symbol, and we
use Γ to denote Γ ∪ {0}. We assume that Γ ⊆ 2I

Γ
∪H

Γ where I
Γ

and H
Γ

are
disjoint finite sets of visible and invisible pushdown store variables, respectively.
δ ⊆ (Q × Γ) × (Q × Γ ∗) is a finite transition relation, and μ : Q × Γ → 2AP

is a labeling function. Env ⊆ Q × Γ is used to specify the set of environment
configurations. The size |S| of S is |Q|+ |Γ |+ |δ|, with |δ| =

∑
((p,γ),(q,β))∈δ |β|.

3 Although the complexity of the perfect and imperfect information cases coincide
in the general case, [KVW01, KV97] show that when the formula is constant the
imperfect information case is exponentially harder.

Pushdown Module Checking with Imperfect Information 467

A configuration of S is a pair (q, α) where q is a control state and α ∈ Γ ∗ · 0 is a
pushdown store content. We write top(α) for the leftmost symbol of α and call
it the top of the pushdown store α. The OPD moves according to the transition
relation. Thus, ((p, γ), (q, β)) ∈ δ implies that if the OPD is in state p and the
top of the pushdown store is γ, it can move to state q, pop γ and push β.
We assume that if 0 is popped it gets pushed right back, and that it only gets
pushed in such cases. Thus, 0 is always present at the bottom of the pushdown
store, and nowhere else. Note that we make this assumption also about the
various pushdown automata we use later. Also note that the possible moves
of the system, the labeling function, and the designation of configurations as
environment configurations, are all dependent only on the current control state
and the top of the pushdown store.

For a control state q ∈ Q, the visible part of q is vis(q) = q ∩ I. For a push-
down store symbol γ ∈ Γ , if γ ⊆ HΓ and γ
= ∅ we set vis(γ) = ε, otherwise
we set vis(γ) = γ ∩ I

Γ
. By setting vis(γ) = ε whenever γ consists entirely of

invisible variables, we allow the system to completely hide a push operation (ob-
viously a corresponding pop will also be invisible). When such a push occurs,
the environment does not see the symbol ∅ being pushed, rather, it sees no push
at all. This is necessary since in many applications what is actually pushed is
immaterial, and the information to be revealed or hidden is only the depth of the
pushdown store. The visible part of a pushdown store content s = γ0 · · · γn · 0
is defined in the natural way: vis(s) = vis(γ0) · · · vis(γn) · 0. The visible part
of a configuration (q, α), is thus vis((q, α)) = (vis(q), vis(α)). As for modules,
the designation of a configuration of an OPD as an environment configuration
is known to the environment. Thus, we require that for every two configura-
tions (q, α) and (q′, α′) such that vis(q, top(α)) = vis(q′, top(α′)), it holds that
(q, top(α)) ∈ Env iff (q′, top(α′)) ∈ Env.

Definition 2. An OPD S = 〈AP,Q, q0, Γ, 0, δ, μ, Env〉 induces an infinite-state
module MS = 〈AP,Ws,We, w0, R, L,∼=〉, where:

– AP is a set of atomic propositions;
– Ws ∪We = Q× Γ ∗ · 0 is the set of configurations;
– We is the set of configurations (q, α) such that (q, top(α)) ∈ Env;
– w0 = (q0, 0) is the initial configuration;
– R is a transition relation, where ((q, γ ·α), (q′, β)) ∈ R iff there exist ((q, γ),

(q′, β′)) ∈ δ such that β = β′ · α;
– L((q, α)) = μ(q, top(α)) for all (q, α) ∈ W ;
– For every w,w′ ∈ W , we have that w ∼= w′ iff vis(w) = vis(w′).

To describe the interaction of an OPD S with its environment, we consider
the interaction of the environment with the induced module MS. Indeed, every
environment ξ of S, can be represented by a strategy tree 〈[W]∗, ξ〉, and the
compositionMS�ξ of 〈[W]∗, ξ〉 with 〈TMS , VMS 〉 describes all the computations
of S allowed by the environment ξ. We can thus define the following problem.

468 B. Aminof, A. Murano, and M.Y. Vardi

Pushdown module checking problem with imperfect information: Given an OPD
S and aCTL formula4 ϕ, decide whether MS |=r ϕ, i.e., whether MS �ξ satisfy
ϕ, for every environment ξ for which MS � ξ is deadlock free.

Note that starting with an OPD S having Env = ∅ (that is, the behavior
of S is not affected by any environment) the induced module is closed. In this
case, the problem we address becomes the classical pushdown model checking
problem, and forCTL specifications it has been studied in [Wal96, Wal00]. Also,
if the OPD is open (Env
= ∅) but there is no invisible information (both H and
H

Γ
are empty), the addressed problem is called pushdown module checking with

perfect information, and it has been studied in [BMP05].
In the remaining part of this section, we study the pushdown module checking

problem with imperfect information and show that it is undecidable for CTL
specifications. In the next section, we show that undecidability relies on the
system’s ability to hide information about the pushdown store. Namely, we prove
that if we start with an OPD with H

Γ
= ∅, the problem becomes decidable (even

if H
= ∅), and its complexity is the same as that of pushdown module checking
with perfect information.

Undecidability of the pushdown module checking problem with imperfect in-
formation is obtained by a reduction from the universality problem of nonde-
terministic pushdown automata on finite words (PDA), which is undecidable
[HU79]. That is, given a PDA P , we build an OPD S and aCTL formula ϕ, such
that the module induced by S reactively satisfies ϕ iff P is universal.

Our choice to do a reduction from the universality problem of PDA is not at
all arbitrary5. It is well known that checking for the universality of a nondeter-
ministic automaton can be thought of as a game between a protagonist trying
to prove that the automaton is not universal, and an antagonist claiming that it
is universal. The universality game is played as follows. The protagonist chooses
the first symbol, the antagonist responds with the first part of the run, the pro-
tagonist chooses the next symbol, the antagonist extends the run, and so on.
The protagonist wins if the resulting run is rejecting, and the antagonist wins
if it is accepting. Note that if the automaton is not universal the protagonist
has a winning strategy, namely, choosing the letters of a word not accepted by
the automaton. However, since the automaton is nondeterministic, the converse
is not true. That is, even if the automaton is universal, the antagonist may not
have a winning strategy. Also note that (again due to nondeterminism) if the
protagonist can see the moves of the antagonist, it may force the run to be reject-
ing even though the word it supplies can be accepted by the automaton. Hence,
the game is sound but not complete. However, if the protagonist cannot see the
moves of the antagonist the game becomes sound and complete. Deciding if the

4 The semantics ofCTL is usually defined with respect to infinite paths, so we assume
MS has no configurations without successors. However, using a similar technique to
the one used in [BMP05] our results can be adapted to the situation where terminal
configurations are also allowed.

5 We thank Martin Lange for a useful discussion on the connection between the proof
of Theorem 1 and the game interpretation of the universality problem.

Pushdown Module Checking with Imperfect Information 469

automaton is not universal can be reduced to deciding whether the antagonist
has a winning strategy in the corresponding universality game with imperfect
information. By casting the universality game of PDA to a special instance of
the pushdown module checking problem with imperfect information, the latter
is shown to be undecidable. The complete proof can be found in the full version.

Theorem 1. The pushdown module-checking problem with imperfect informa-
tion for CTL specifications is undecidable.

It turns out that even if the environment has full information about the control
states and (surprisingly enough) about which atomic propositions hold at each
configuration the problem remains undecidable. Thus, we have.

Theorem 2. The imperfect information pushdown module checking problem for
CTL, with visible control states and atomic propositions, is undecidable.

4 Module Checking with Visible Pushdown Store

In this section, we show that pushdown module checking forCTL with full infor-
mation about the pushdown store content (H

Γ
= ∅), but not about the control

states (when H
= ∅), is decidable and 2Exptime-complete, matching the com-
plexity of pushdown module checking with complete information. For the upper
bound we use an automata-theoretic approach and introduce a new automata
model, namely semi-alternating pushdown Büchi tree automata (PD-SBT). Our
algorithm reduces the addressed problem to the emptiness problem of PD-SBT.
We show that PD-SBT are equivalent to nondeterministic pushdown Büchi tree
automata, for which emptiness can be decided in Exptime[KPV02]. The formal
definition of semi-alternating pushdown tree automata follows.

Semi-alternating Pushdown Tree Automata. A PD-SBT is a tuple A =
〈Σ,D, Γ,Q, q0, 0, δ, F 〉 where Σ is a finite input alphabet, D is a finite set of
directions, Γ is a finite pushdown store alphabet, Q is a finite set of states, q0 ∈ Q
is the initial state, 0
∈ Γ is the pushdown store bottom symbol, and F ⊆ Q is a
Büchi acceptance condition. Moreover, δ is a finite transition relation defined as
a function δ : Q×Σ × Γ → B+(D×Q×Γ ∗), where Γ = Γ ∪ {0} as usual, and
B+(D ×Q× Γ ∗) is the set of all finite positive boolean combinations of triples
(d, q, β), where d is a direction, q is a state, and β is a string of pushdown store
symbols. We also allow the formulas true and false. We write S ∈ δ(p, σ, γ) to
denote that S is a set of tuples (d, q, β) that satisfy δ(p, σ, γ).

What makes the automaton semi-alternating is the requirement that for every
d ∈ D, σ ∈ Σ, p, p′ ∈ Q (possibly the same state), and γ ∈ Γ , if (d, q, β) appears
in δ(p, σ, γ), and (d, q′, β′) appears in δ(p′, σ, γ), then β = β′. That is, two copies
of the automaton that read the same input, from two configurations that have
the same top symbol of the pushdown store and proceed in the same direction,
must push the same value into the pushdown store. In particular, it follows that
in every run, two copies of the automaton that are reading the same node of

470 B. Aminof, A. Murano, and M.Y. Vardi

an input tree have the same pushdown store content. Note that if we remove
the semi-alternation requirement, the resulting automaton is called alternating
pushdown Büchi tree automaton (PD-ABT).

As an example, for D = {0, 1}, having δ(q, σ, γ) = ((0, q1, β1) ∨ (1, q2, β2)) ∧
(1, q1, β2) means that when a copy of the automaton that is in a configuration
where the current state is q, and the top of pushdown store is γ, reads a node
in the input tree whose label is σ, it can proceed in one of two ways. In the
first case, one copy proceeds in direction 0 to state q1, by replacing γ with β1,
and one copy proceeds in direction 1 to state q1, by replacing γ with β2. In the
second case, two copies proceed in direction 1, one to state q1 and the other to
state q2, and in both copies γ is replaced with β2. Hence, ∨ and ∧ in δ(q, σ, γ)
represent, respectively, choice and concurrency. As a special case of PD-ABT, we
consider nondeterministic pushdown Büchi tree automata (PD-NBT) where the
concurrency feature is not allowed. That is, whenever a PD-NBT visits a node
x of the input tree, it sends to each successor (direction) of x at most one copy
of itself. More formally, a PD-NBT is a PD-ABT in which δ is in disjunctive
normal form, and in each conjunct each direction appears at most once.

A run of a PD-SBT A on a Σ-labeled tree 〈T, V 〉, with T = D∗, is a (D∗×Q×
Γ ∗ · 0)-labeled N-tree 〈Tr, r〉 such that the root is labeled with (ε, q0, 0) and the
labels of each node and its successors satisfy the transition relation. Formally, a
(D∗×Q× Γ ∗ · 0)-labeled tree 〈Tr, r〉 is a run of A on 〈T, V 〉 iff

– r(ε) = (ε, q0, 0), and
– for all x ∈ Tr such that r(x) = (y, p, γ · α), there is an n ∈ N such that the

successors of x are exactly x·1, . . . x·n, and for all 1 ≤ i ≤ n we have r(x·i) =
(y · di, pi, βi · α) for some {(d1, p1, β1), . . . , (dn, pn, βn)} ∈ δ(p, V (y), γ).

For a path π ⊆ Tr, let infr(π) ⊆ Q be the set of states that appear in the
labels of infinitely many nodes in π. For a Büchi condition F ⊆ Q, we have that
π is accepting iff infr(π) ∩ F
= ∅. A run 〈Tr, r〉 is accepting iff all its paths are
accepting. The automatonA accepts an input tree 〈T, V 〉 iff there is an accepting
run of A over 〈T, V 〉. The language of A, denoted L(A), is the set of Σ-labeled
trees accepted by A. We say that an automaton A is nonempty iff L(A)
= ∅.

Given a PD-SBT A = 〈Σ,D, Γ,Q, q0, 0, δ, F 〉, we define the size of A as |A| =
|Q| + |δ|, where |δ| is the sum of the lengths of the satisfiable (i.e., not false)
formulas that appear in δ(q, σ, γ) for some q, σ, and γ.

In [MH84], Miyano and Hayashi describe a translation of alternating Büchi
automata on words to nondeterministic ones. We now present an extension of
their translation to show the equivalence of PD-SBT and PD-NBT.

Lemma 1. Let A be a PD-SBT with n states. There is a PD-NBT A′ with
2O(n) states, such that L(A′) = L(A).

Proof. The automaton A′ guesses a subset construction applied to a run of A.
At a given node x of a run of A′, it keeps in its memory the set of configurations
in which the various copies of A visit node x in the guessed run. Since A is semi-
alternating, all copies of A that visit the same node x have the same pushdown

Pushdown Module Checking with Imperfect Information 471

store content, and thus can all be remembered using one pushdown store and
a set of states of A. In order to make sure that every infinite path visits states
in F infinitely often, A′ keeps track of states that “owe” a visit to F . Let A =
〈Σ,D, Γ,Q, q0, 0, δ, F 〉. Then A′ = 〈Σ,D, Γ, 2Q × 2Q, 〈{q0}, ∅〉, 0, δ′, 2Q × {∅}〉,
where δ′ is defined as follows. We first need the following notation. For a set
S ⊆ Q, a letter σ ∈ Σ, and a top of pushdown store symbol γ ∈ Γ , let
sat(S, σ, γ) be the set of subsets of D × Q × Γ ∗ that satisfy

∧
q∈S δ(q, σ, γ).

Also, for two sets O ⊆ S ⊆ Q, a letter σ ∈ Σ, and a top of pushdown store
symbol γ ∈ Γ , let pair sat(S,O, σ, γ) be such that 〈S′, O′〉 ∈ pair sat(S,O, σ, γ)
iff S′ ∈ sat(S, σ, γ), O′ ⊆ S′, and O′ ∈ sat(O, σ, γ). Finally, for a direction
d ∈ D, we have S′d = {s | (d, s, β) ∈ S′ for some β} and O′d = {o | (d, o, β) ∈
O′ for some β}. Thus, S′d and O′d are, respectively, the collections of all states
that appear in S′ and O′ along with the direction d. Since A is semi-alternating,
for every two triplets (d, q, β) and (d, q′, β′) in sat(S, σ, γ) having the same di-
rection d, we have that β = β′. Thus, we can define store(d, σ, γ) = β.

Now, δ′ is defined, for all 〈S,O〉 ∈ 2Q × 2Q, σ ∈ Σ, and γ ∈ Γ , as follows.

– if O
= ∅, then
δ′(〈S,O〉, σ, γ) =

∨
〈S′, O′〉 ∈

pair sat(S,O, σ, γ)

∧
d∈D

(d, 〈S′d, O′d \ F 〉, store(d, σ, γ))

Thus, when reading σ, from a configuration with a top of pushdown store
symbol γ, the automaton A′ sends to a direction d ∈ D the set S′d of states
that the different copies of A send to direction d in the guessed run. Each
such S′d is paired with a subset O′d of S′d of the states that still “owe” a
visit to F . The key observation is that since A is semi-alternating, all the
copies that A sends to direction d replace γ with exactly the same pushdown
store string, namely, with store(d, σ, γ). Hence, the pushdown stores of all
the copies that A sends to direction d are identical, and A′ can keep track
of them all using the single stack of the copy it send to direction d.

– if O = ∅, then
δ′(〈S,O〉, σ, γ) =

∨
〈S′, O′〉 ∈

pair sat(S,O, σ, γ)

∧
d∈D

(d, 〈S′d, S′d \ F 〉, store(d, σ, γ))

Thus, when no state “owes” a visit to F we know that every path in the
guessed run of A visited F one more time, and the requirement to visit F is
reinforced. ()

We can now show decidability for pushdown module checking for CTL with
visible pushdown store. The decidability follows from Lemma 1, the fact that
emptiness of PD-NBT is decidable, and the following theorem.

Theorem 3. For an OPD S with H
Γ

= ∅ and a CTL formula ϕ over S’s ato-
mic propositions, there is a PD-SBT AS,ϕ of size O(|S|∗ |ϕ|), such that L(AS,ϕ)
is the set of strategies ξ such that MS � ξ is deadlock free and satisfies ϕ.

472 B. Aminof, A. Murano, and M.Y. Vardi

Proof (Sketch). Essentially, the automaton AS,ϕ we build is an extension of the
product automaton obtained in the alternating-automata theoretic approach
forCTL module checking with imperfect information [KV97]. The extension we
consider here concerns the simulation of the pushdown store of the OPD.

Let S = 〈AP,Q, q0, Γ, 0, δ, μ, Env〉 be an OPD, let ϕ be a CTL formula in
positive normal form, and let MS = 〈AP,Ws,We, w0, R, L,∼=〉 be the module
induced by S. We build an automaton AS,ϕ that accepts {&,⊥}-labeled trees
corresponding to strategies ξ, whose composition with MS is deadlock free and
satisfy ϕ. Intuitively, a run of AS,ϕ on an input strategy tree ξ, proceeds by
simulating an unwinding of the moduleMS , pruned at each step according to the
strategy ξ. Copies of the automaton simulating nodes in the computation tree of
MS that are indistinguishable by the environment are sent to the same direction
in the input tree. The resulting run tree of AS,ϕ on ξ is basically a replica of the
composition MS � ξ, and the fact that it satisfies the formula ϕ is checked on
the fly, by employing in AS,ϕ the usual alternating-automata approach forCTL
model checking. In the full computation tree of MS , the set of directions is G =
{(q, β) | ((p, α), (q, β)) ∈ R for some p, α and β}. Since in S the pushdown store
is completely visible to the environment, the set of directions of the input strategy
trees is D = {(vis(q), β) | ((p, α), (q, β)) ∈ R for some p, α and β}. Finally, due
to the fact that all copies of the automaton sent to direction (vis(q), β) push β
into the pushdown store, the resulting automaton AS,ϕ is semi-alternating.

We formally define AS,ϕ = 〈{&,⊥}, D, Γ,Q′, q′0, 0, δ′, F 〉, where

– Q′ = (Q× (cl(ϕ)∪ {p�})×{∀, ∃}× {pe, ps})∪ {q′0}. States with the compo-
nent p� are used to check that the composition of MS with the strategy is
deadlock free, while states with a component in cl(ϕ) check that this compo-
sition satisfies ϕ. The components pe and ps are used to flag that a currently
simulated node, of the computation tree of MS , is a child of an environment
or a system node, respectively. Clearly, the simulation should respect the
strategy pruning specifications only if they correspond to children of envi-
ronment nodes; that is, only if the current state q contains pe. Every state
is either in an existential or a universal mode, as specified by the ∀ and ∃
components. When the automaton is in a universal state (q, ϕ, ∀, pe) with a
pushdown store content α, it accepts all strategies for which (q, α) in MS is
either pruned or satisfies ϕ (where p� is satisfied iff the root of the strategy
is labeled &). When the automaton is in an existential state (q, ϕ, ∃, pe) with
a pushdown store content α, it accepts all strategies for which (q, α) in MS

is not pruned and satisfies ϕ.
– The formal definition of δ′ : Q′×Σ×Γ → B+(D×Q′×Γ ∗) is reported in the

full version. Here, we just give an example of a transition rule. Consider, a
transition from the configuration (〈p, ∀Xψ, ∃, pe〉, γ ·α), where (p, γ) ∈ Env.
First, if the transition to (p, γ·α) is disabled (that is, the automaton reads⊥),
then, as the current mode is existential, the run is rejecting. If the transition
to (p, γ ·α) is enabled, then the successors of (p, γ ·α) that are enabled should
satisfy ψ. Note that all the successors of (p, γ · α) that are indistinguishable
by the environment are sent by the automaton to the same direction v. This

Pushdown Module Checking with Imperfect Information 473

guarantees that either all these successors are enabled by the strategy (in
case the letter to be read in direction v is &) or all are disabled (in case the
letter in direction v is ⊥). In addition, since the requirement to satisfy ψ
concerns only successors of (p, γ · α) that are enabled, the mode of the new
states is universal. The copies of AS,ϕ that check the composition with the
strategy to be deadlock free guarantee that at least one successor of (p, γ ·α)
is enabled. As noted earlier, the enable/disable instructions of the strategy
are ignored in every configuration (p, γ · α) that is a successor of a system
configuration. Also note that since we assume that no configuration in MS

has no successors, the conjunctions and disjunctions in δ′ cannot be empty.
– F = Q × Ũ(ϕ) × {∃, ∀} × {pe, ps}, where Ũ(ϕ) is the set of all formulas of

the form ∀ψ1Ũψ2 or ∃ψ1Ũψ2 in cl(ϕ).

In the full version we prove that AS,ϕ is semi-alternating and that the size of
δ′ is O(|δ| ∗ |ϕ|). Since |Q′| = O(|Q| ∗ |ϕ|), the size of AS,ϕ is O(|S| ∗ |ϕ|). ()

We now consider the complexity bounds that follow from our algorithm.

Theorem 4. CTL pushdown module checking with imperfect information about
the control states but a visible pushdown store is 2Exptime-complete.

Proof. The lower bound follows from the known bound forCTL pushdown mod-
ule checking with perfect information [BMP05]. For the upper bound, Theorem
3 implies that MS |=r ϕ iff the language of the automaton AS,¬ϕ is empty. We
recall that AS,¬ϕ is a PD-SBT of size O(|S| ∗ |ϕ|). By Lemma 1, we can obtain a
PD-NBT A equivalent to AS,ϕ, with an exponential blow-up. By [KPV02], the
emptiness of A can be checked in exponential time. Thus, checking the emptiness
of A is double-exponential in the sizes of |S| and |ϕ|. ()

5 Discussion

We have shown that the pushdown module checking problem with imperfect
information is undecidable for specifications given in CTL. Moreover, since the
formula used in the proof of Theorems 1 and 2 is an existential formula, the
problem is already undecidable for the existential fragmentECTL ofCTL. This
obviously implies the undecidability of the problem with respect to more expres-
sive logics such asCTL∗ and μ-calculus. Recall that in our setting, whenever we
push a symbol consisting entirely of invisible variables, the environment does
not see the push at all. One can think of a variant of the problem where the
environment does see that a push occurred, but not what was pushed. Thus,
the depth of the stack is always known to the environment. It is an open ques-
tion whether this variant of the problem is decidable or not. As good news, we
also showed that if the pushdown store is visible, the problem is decidable, and
not harder than perfect information pushdown module checking. An interest-
ing question is whether this variant of the problem remains decidable also for
more expressive logics likeCTL∗. By using an approach similar to the one used

474 B. Aminof, A. Murano, and M.Y. Vardi

for CTL, we can reduce the problem for CTL∗ to the emptiness problem of a
semi-alternating pushdown tree automaton, but with a stronger acceptance con-
dition, such as the parity condition. We do not know, however, if the emptiness
problem for such automata is decidable or not. The main source of difficulty is
that all known methods to remove alternation from parity finite tree automata
involve a co-determinization step, and thus can not be easily adapted to push-
down automata. Even in [KV05] where the emptiness problem of alternating
parity tree automata is reduced to that of nondeterministic automata, without
a co-determinization step, the correctness proof of the construction does contain
such a step. Nevertheless, it is our conjecture that despite these difficulties,CTL∗

pushdown module checking with visible pushdown store is decidable.

References

[ABE+05] Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T.W., Yan-
nakakis, M.: Analysis of recursive state machines. ACM Trans. Program.
Lang. Syst. 27(4), 786–818 (2005)

[BEM97] Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Push-
down Automata: Application to Model-Checking. In: Mazurkiewicz, A.,
Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150.
Springer, Heidelberg (1997)

[BMP05] Bozzelli, L., Murano, A., Peron, A.: Pushdown module checking. In: Sut-
cliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp.
504–518. Springer, Heidelberg (2005)

[CDHR06] Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.: Algorithms for
omega-regular games with imperfect information. In: Ésik, Z. (ed.) CSL
2006. LNCS, vol. 4207, pp. 287–302. Springer, Heidelberg (2006)

[CE81] Clarke, E.M., Emerson, E.A.: Design and verification of synchronization
skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logics
of Programs. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

[CH05] Chatterjee, K., Henzinger, T.A.: Semiperfect-information games. In: Ra-
manujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 1–18.
Springer, Heidelberg (2005)

[EKS03] Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular
valuations for pushdown systems. Inf. Comput. 186(2), 355–376 (2003)

[Hoa85] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, En-
glewood Cliffs (1985)

[HP85] Harel, D., Pnueli, A.: On the development of reactive systems. In: Logics
and Models of Concurrent Systems. NATO Advanced Summer Institutes,
vol. F-13, pp. 477–498. Springer, Heidelberg (1985)

[HU79] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Reading (1979)

[KPV02] Kupferman, O., Piterman, N., Vardi, M.Y.: Pushdown specifications. In:
Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp.
262–277. Springer, Heidelberg (2002)

[KV96] Kupferman, O., Vardi, M.Y.: Module checking. In: Alur, R., Henzinger,
T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 75–86. Springer, Heidelberg
(1996)

Pushdown Module Checking with Imperfect Information 475

[KV97] Kupferman, O., Vardi, M.Y.: Module checking revisited. In: Alur, R., Hen-
zinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 36–47. Springer, Hei-
delberg (1996)

[KV05] Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: IEEE
FOCS’05, Pittsburgh, pp. 531–540. IEEE Computer Society Press, Los
Alamitos (2005)

[KVW01] Kupferman, O., Vardi, M.Y., Wolper, P.: Module Checking. Information
and Computation 164(2), 322–344 (2001)

[PR79] Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: FOCS’79, pp.
348–363. IEEE Computer Society Press, Los Alamitos (1979)

[QS81] Queille, J.P., Sifakis, J.: Specification and verification of concurrent pro-
grams in Cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) In-
ternational Symposium on Programming. LNCS, vol. 137, pp. 337–351.
Springer, Heidelberg (1982)

[Wal96] Walukiewicz, I.: Pushdown processes: Games and Model Checking. In:
Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74.
Springer, Heidelberg (1996)

[Wal00] Walukiewicz, I.: Model checking CTL properties of pushdown systems.
In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000: Foundations of Soft-
ware Technology and Theoretical Science. LNCS, vol. 1974, pp. 127–138.
Springer, Heidelberg (2000)

Alternating Automata and a Temporal Fixpoint
Calculus for Visibly Pushdown Languages

Laura Bozzelli

Università di Napoli Federico II , Via Cintia, 80126 - Napoli, Italy

Abstract. We investigate various classes of alternating automata for visibly push-
down languages (VPL) over infinite words. First, we show that alternating
visibly pushdown automata (AVPA) are exactly as expressive as their nondetermin-
istic counterpart (NVPA) but basic decision problems for AVPA are 2EXPTIME-
complete. Due to this high complexity, we introduce a new class of alternating
automata called alternating jump automata (AJA). AJA extend classical alternat-
ing finite-state automata over infinite words by also allowing non-local moves.
A non-local forward move leads a copy of the automaton from a call input posi-
tion to the matching-return position. We also allow local and non-local backward
moves. We show that one-way AJA and two-way AJA have the same expressive-
ness and capture exactly the class of VPL. Moreover, boolean operations for AJA
are easy and basic decision problems such as emptiness, universality, and push-
down model-checking for parity two-way AJA are EXPTIME-complete. Finally,
we consider a linear-time fixpoint calculus which subsumes the full linear-time
μ-calculus (with both forward and backward modalities) and the logic CARET

and captures exactly the class of VPL. We show that formulas of this logic can
be linearly translated into parity two-way AJA, and vice versa. As a consequence
satisfiability and pushdown model checking for this logic are EXPTIME-complete.

1 Introduction

An active field of research is model-checking of pushdown systems. These represent
an infinite-state formalism suitable to model the control flow of recursive sequential
programs. The model checking problem of pushdown systems against regular proper-
ties is decidable and it has been intensively studied in recent years leading to efficient
verification algorithms and tools (see for example [16,7,6,9]).

For context-free properties, the pushdown model checking problem is in general un-
decidable. However, algorithmic solutions have been proposed for checking interesting
classes of context-free properties [9,10,8,3,4,1]. In particular, the linear temporal logic
CARET, a context-free extension of LTL, has been recently introduced [3] which pre-
serves decidability of pushdown model checking. CARET formulas are interpreted on
infinite words over an alphabet (called pushdown alphabet) which is partitioned into
three disjoint sets of calls, returns, and internal symbols. A call denotes invocation of
a procedure (i.e. a push stack-operation) and the matching return (if any) along a given
word denotes the exit from this procedure (corresponding to a pop stack-operation).
CARET extends LTL by also allowing non-regular versions of the standard LTL tempo-
ral modalities: the abstract modalities can specify non-regular context-free properties

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 476–491, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Alternating Automata and a Temporal Fixpoint Calculus for VPL 477

which require matching of calls and returns such as correctness of procedures with re-
spect to pre and post conditions, while the (backward) caller modalities are useful to
express a variety of security properties that require inspection of the call-stack [9,10,8].
In [4], the class of nondeterministic visibly pushdown automata (NVPA) is proposed as
an automata theoretic generalization of CARET. NVPA are pushdown automata which
push onto the stack only when a call is read, pops the stack only at returns, and do not
use the stack on reading internal symbols. Hence, the input controls the kind of stack
operations which can be performed. The resulting class of languages (visibly pushdown
languages or VPL, for short) includes strictly the class of regular languages and that
defined by CARET and is robust like the class of regular languages. In particular, VPL
are closed under all boolean operations and problems such as universality and inclusion
that are undecidable for context-free languages are EXPTIME-complete for VPL.

Our contribution. We further investigate the class of VPL. We study various classes of
alternating automata for VPL and derive interesting connections between a special class
of two-way alternating finite-state automata and a fixpoint calculus for VPL with both
forward and backward modalities. Note that the introduction of backward modalities
in fixpoint logics can pose some difficulty in developing decision procedures for such
logics since the interaction of backward modalities with the other modalities can be quite
subtle. For example, while the standard modal μ-calculus has the finite-model property,
this does not hold for the modal μ-calculus extended with backward modalities [15].

Alternating automata [12], i.e. automata featuring nondeterministic as well as uni-
versal choices, are interesting for many aspects1 For example, boolean operations, in
particular complementation, are easy [12]. Moreover, alternating finite-state automata
over words or trees have been founded to be particularly useful to derive optimal deci-
sion procedures for various regular temporal logics.

In this paper, first, we consider the alternating version of visibly pushdown automata.
While unrestricted alternating pushdown automata on infinite words are more expres-
sive than their nondeterministic counterpart (in particular, emptiness is undecidable),
alternating visibly pushdown automata (AVPA) are exactly as expressive as NVPA: any
parity AVPA P can be translated into an equivalent Büchi NVPA whose size is doubly
exponential in the size of P . This double-exponential blowup cannot be avoided. In fact
we show that emptiness for parity or Büchi AVPA is 2EXPTIME-complete (recall that
emptiness for parity NVPA is in PTIME [4]). As a consequence the pushdown model
checking problem against AVPA-specifications is 2EXPTIME-complete.

Due to the high complexity of basic decision problems for AVPA, we introduce a
new class of alternating automata called alternating jump automata (AJA). AJA oper-
ate on infinite words over a pushdown alphabet, are closed under boolean operations,
and extend classical alternating finite-state automata by also allowing non-local moves.
A non-local forward move leads a copy of the automaton from a call position to the
matching-return position. We also allow local and non-local backward moves: by per-
forming a non-local backward move, a copy of the automaton jumps from the current
input position to the most recent unmatched call position. We show that one-way AJA

1 The notion of alternating automaton over words or trees as defined in [12] applies to all known
classes of nondeterministic automata such as pushdown automata or Turing machines.

478 L. Bozzelli

and two-way AJA have the same expressiveness and capture exactly the class of VPL.
Given a Büchi NVPAP , one can construct an equivalent one-way Büchi AJA whose size
is quadratic in the size of P . Moreover, any parity two-way AJAA can be translated into
an equivalent Büchi NVPA whose size is singly exponential in the size ofA. Some ideas
in the proposed translation from two-way AJA to NVPA are taken from standard con-
structions for two-way finite-state automata [14,15]. However, due to the presence of
both (local and non-local) forward and backward moves in two-way AJA, we have to
face new non-trivial questions which require a more sophisticated approach.

Finally, we consider a fixpoint calculus, called VP-μTL, which subsumes CARET [3]
and captures exactly the class of VPL. VP-μTL extends the full linear-time μ-calculus
(with both forward and backward modalities) introduced in [14] by also allowing non-
local forward and backward modalities corresponding to the abstract-next and caller
modalities of CARET. We show that each VP-μTL sentence can be linearly translated
into an equivalent parity two-way AJA, and vice versa. As a consequence satisfiability
of VP-μTL is EXPTIME-complete and the pushdown model-checking problem against
VP-μTL is EXPTIME-complete (and PTIME-complete in the size of the pushdown sys-
tem), hence it is no more costly than that for weaker logics such as CARET. Note
that the backward modalities in VP-μTL do not add any expressive power since future
VP-μTL formulas correspond exactly to one-way AJA. However, many interesting prop-
erties which require for example inspection of the call-stack are much easier to express
using past operators.

Due to the lack of space, for the omitted details we refer the interested reader to a
forthcoming extended version of this paper.

Related work. As mentioned above, the class of NVPA over infinite words has been stud-
ied in [4]. In [4], it is also given a logical MSO-characterization of VPL and a character-
ization in terms of regular tree languages. Games on pushdown graphs against visibly
pushdown winning conditions are decidable and have been studied in [11]. In [5], the
results given in [4] are reformulated in terms of nondeterministic finite-state automata
(NFA) over nested words. A nested word is an infinite word augmented with a binary
relation over the set of positions which encodes the implicit nesting structure of calls
and returns. An NFA over nested words behaves like an NFA over ordinary words with
the difference that at a return, the next state depends on both the current state and the
state at the matching call. In [2], the notion of nested word is extended to trees in order
to allow the automata-theoretic specification of a class of branching-time context-free
properties. In particular, the authors introduce one-way alternating automata over nested
trees (AP-NTA): AP-NTA are strictly more expressive than their non-deterministic coun-
terpart and while their emptiness is undecidable, the related pushdown model checking
problem is instead EXPTIME-complete. Finally, an extension of the modal μ-calculus
on nested trees as expressive as AP-NTA has been studied in [2,1]. When interpreted
on infinite words over a pushdown alphabet, this logic corresponds exactly to future
VP-μTL. As for the modal μ-calculus, the pushdown model checking problem for this
new logic is EXPTIME-complete (even for a fixed formula). Satisfiability is instead
undecidable.

Alternating Automata and a Temporal Fixpoint Calculus for VPL 479

2 Preliminaries

Labelled trees. Let N be the set of natural numbers. A tree T is a prefix closed subset
of N∗. Elements of T are called nodes and the empty word ε is the root of T . For x ∈ T ,
a child of x in T is a T -node of the form x · i with i ∈ N. A path of T is a maximal
sequence x0x1 . . . of nodes s.t. x0 = ε and for each i, xi+1 is a child of xi. For a set A,
an A-labelled tree is a pair r = 〈T, V 〉, where T is a tree and V : T → A maps each
T -node to an element in A. For x ∈ T , the subtree of r rooted at x is the A-labelled
tree 〈Tx, Vx〉, where Tx = {y ∈ N∗ | x ·y ∈ T } and Vx(y) = V (x ·y) for each y ∈ Tx.

Positive boolean formulas and regular acceptance conditions. Throughout this paper,
we consider various classes of automata over infinite words equipped with parity or
Büchi acceptance conditions over the finite set of (control) states. Formally, for a finite
set Q, a parity condition over Q is a mapping Ω : Q→ N assigning to each element in
Q an integer (called priority). The index of Ω is the cardinality of the set {Ω(q) | q ∈
Q}. A Büchi condition overQ is a subsetF ofQ. For an infinite sequence π = q0, q1 . . .
over Q, we say that π satisfies the parity condition Ω if the smallest priority of the
elements in Q that occur infinitely often along π is even. We say that π satisfies the
Büchi condition F if there is some q ∈ F that occurs infinitely often along π.

For a finite set X , B+(X) denotes the set of positive boolean formulas over X built
from elements in X using ∨ and ∧ (we also allow the formulas true and false).
A subset Y of X satisfies θ ∈ B+(X) iff the truth assignment that assigns true to
the elements in Y and false to the elements of X \ Y satisfies θ. The set Y exactly
satisfies θ if Y satisfies θ and every proper subset of Y does not satisfy θ. The dual θ̃ of
formula θ is obtained from θ by exchanging ∨ with ∧ and true with false.

Visibly pushdown languages. A pushdown alphabet Σ is an alphabet which is parti-
tioned in three disjoint finite alphabets Σc, Σr, and Σint, where Σc is a finite set of
calls, Σr is a finite set of returns, and Σint is a finite set of internal actions.

A Büchi nondeterministic visibly pushdown automaton (Büchi NVPA) [4] on infinite
words over a pushdown alphabetΣ = Σc ∪Σr ∪Σint is a tuple P = 〈Q, q0, Γ,Δ, F 〉,
where Q is a finite set of (control) states, q0 ∈ Q is the initial state, Γ is the finite stack
alphabet, Δ ⊆ (Q×Σc ×Q× Γ) ∪ (Q×Σr × (Γ ∪ {⊥})×Q) ∪ (Q×Σint ×Q)
is the transition relation (where⊥ /∈ Γ is the special stack bottom symbol), and F ⊆ Q
is a Büchi condition over Q. A transition of the form (q, a, q′, B) ∈ Q×Σc ×Q× Γ
is a push transition, where on reading the call a the symbol B
= ⊥ is pushed onto
the stack and the control changes from q to q′. A transition of the form (q, a,B, q′) ∈
Q×Σr×(Γ ∪{⊥})×Q is a pop transition, where on reading the return a,B is popped
from the stack and the control goes from q to q′. Finally, on reading an internal action
a, P can choose only transitions of the form (q, a, q′) which do not use the stack. Thus,
P pushes onto the stack only on reading a call, pops the stack only at returns, and does
not use the stack on internal actions. Hence, the input controls the kind of operations
permissible on the stack, and thus the stack depth at every position [4].

A configuration of P is a pair (q, β), where q ∈ Q and β ∈ Γ ∗ · {⊥} is a stack
content. For w ∈ Σω, w(i) denotes the i-th symbol of w. A run of P over w is an
infinite sequence of configurations r = (q′0, β0)(q′1, β1) . . . such that β0 = ⊥, q′0 is

480 L. Bozzelli

the initial state, and for each i ≥ 0: [push] if w(i) is a call, then ∃B ∈ Γ such that
βi+1 = B · βi and (q′i, w(i), q′i+1, B) ∈ Δ; [pop] if w(i) is a return, then ∃B ∈ Γ s.t.
(q′i, w(i), B, q′i+1) ∈ Δ and either βi = βi+1 = B = ⊥, or B
= ⊥ and βi = B · βi+1;
[internal] if w(i) is an internal action, (q′i, w(i), q′i+1) ∈ Δ and βi = βi+1. The run is
accepting iff its projection over Q satisfies the Büchi condition F . The language of P ,
L(P), is the set ofw ∈ Σω s.t. there is an accepting run ofP overw. A languageL over
Σ is a visibly pushdown language (VPL) if there is a Büchi NVPA P s.t. L(P) = L.

In order to model formal verification problems of pushdown systems M using finite
specifications (such as NVPA) denoting VPL languages, we choose a suitable pushdown
alphabet Σ = Σc ∪ Σr ∪ Σint, and associate a symbol in Σ with each transition
of M with the restriction that push transitions are mapped to Σc, pop transitions are
mapped toΣr, and transitions that do not use the stack are mapped toΣint. Note thatM
equipped with such a labelling is a Büchi NVPA where all the states are accepting. The
specification S describes another VPLL(S) over the same alphabet, andM is correct iff
L(M) ⊆ L(S). Given a class C of specifications describing VPL overΣ, the pushdown
model checking problem against C-specifications is to decide, given a pushdown system
M over Σ and a specification S in the class C, whether L(M) ⊆ L(S).

3 Alternating Visibly Pushdown Automata

In this section we study the class of alternating visibly pushdown automata (AVPA). We
show that any parity AVPA P can be translated into an equivalent Büchi NVPA whose
size is doubly exponential in the size of P . This double-exponential blowup cannot
be avoided. In fact we show that emptiness for this class of automata is 2EXPTIME-
complete (recall that emptiness for parity or Büchi NVPA is in PTIME [4]).

As NVPA, an AVPA P pushes onto (resp., pops) the stack only when it reads a call
(resp., a return), and does not use the stack on internal actions. However, at any instant
P can choose nondeterministically to split in many copies, each of them moving to the
next input symbol. Formally, a parity AVPA over a pushdown alphabetΣ is a tuple P =
〈Q, q0, Γ, δ, Ω〉, where Q, q0, and Γ are defined as for NVPA, Ω is a parity condition
over Q, and δ : Q×Σ× (Γ ∪ {⊥})→ B+(Q)∪B+(Q×Γ) is the transition function
satisfying: (i) δ(q, a,B) ∈ B+(Q) if a is not a call, (ii) δ(q, a,B) ∈ B+(Q× Γ) if a is
a call, and (3) δ(q, a,B) = δ(q, a,B′) if a is not a return.

Given a word w ∈ Σ∗ ∪ Σω, a state q, and stack content β ∈ Γ ∗ · {⊥}, a (q, β)-
run of P over w is a Q × Γ ∗ · {⊥}-labelled tree r = 〈T, V 〉, where each node x of
T labelled by (q′, β′) describes a copy of P in state q′ and stack content β′ reading
the symbol w(|x|). Moreover, we require that V (ε) = (q, β) and for each x ∈ T with
V (x) = (q′, B ·β′), there is a setH = {p0, . . . , pm} exactly satisfying δ(q′, w(|x|), B)
(note that H ⊆ Q × Γ if w(|x|) is a call, and H ⊆ Q otherwise) such that x has
children x · 0, . . . , x ·m and for all 0 ≤ i ≤ m, the following holds: [Push] If w(|x|)
is a call, pi = (qi, Bi) and V (x · i) = (qi, Bi · B · β′); [Pop] If w(|x|) is a return,
V (x · i) = (pi, β′) if B
= &, and V (x · i) = (pi,⊥) otherwise; [Internal] If w(|x|)
is an internal action, V (x · i) = (pi, B · β′). The run r = 〈T, V 〉 is memoryless if for
all x1, x2 ∈ T such that |x1| = |x2| and V (x1) = V (x2), the subtrees of r rooted
at x1 and x2 coincide (i.e., fixed a position along w, the behaviour of P depends only

Alternating Automata and a Temporal Fixpoint Calculus for VPL 481

on the current state and stack content, and is independent on the past choices). If w is
infinite, the run r is accepting if for each infinite path π = x0x1 . . . of r, the projection
of V (x0)V (x1) . . . over Q satisfies the parity condition Ω. The ω-language L(P) of P
is the set of w ∈ Σω such that there is an accepting (q0,⊥)-run of P over w.

Remark 1. For w ∈ Σω, we can associate in a standard way [12] to P and w an infinite-
state parity game, where player 0 plays for acceptance, while player 1 plays for rejec-
tion. Winning strategies of player 0 correspond to accepting runs ofP overw. Since the
existence of a winning strategy in parity games implies the existence of a memoryless
one, we can restrict ourselves to consider only memoryless runs of P . Moreover, by
[12] the dual automaton (AVPA) P̃ = 〈Q, q0, Γ, δ̃, Ω̃〉 of P , where δ̃(q, a,B) is the dual
of δ(q, a,B) and Ω̃(q) = Ω(q) + 1 for all q ∈ Q, accepts the complement of L(P).

From parity AVPA to Büchi NVPA. Fix a parity AVPA P = 〈Q, q0, Γ, δ, Ω〉 over Σ.
Let n be the index of Ω and [n] = {0, . . . , n}. W.l.o.g. assume that for each q ∈ Q,
0 ≤ Ω(q) ≤ n and δ(q, a,B) /∈ {true,false}. We will construct a Büchi NVPA
acceptingL(P). Our approach is a generalization of the technique of “summaries” used
in [4] to show that NVPA are closed under complementation.

A finite word w ∈ Σ∗ is well-matched if inductively or (1) w = ε, or (2) w = aw′,
a ∈ Σint and w′ is well-matched, or (3) w = acw

′arw
′′, ac ∈ Σc, ar ∈ Σr, and w′

and w′′ are well-matched. The set Lmwm of minimally well-matched words is the set of
words of the form acwar where ac ∈ Σc, ar ∈ Σr, and w is well-matched.

Let P ⊆ Q × [n]. For a finite run r = 〈T, V 〉 of P over w ∈ Σ∗, r is consistent
with P if for each (q, i) ∈ Q × [n]: (q, i) ∈ P iff there is a path π = x0 . . . xk (note
that k = |w|) of r with V (xj) = (qj , βj) for all 0 ≤ j ≤ k such that qk = q and
i = min{Ω(qj)}0≤j≤k.

LetH = Q× 2Q×[n]. A summary for a well-matched word w ∈ Σ∗ is a nonempty
set S ⊆ H such that for all (q, P) ∈ S, there is a memoryless (q, β)-run of P over w
for some stack content β which is consistent with P . Intuitively, each (q, P) ∈ S keeps
track of the meaningful information associated with some (q, β)-run r of P over w; in
particular, for each path π of r, P keeps track of the smallest priority of the states visited
by π and of the last state along π (since w is well-matched, the stack content associated
with such a state is still β and the initial stack content β is not modified along the run
r). Given a memoryless run r of A over an infinite word w′, the notion of summary is
used to capture the meaningful information of the portions of r associated with well-
matched subwords w of w′. Note that for such a subword w, fixed a state q, there can
be different portions of r associated with w corresponding to finite (q, β)-runs of P
over w whose initial stack contents are distinct. Since the local choices of P depend
also on the stack content, a summary must keep track for each state q of distinct sets
P1, . . . , Pn ⊆ Q× [n], which are consistent with different finite (q, β)-runs over w.

For w ∈ Σω, there is a unique factorization w1w2 . . . of w such that for all i ≥ 1,
wi ∈ Σ ∪ Lmwm and if wi is a call, then there is no j > i such that wj is a return.
Let Σ̂ be the pushdown alphabet given by Σ ∪ (2H \ {∅}), where symbols in 2H \ {∅}
are internal actions. A pseudo-word ŵ is an infinite word over Σ̂ s.t. if ŵ(i) is a call,
then there is no j > i such that ŵ(j) is a return. Given w ∈ Σω, a pseudo-word of

482 L. Bozzelli

w is obtained by replacing each factor wi ∈ Lmwm in the factorization of w with a
summary of wi.

Let us consider the AVPA P̂ = 〈Q× {1, . . . , n}, (q0, Ω(q0)), Γ, δ̂, Ω̂〉 over Σ̂ where
(1) for all a ∈ Σ, δ̂((q, i), a, B) is obtained from δ(q, a,B) by replacing each q′ ∈ Q

with (q′, Ω(q′)), (2) for all S ∈ 2H \ {∅}, δ̂((q, i),S, B) =
∨

(q,P)∈S
∧

(p,h)∈P (p, h),

and (3) Ω̂((q, i)) = i. For a word ŵ ∈ Σ̂ω, P̂ simulates P over the Σ-letters of ŵ,
and on letters S ∈ 2H \ {∅} it updates the current state q by splitting in n copies
in states (q1, i1), . . . , (qn, in), respectively, such that (q, {(q1, i1), . . . , (qn, in)}) ∈ S.
By construction for every w ∈ Σω, P accepts w iff there is a pseudo-word of w that is
accepted by P̂ . Note that for a ((q0, Ω(q0)),⊥)-run of P̂ over a pseudo-word, whenever
a return occurs, the current stack content is empty. Hence, we can construct a parity
alternating finite-state automaton A that simulates P̂ over pseudo-words and accepts
only pseudo-words (on reading a return, A simulates P̂ when the stack is empty). By
[13,15] one can construct a nondeterministic Büchi finite-state automatonAPW with a
number of states exponential in |Q| that accepts L(A). Thus, we obtain the following:

Proposition 1. One can construct a nondeterministic Büchi finite-state automatonAPW

over Σ̂ whose number of states is exponential in the number of states of P such that for
eachw ∈ Σω:w ∈ L(P) iff there is a pseudo-word ofw that is accepted byAPW .

The next step consists of computing the summary information associated with mini-
mally well-matched words.

Proposition 2. We can build in doubly exponential time a NVPA PS on finite words
over Σ with a special stack symbol ‘−’ and set of states containing 2H such that for
each w ∈ Σ∗, S ∈ 2H \ {∅}, and stack content β ∈ {−}∗.⊥: there is an accepting
(S, β)-run of PS over w iff w ∈ Lmwm and S is a summary of w. PS has a unique
accepting state qacc /∈ 2H (with no outgoing transitions).

Now, we are ready to construct a Büchi NVPA PN accepting exactly L(P). Let APW

be the Büchi nondeterministic finite-state automaton of Proposition 1 with states QPW ,
and let PS be the NVPA of Proposition 2 with states QS ⊇ 2H, accepting state qacc /∈
2H, and special stack symbol ‘−’. Given a word w ∈ Σω, PN guesses a pseudo word
ŵ of w and checks that it is in L(APW). The set of states of PN is QPW × QS .
At any step, PN either simulates APW on the first component of the state (and the
other one remains constant with value qacc) pushing onto the stack only the symbol
‘−’, or simulates PS on the second component (and the other one remains constant).
Whenever a call ac occurs and PN is in state (q1PW , qacc), PN can guess that ac is the
first letter of a factor wm ∈ Lmwm of w and there is a summary S ∈ 2H of wm by
simulating a push move of PS with source state S, input symbol ac, and target qS , and

moving to state (q2PW , qS) s.t. q1PW
S−→ q2PW is a transition of APW (by Proposition 2,

qS
= qacc). From (q2PW , qS), PN simulates PS . If the guess was correct, then PN can
reach a state of the form (q2PW , qacc), and the whole procedure is repeated. Otherwise,
PN will continue to simulate PS visiting only states of the form (q, q′) with q′
= qacc.
Therefore, the accepting states of PN are of the form (q, qacc) where q is an accepting
state of APW . Thus, we obtain the following:

Alternating Automata and a Temporal Fixpoint Calculus for VPL 483

Theorem 1. Given a parity AVPA P , one can construct in doubly exponential time a
Büchi NVPA PN with size doubly exponential in the size of P s.t. L(PN) = L(P).

Decision problems for (parity) AVPA. First, we consider emptiness and universality.
Note that these problems are equivalent from the complexity point of view since the
dual automaton of a AVPA P has size linear in the size of P . Since emptiness of Büchi
NVPA is in PTIME, by Theorem 1, emptiness of AVPA is in 2EXPTIME. We can show
that the problem is also 2EXPTIME-hard (also for Büchi AVPA) by a reduction from
the word problem for EXPSPACE-bounded Turing Machines. For the pushdown model
checking problem, given a pushdown system M and an AVPA P , checking whether
L(M) ⊆ L(P) reduces to checking emptiness of L(M) ∩ L(P̃N), where PN is the
NVPA equivalent to the dual of P . By [4] and Theorem 1 this check can be done in time
polynomial in the size of M and doubly exponential in the size of P . The problem is at
least as hard as universality of AVPA. Thus, we obtain the following:

Theorem 2. Emptiness and universality of (parity or Büchi) AVPA are 2EXPTIME-
complete. Moreover, the pushdown model checking problem against AVPA specifica-
tions is 2EXPTIME-complete (and polynomial in the size of the pushdown system).

4 Alternating Jump Finite-State Automata

In this section we introduce the class of alternating jump (finite-state) automata (AJA)
operating on infinite words over a pushdown alphabet. AJA extend standard alternating
finite-state automata by also allowing non-local moves: when the current input symbol
is a call ac and the matching return ar of ac along the input word exists, a copy of the
automaton can move (jump) to the return ar. We also allow local and non-local back-
ward moves (details are given below). We show that one-way and two-way AJA have
the same expressiveness and capture exactly the class of visibly pushdown languages.
The main result is an algorithm for translating a given parity two-way AJA (2-AJA) A
into an equivalent Büchi NVPA whose size is singly exponential in the size of A. We
also study some decision problems for the considered class of automata.

Fix a pushdown alphabet Σ. Given an infinite word w ∈ Σω, we consider four
different notions of successor for a position i ∈ N along w:

– The forward local successor of i along w, written succ(↓, w, i), is i+ 1.
– The backward local successor of i along w, written succ(↑, w, i), is i− 1 if i > 0,

and it is undefined otherwise (in this case we set succ(↑, w, i) = &).
– The abstract successor of i along w [3], written succ(↓a, w, i), is the forward local

successor if i is not a call position. If instead w(i) is a call, succ(↓a, w, i) points
to the matching return position of i (if any), i.e.: if there is j > i such that w(j) is
a return and w(i + 1) . . . w(j − 1) is well-matched, then succ(↓a, w, i) = j (note
that j is uniquely determined), otherwise succ(↓a, w, i) = &.

– The caller of i alongw [3], written succ(↑c, w, i), points to the last unmatched call
of the prefix of w until position i. Formally, if there is j < i such that w(j) is a
call and w(j + 1) . . . w(h) is well-matched (where h = i− 1 if i is a call position,
and h = i otherwise), then succ(↑c, w, i) = j (note that j is uniquely determined),
otherwise the caller is undefined and we set succ(↑c, w, i) = &.

484 L. Bozzelli

LetDIR = {↓, ↓a, ↑, ↑c}. A parity 2-AJA overΣ is a tupleA = 〈Q, q0, δ, Ω〉, where
Q, q0, and Ω are defined as for parity AVPA and δ : Q × Σ → B+(DIR × Q × Q)
is the transition function. Intuitively, a target of a move of A is encoded by a triple
(dir, q, q′) ∈ DIR × Q × Q, meaning that a copy of A moves to the dir-successor
of the current input position i in state q if such a successor is defined, and to position
i + 1 in state q′ otherwise. Note that the q′-component of the triple above is irrelevant
if dir = ↓ (we give it only to have a uniform notation). A 1-AJA is a 2-AJA whose
transition function δ satisfies δ(q, a) ∈ B+({↓, ↓a}×Q×Q) for each (q, a) ∈ Q×Σ.

A q-run of A over an infinite word w ∈ Σω is a N × Q-labelled tree r = 〈T, V 〉,
where a node x ∈ T labelled by (i, q′) describes a copy of A that is in q′ and reads
the i-th input symbol. Moreover, we require that r(ε) = (0, q) and for all x ∈ T with
r(x) = (i, q′), there is a setH = {(dir0, q′0, q′′0), . . . , (dirm, q′m, q

′′
m)} ⊆ DIR×Q×Q

exactly satisfying δ(q′, w(i)) such that the children of x are x · 0, . . . , x · m, and for
each 0 ≤ h ≤ m: V (x · h) = (i + 1, q′′h) if succ(dirh, w, i) = &, and V (x · h) =
(succ(dirh, w, i), q′h) otherwise. The run r is memoryless if for all nodes x, y ∈ T such
that V (x) = V (y), the (labelled) subtrees rooted at x and y coincide. The q-run r is
accepting if for each infinite path x0x1 . . ., the projection over Q of V (x0)V (x1) . . .
satisfies the parity conditionΩ. Theω-language ofA,L(A), is the set of wordsw ∈ Σω

such that there is an accepting q0-run r of A over w. A q0-run is called simply run.
As for AVPA, we can give a standard game-theoretic interpretation of acceptance in

AJA. In particular, by [12] the dual automaton Ã = 〈Q, q0, δ̃, Ω̃〉 of an AJA A, where
for all (q, a) ∈ Q×Σ, Ω̃(q) = Ω(q) + 1 and δ̃(q, a) is the dual of δ(q, a), accepts the
complement of L(A). Moreover, the existence of an accepting run ofA over w implies
the existence of a memoryless one. Since AJA are clearly closed under intersection and
union, we obtain the following result.

Proposition 3. 2-AJA and 1-AJA are closed under boolean operations. Moreover,
given a 2-AJA A, w ∈ L(A) iff there is an accepting memoryless run ofA over w.

4.1 Relation Between Nondeterministic Visibly Pushdown Automata and AJA

In this subsection we present translations forth and back between NVPA and 2-AJA.

From parity 2-AJA to Büchi NVPA. Fix a parity 2-AJAA = 〈Q, q0, δ, Ω〉 over Σ. Let
n be the index of Ω and [n] = {0, . . . , n}. Without loss of generality we can assume
that for each q ∈ Q, 0 ≤ Ω(q) ≤ n and δ(q, a) /∈ {true,false}.

By Proposition 3, we can restrict ourselves to consider memoryless runs of A. For
a word w ∈ Σω, we represent memoryless runs of A over w as follows. For a set
H ⊆ Q×DIR ×Q× Q, let Dom(H) = {q ∈ Q | (q, dir, q′, q′′) ∈ H}. A strategy
of A over w is a mapping St : N → 2Q×DIR×Q×Q satisfying: (i) q0 ∈ Dom(St(0)),
(ii) for each i ∈ N and q ∈ Dom(St(i)), the set {(dir, q′, q′′) | (q, dir, q′, q′′) ∈ St(i)}
exactly satisfies δ(q, w(i)), and (iii) for each (q, dir, q′, q′′) ∈ St(i), q′ ∈ Dom(St(h))
if succ(dir, w, i) = h
= &, and q′′ ∈ Dom(St(i + 1)) otherwise. Intuitively, St is
an infinite word over 2Q×DIR×Q×Q encoding a memoryless run r of A over w. In
particular, Dom(St(i)) is the set of states in which the automaton is (along r) when
w(i) is read, and for q ∈ Dom(St(i)), the set {(dir, q′, q′′) | (q, dir, q′, q′′) ∈ St(i)} is
the set of choices made by A on reading w(i) in state q.

Alternating Automata and a Temporal Fixpoint Calculus for VPL 485

���

source

�

ic
(call)

hc

(call) � �

�
��

the path continues visiting
only positions in [hc, hr[

� �

hr

(matching return)
ir

(matching return)

���

target

� � �� �� �

��

Fig. 1. Structure of a zig-zag prefix

A j-path γ of St is a sequence of pairs in N×Q of the form γ = (i1, q1)(i2, q2) . . .
where i1 = j and for each 1 ≤ h < |γ|: ∃(qh, dir, q′h, q′′h) ∈ St(ih) such that either
ih+1 = succ(dir, w, ih) and qh+1 = q′h, or succ(dir, w, ih) = &, ih+1 = ih + 1 and
qh+1 = q′′h . The path γ is forward (resp., backward) if ih+1 > ih (resp., ih+1 < ih)
for any h. For a finite path γ = (i1, q1) . . . (ik, qk), the index of γ is min{Ω(ql) | 1 ≤
l ≤ k} if k > 1, and n + 1 otherwise. In case ik = i1, we say that γ is closed. For
a finite path γ1 = (i1, q1), . . . , (ik, qk) and a path γ2 = (ik, qk)(ik+1, qk+1) . . ., let
γ1 ◦ γ2 be the path γ1(ik+1, qk+1) A path γ is positive (resp., negative) if γ is of
the form γ = γ1 ◦ γ2 ◦ . . ., where each γi is either a closed path, or a forward (resp.,
backward) path. A i-cycle of St is an infinite path γ that can be decomposed in the form
γ = γ1 ◦ γ2 ◦ . . ., where each γh is a closed i-path.

The strategy St is accepting if for each infinite path γ starting from (0, q0), the pro-
jection of γ over Q satisfies the parity condition Ω of A. Clearly, there is an accepting
memoryless run of A over w iff there is an accepting strategy of A over w.

Now, we have to face the problem that the infinite paths γ of St can use backward
moves. If γ is positive, then the idea is to collapse the closed subpaths (in the de-
composition of γ) in a unique move and to keep track of the associated meaningful
information by finite local auxiliary structures. However, there can be infinite paths that
are not positive. Fortunately, also for this class of paths, it is possible to individuate a
decomposition that is convenient for our purposes. This decomposition is formalized as
follows. A zig-zag i-path is an infinite i-path γ inductively defined as follows:

– (Positive prefix) γ = γp ◦γs, where γp is a finite non-empty positive i-path leading
to position h ≥ i, and γs is a zig-zag h-path visiting only positions in [h,∞[.

– (Zig-zag prefix) w(i) is a call and γ = γi,ir ◦ γir ,hr ◦ γhr,hc ◦ γs, where γi,ir is a
path from i to the matching return position ir, γir ,hr is a negative path from ir to
the return position hr ∈]i, ir[, γhr ,hc is a path from hr to the matching-call position
hc ∈]i, ir[, and γs is a zig-zag hc-path visiting only positions in [hc, hr[.

– (terminal Zig-zag): γ = γp ◦ γs, where γs is a h-cycle, and either γp is empty and
h = i, or γp = γi,ir ◦ γir ,h, where: γi,ir is a path from the call position i to the
matching return position ir, and γir ,h is a negative path from ir to h ∈]i, ir[.

The structure of a zig-zag prefix is illustrated in Figure 1. Note that an infinite positive
path is a special case of zig-zag path. The following holds.

Proposition 4. An infinite i-path visiting only positions in [i,∞[is a zig-zag i-path.

486 L. Bozzelli

Our next goal is to keep track locally for each position i of the meaningful informa-
tion associated with closed i-paths. In case w(i) is a return with matching-call w(ic),
we also need to keep track in a finite way of the ic-paths (resp., i-paths) leading to i
(resp., ic). Thus, we give the following definition. A path summary of A is a triple of
mappings (Δ,Δa,Δc) where Δ : N → 2Q×[n+1]×Q and Δa,Δc : N× {down, up} →
2Q×[n+1]×Q. Such a triple is a path summary of the strategy St if it satisfies some clo-
sure conditions. Since there are many conditions, we do not formalize them here. We
only give their general form, to show (as we will see) that they can be checked by an
NVPA (using the stack): each condition has the form check(i, h) =⇒ Φ(i, h), where
(1) i, h ∈ N are implicitly universally quantified, (3) check(i, h) := succ(dir, w, i) =
h | succ(dir, w, i) = & ∧ h = i+1 (where dir ∈ DIR). (2) Φ(i, h) is a boolean for-
mula over propositions of the form (q, dir, q′, q′′) ∈ St(j) or (q, in, q′) ∈ F(j), where
j ∈ {i, h}, and F(j) ∈ {Δ(j),Δa(j, down),Δa(j, up),Δc(j, down),Δc(j, up)}.

The intended meaning for a path summary (Δ,Δa,Δc) of strategy St is as follows:

– (q, in, q′) ∈ Δ(i) if there is a closed i-path of St of index in from (i, q) to (i, q′).
– (q, in, q′) ∈ Δa(i, up) (resp., (q, in, q′) ∈ Δa(i, down)) if i = succ(↓a, w, h),
w(h) is a call, and there is a path of index in from (i, q) to (h, q′) (resp., from
(h, q) to (i, q′)).

– (q, in, q′) ∈ Δc(i, up) (resp., (q, in, q′) ∈ Δc(i, down)) if succ(↑c, w, i) = h and
there is a path of of index in from (i, q) to (h, q′) (resp., from (h, q) to (i, q′)).

By using the path summary (Δ,Δa,Δc) of St, we define a convenient representation
for zig-zag paths which can be simulated by NVPA. A forward (resp., backward) move
of St and (Δ,Δa,Δc) is a pair (i1, q1, in1)→ (i2, q2, in2) of triples in N×Q× [n+1]
such that i2 > i1 (resp., i1 > i2) and: ∃(q1, in, q) ∈ Δ(i1) such that (i1, q)(i2, q2) is a
path of St and in1 = min{in,Ω(q)}. A downward path ρ of St and (Δ,Δa,Δc) is a
sequence ρ = (i1, q1, in1)(i2, q2, in2) (i3, q3, in3) . . . inductively defined as follows:

– (Forward move) (i1, q1, in1) → (i2, q2, in2) is a forward move and (i2, q2, in2)
(i3, q3, in3) . . . is a downward path visiting only positions in [i2,∞[.

– (Zig-zag move) i1 < i2, w(i1) and w(i2) are calls with matching-return posi-
tions hr

1 and hr
2, there is a path (hr

1, q
r
1 , in

r
1) . . . (h

r
2, q

r
2 , in

r
2) using only backward

moves s.t. (q1, in, qr1) ∈ Δa(hr
1, down) and (qr2 , in′, q2) ∈ Δa(hr

2, up) for some
in, in′ ∈ [n], and ρ′ = (i2, q2, in2) (i3, q3, in3) . . . is a downward path visiting
only positions in [i2, h2

r[.
– (Terminal move) ρ = ρ′(i, q, in)(i, q′, in′), where (q, in, q′)∈Δ(i), (q′, in′, q′) ∈

Δ(i), and in′ ∈ [n]. Moreover, either ρ′ is empty or ρ′ = (ic, qc, inc), ic is
a call position with matching-return ir, i ∈]ic, ir[, and there are (qc, inc, qr) ∈
Δa(ir, down) and a path (ir, qr, inr) . . . (i, q, in) using only backward moves.

Note that a downward path is either infinite (and uses only forward moves) or is
finite and ends with a terminal move (corresponding to a cycle of St). Let Ω′ be the
parity condition over Q × [n + 1] defined as Ω′((q, in)) = in. A downward path ρ
is accepting if either (i) ρ is infinite and its projection over Q × [n + 1] satisfies Ω′

or (ii) ρ is finite and leads to a triple (i, q, in) such that in is even. The path summary
(Δ,Δa,Δc) of strategy St is accepting if each downward path starting from a triple of
the form (0, q0, in) is accepting. The following holds.

Alternating Automata and a Temporal Fixpoint Calculus for VPL 487

Proposition 5. For each w ∈ Σω, w ∈ L(A) iff A has a strategy St over w and an
accepting path summary of St.

LetΣext = Σ×(2Q×DIR×Q×Q)×(2Q×[n+1]×Q)5, where the partition in calls, returns,
and internal actions is induced by Σ. For w ∈ Σω, St ∈ (2Q×DIR×Q×Q)ω , and a path
summary (Δ,Δa,Δc) of A, the infinite word over Σext associated with w, St, and
(Δ,Δa,Δc), written (w, St, (Δ,Δa,Δc)), is defined in the obvious way.

Theorem 3. Given a parity 2-AJA A, one can construct in singly exponential time a
Büchi NVPA PA with size exponential in the size of A such that L(PA) = L(A).

Proof. We first build a Büchi NVPA Pext
A over Σext that accepts (w, St, (Δ,Δa,Δc))

iff St is a strategy ofA overw and (Δ,Δa,Δc) is an accepting path summary of St. The
desired automatonPA is obtained by projecting out the St and (Δ,Δa,Δc) components
of the input word. Pext

A is the intersection of two Büchi NVPA Pext
1 and Pext

2 .
Pext

1 checks that St is a strategy of A over w and (Δ,Δa,Δc) is a path summary of
St. These checks can be easily done as follows. Pext

1 keeps track by its finite control
of the caller (if any) of the current input symbol and of the previous input symbol. On
reading a call cext, Pext

1 pushes onto the stack the current caller and the call cext, and
moves to the next input symbol updating the caller information to cext. Thus, in case the
call cext returns (and the stack is popped), Pext

1 can check that the constraints between
cext and the matching return are satisfied. Moreover, on reading cext, Pext

1 either (i)
guesses that the matching return of cext does not exist and pushes onto the stack also
the symbol ‘NO’ (the guess is correct iff ‘NO’ will be never popped from the stack), or
(ii) guesses that the matching return of cext exists, pushes onto the stack also the symbol
‘YES’ and moves to a non-accepting state (the guess is correct iff ‘YES’ is eventually
popped). In the second case, before ‘YES’ is eventually popped, whenever a call cnew

occurs, the behaviour of Pext
1 is deterministic since the matching return of cnew must

exists if the guess was correct (in this phase the symbols ‘NO’ and ‘YES’ are not used).
Pext

2 checks that (Δ,Δa,Δc) is accepting. First we build a parity NVPA PC that ac-
cepts (w, St, (Δ,Δa,Δc)) iff there is a downward path of St and (Δ,Δa,Δc) that is not
accepting. Essentially,PC guesses such a path ρ and checks that it is not accepting. The
computation of PC is subdivided in phases. At the beginning of any phase, PC keeps
track by its finite control of the projection (q, in) of the current triple of the simulated
path ρ, and chooses to start the simulation of a forward move, or of a zig-zag move, or
of a terminal move. We describe the simulation of a zig-zag move (the other cases are
simpler) with source (q, in, i) where i is a call position. Then, PC guesses two triples
(q, in′, qr), (q2r , in′′, q2c) ∈ Q× [n]×Q. The first one must be in Δa(hr, down) where
hr is the matching return position of i, and the second one must be in Δa(h2

r, up), where
h2
r < hr and h2

r is the matching return of a call representing the target of the zig-zag
move. To check this PC pushes onto the stack the triple (q, in′, qr) (when (q, in′, qr) is
popped, PC can check that the constraint on it is satisfied) and moves to the next input
symbol in state (q2r , in

′′, q2c). PC must also check that there is a finite path using only
backward moves from the return position hr in state qr to the return h2

r in state q2r . This
part is discussed below. If the simulated move is the first zig-zag move along ρ, PC

pushes onto the stack also a special symbol ‘*’. Note that after the first zig-zag move,
for each call visited by the remaining portion of ρ, the matching return exists. Thus,PC

488 L. Bozzelli

must check the existence of the matching return only for the call associated with the
first zig-zag move (this reduces to check that ‘*’ is eventually popped).
PC will remain in state (q2r , in′′, q2c) (pushing some special symbol onto the stack

whenever a call occurs) until2 on reading a call cext, PC guesses that cext is the match-
ing call of position h2

r. Thus, PC pushes onto the stack the tuple ((q2r , in
′′, q2c),

START) (recall that from this point, in state q2c , the path ρ can visit only positions in
[i2, h2

r[, where i2 is the position of cext). When the tuple is popped, PC checks that the
constraint on (q2r , in′′, q2c) is satisfied and starts to simulate in reversed order backward
moves starting from state q2r , until (on reading a return) a triple (q, in′, qr) is popped
from the stack. The zig-zag move have been correctly simulated iff the current state of
the guessed backward path is exactly qr. The size of PC is quadratic in the number of
states ofA. The Büchi NVPA Pext

2 is obtained by complementatingPC . By [4] the size
of Pext

2 is exponential in the number of states ofA. This concludes the proof. ()

From Büchi NVPA to parity 2-AJA. For the converse translation, we can show that
Büchi 1-AJA are sufficient to capture the class of VPL.

Theorem 4. Given a Büchi NVPA P , we can build in polynomial time an equivalent
Büchi 1-AJA AP whose number of states is quadratic in the number of states of P .

4.2 Decision Problems for Alternating Jump Automata

First, we consider emptiness and universality of (parity) 1-AJA and 2-AJA. Since the
dual automaton of a 1-AJA (resp., 2-AJA) A has size linear in the size of A and accepts
the complement of L(A), emptiness and universality of 1-AJA and 2-AJA are equivalent
problems from the complexity point of view. For Büchi NVPA, emptiness is in PTIME

and universality is EXPTIME-complete [4]. Thus, by Theorems 3 and 4, it follows that
emptiness and universality of 1-AJA and 2-AJA are EXPTIME-complete.

For the pushdown model checking problem, given a pushdown system M and a
1-AJA (resp., 2-AJA) A, checking whether L(M) ⊆ L(A) reduces to checking empti-
ness of L(M) ∩ L(P̃A), where P̃A is the NVPA equivalent to the dual of A (Theorem
3). This check can be done in time polynomial in the size of M and exponential in the
size ofA. The problem is at least as hard as universality of 1-AJA (resp., 2-AJA), hence:

Theorem 5. Emptiness and universality of 1-AJA and 2-AJA are EXPTIME-complete.
Moreover, the pushdown model checking problem against 1-AJA (resp., 2-AJA) speci-
fications is EXPTIME-complete (and polynomial in the size of the pushdown system).

5 Visibly Pushdown Linear-Time μ-Calculus (VP-μTL)

In this section we consider a linear-time fixpoint calculus, called VP-μTL, which sub-
sumes CARET [3] and captures exactly the class of visibly pushdown languages.

VP-μTL extends the full linear-time μ-calculus (with both forward and backward
modalities) introduced in [14] by allowing non-local forward and backward modalities:

2 If, in the meanwhile, a triple (q, in′, qr) is popped from the stack, PC rejects the input.

Alternating Automata and a Temporal Fixpoint Calculus for VPL 489

the abstract next modality allows to associate each call with its matching return (if any),
and the (backward) caller modality allows to associate each position with its caller (if
any). Thus, VP-μTL formulas are built from atomic actions over a pushdown alphabet
Σ using boolean connectives, the standard next temporal operator© (here, denoted by
©↓), the standard backward version©↑ of©, the abstract version©↓a of©, the caller
version©↑c

of©, as well as the least (μ) and greatest (ν) fixpoint operators.
W.l.o.g. we assume that VP-μTL formulas are written in positive normal form (nega-

tion only applied to atomic actions). Let V ar = {X,Y, . . .} be a finite set of variables
and Σ be a pushdown alphabet. VP-μTL formulas ϕ over Σ and V ar are defined as:

ϕ ::= a | ¬a | X | ϕ ∨ ϕ | ϕ ∧ ϕ | ©dirϕ | ¬©dir true | μX.ϕ | νX.ϕ

where a ∈ Σ, X ∈ V ar, and dir ∈ {↓, ↓a, ↑, ↑c}. VP-μTL formulas ϕ are interpreted
over words w ∈ Σω. Given a valuation V : V ar → 2N assigning a subset of N to each
variable, the set of positions along w satisfying ϕ under valuation V , written ‖ϕ‖wV , is
defined as (we omit the clauses for atoms and boolean operators, which are standard):

‖X‖wV = V(X)
‖©dirϕ‖wV = {i ∈ N | succ(dir, w, i)
= & and succ(dir, w, i) ∈ ‖ϕ‖wV}
‖¬©dir true‖wV = {i ∈ N | succ(dir, w, i) = &}
‖μX.ϕ‖wV =

⋂
{M ⊆ N | ‖ϕ‖wV[X �→M] ⊆M}

‖νX.ϕ‖wV =
⋃
{M ⊆ N | ‖ϕ‖wV[X �→M] ⊇M}

whereV [X �→M] mapsX toM and behaves like V on the other variables. Ifϕ does not
contain free variables (ϕ is a sentence), ‖ϕ‖wV does not depend on the valuation V , and
we write ‖ϕ‖w. The set of models of a sentence ϕ is L(ϕ) = {w ∈ Σω | 0 ∈ ‖ϕ‖w}.

We can show that parity 2-AJA are exactly as expressive as VP-μTL sentences.

Theorem 6. Given a VP-μTL sentence ϕ, one can construct in linear time a parity
2-AJA Aϕ such that L(Aϕ) = L(ϕ). Vice versa, give a parity 2-AJA A, one can
construct in linear time a VP-μTL sentence ϕA such that L(ϕA) = L(A).

By Theorems 6 and 5, we obtain the following result.

Corollary 1. The satisfiability problem of VP-μTL is EXPTIME-complete. Moreover,
the pushdown model checking problem against VP-μTL is EXPTIME-complete (and
polynomial in the size of the pushdown system).

6 Conclusion

We have investigated various classes of alternating automata over infinite structured
words which capture exactly the class of visibly pushdown languages (VPL) [4]. First,
we have shown that basic decision problems for alternating visibly pushdown automata
(AVPA) are 2EXPTIME-complete. Second, we have introduced a new class of alternating
finite-state automata, namely the class of 2-AJA, and we have shown that basic decision
problems for 2-AJA are EXPTIME-complete. Finally, 2-AJA have been used to obtain

490 L. Bozzelli

exponential-time completeness for satisfiability and pushdown model checking of a
linear-time fixpoint calculus with past modalities, called VP-μTL, which subsumes the
linear-time μ-calculus and the logic CARET [3].

We believe that 2-AJA represent an elegant and interesting formulation of the theory
of VPL on infinite words. In particular, boolean operations are easy and basic decision
problems are equivalent from the complexity point of view and EXPTIME-complete.
Moreover, 2-AJA represent an intuitive extension of standard alternating finite-state au-
tomata on infinite words. Finally, and more importantly, 2-AJA make easy the tem-
poral reasoning about the past, and linear-time context-free temporal logics with past
modalities such as CARET and the fixpoint calculus VP-μTL can be easily and linearly
translated into 2-AJA. Note that we have not considered (one-way or two-way) nonde-
terministic jump automata, since we can show that they capture only a proper subclass
of the class of VPL (we defer further details to the full version of this paper).

References

1. Alur, R., Chaudhuri, S., Madhusudan, P.: A fixpoint calculus for local and global program
flows. In: Proc. 33rd POPL, pp. 153–165. ACM Press, New York (2006)

2. Alur, R., Chaudhuri, S., Madhusudan, P.: Languages of nested trees. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 329–342. Springer, Heidelberg (2006)

3. Alur, R., Etessami, K., Madhusudan, P.: A Temporal Logic of Nested Calls and Returns.
In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 467–481. Springer,
Heidelberg (2004)

4. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. 36th STOC, pp. 202–211.
ACM Press, New York (2004)

5. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: Developments in Language
Theory, pp. 1–13 (2006)

6. Ball, T., Rajamani, S.: Bebop: a symbolic model checker for boolean programs. In: Havelund,
K., Penix, J., Visser, W. (eds.) SPIN Model Checking and Software Verification. LNCS,
vol. 1885, pp. 113–130. Springer, Heidelberg (2000)

7. Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata: Ap-
plication to Model-Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997.
LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

8. Chatterjee, K., Ma, D., Majumdar, R., Zhao, T., Henzinger, T.A., Palsberg, J.: Stack size
analysis for interrupt-driven programs. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp.
109–126. Springer, Heidelberg (2003)

9. Chen, H., Wagner, D.: Mops: an infrastructure for examining security properties of software.
In: Proc. 9th CCS, pp. 235–244. ACM Press, New York (2002)

10. Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular valuations for push-
down systems. Information and Computation 186(2), 355–376 (2003)

11. Loding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Lodaya, K., Mahajan,
M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 408–420. Springer, Heidelberg (2004)

12. Muller, D.E., Schupp, P.E.: Alternating Automata on Infinite Trees. Theoretical Computer
Science 54, 267–276 (1987)

Alternating Automata and a Temporal Fixpoint Calculus for VPL 491

13. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondeterministic au-
tomata: new results and new proofs of the Theorems of Rabin, McNaughton and Safra. The-
oretical Computer Science 141(1-2), 69–107 (1995)

14. Vardi, M.Y.: A temporal fixpoint calculus. In: Proc. 15th Annual POPL, pp. 250–259. ACM
Press, New York (1988)

15. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S.,
Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)

16. Walukiewicz, I.: Pushdown processes: Games and Model Checking. In: Alur, R., Henzinger,
T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg (1996)

Temporal Antecedent Failure: Refining Vacuity

Shoham Ben-David1, Dana Fisman2,3, and Sitvanit Ruah3

1 David R. Cheriton School of Computer Science University of Waterloo
2 School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel

3 IBM Haifa Research Lab, Haifa University Campus, Haifa 31905, Israel

Abstract. We re-examine vacuity in temporal logic model checking. We note
two disturbing phenomena in recent results in this area. The first indicates that
not all vacuities detected in practical applications are considered a problem by
the system verifier. The second shows that vacuity detection for certain logics
can be very complex and time consuming. This brings vacuity detection into an
undesirable situation where the user of the model checking tool may find herself
waiting a long time for results that are of no interest for her.

In this paper we define Temporal Antecedent Failure, an extension of an-
tecedent failure to temporal logic, which refines the notion of vacuity. According
to our experience, this type of vacuity always indicates a problem in the model,
environment or formula. On top, detection of this vacuity is extremely easy to
achieve. We base our definition and algorithm on regular expressions, that have
become the major temporal logic specification in practical applications.

Keywords: Model checking, Temporal logic, Vacuity, Regular expressions, PSL,
SVA, Antecedent failure.

1 Introduction

Model checking ([15,28], c.f.[16]) is the procedure of deciding whether a given model
satisfies a given formula. One of the nice features of model checking is the ability to
produce, when the formula does not hold in the model, an execution path demonstrating
the failure. However, when the formula is found to hold in the model, traditional model
checking tools provide no further information. While satisfaction of the formula in the
model should usually be considered “good news”, it is many times the case that the
positive answer was caused by some error in the formula, model or environment. As a
simple example consider the LTL formula ϕ = G (req → F (ack)), stating that every
request req must eventually be acknowledged by ack. This formula holds in a model in
which req is never active. In this case we say that the formula is vacuously satisfied in
the model.

Vacuity in temporal logic model checking was introduced by Beer et al ([3,4]), who
defined it as follows: a formula ϕ is vacuously satisfied in a model M iff it is satisfied
in M , (i.e., M |= ϕ) and there exists a subformula ψ of ϕ that does not affect the truth
value of ϕ in M . That is, there exists a subformula ψ of ϕ such that M |= ϕ[ψ ← ψ′]
for any formula ψ′.1 For example, in the formula ϕ = G (req → F (ack)), if req

1 We use ϕ[ψ ← ψ′] to denote the formula obtained from ϕ by replacing the subformula ψ of
ϕ with ψ′.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 492–506, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Temporal Antecedent Failure: Refining Vacuity 493

is never active in M , then the formula holds, no matter what the value of F (ack) is.
Thus, the subformula F (ack) does not affect the truth value of ϕ in M . Note that this
definition ignores the question of the reason for a vacuous satisfaction. In our example
the reason for vacuity is the failure of req to ever hold in the model.

Since the introduction of vacuity, research in this area concentrated mainly on extend-
ing the languages and methods to which vacuity could be applied [24,27,17,26,20,30].
Armoni et al. in [1] defined a new type of vacuity, which they called trace vacuity.
Chechik and Gurfinkel in [19] showed that detecting trace vacuity is exponential for
CTL, and double-exponential for CTL∗. Bustan et al. in [13] showed that detecting trace
vacuity for RELTL (an extension of LTL with a regular layer), involves an exponential
blow-up in addition to the standard exponential blow-up for LTL model checking. They
suggested that weaker vacuity definition should be adopted for practical applications.

In a recent paper [14] Chechik et al. present an interesting observation. They note that
in many cases, vacuities detected according to existing definitions are not considered a
problem by the verifier of the system. For example, consider again the formula ϕ =
G (req → F (ack)), and assume the system is designed in such a way that ack is
given whenever the system is ready. Thus, if the system behaves correctly, it infinitely
often gets to a “ready” state, and the formula F (ack) always holds. According to the
definition of vacuity,ϕ holds vacuously in the model (since req does not affect the truth
value of ϕ in the model), although no real problem exists. This phenomenon, coupled
with the high complexity results reported for some logics, brings vacuity detection into
an undesirable situation where the user of the model checking tool may find herself
waiting a long time for results that are of no interest for her.

In this paper we approach the problem by providing a refined definition of vacuity,
such that detection is almost “for free”, and, according to feedback from users, vacuity
always indicate real problems. We define temporal antecedent failure (TAF), a type of
vacuity that occurs when some pre-condition in the formula is never fulfilled in the
model. The definition of TAF is semantic and is therefore unlikely to suffer from typical
problems with syntactic definitions as shown in Armoni et al. [1].

We work with formulas given in terms of regular expressions, that are the major
specification method used in practice [8,18,23,22] . We show how vacuity can be de-
tected by asserting an invariant condition on the automaton already built for the original
formula. We further use these invariant conditions to determine the reason for vacuity,
when detected. Vacuity and its reasons are therefore detected with almost no overhead
on the state space.

Note that the notion of vacuity reasons, formally defined in section 3.3, is different
from vacuity causes defined by Samer and Veith in [29]. Samer and Veith introduce
weak vacuity which occurs when a sub-formula can be replaced by a stronger sub-
formula without changing the truth value (where a formula ϕ is stronger than ψ if
ϕ implies ψ). Since the set of candidates for stronger formulas is large and not all
stronger formulas potentially provide a trivial reason for satisfaction of the original
formula they ask the user to provide a set of stronger formulas which they term causes
according to which weak vacuity will be sought for. In contrast, in our work a reason
is a Boolean expression appearing at the original formula which is responsible for the
detected vacuity.

494 S. Ben-David, D. Fisman, and S. Ruah

We note that our approach resembles that of the original vacuity work of Beer et
al. [3], who considered antecedent failure [2] as their motivation. While our definition of
TAF generalizes antecedent failure in the temporal direction, their definition of vacuity
generalizes antecedent failure even in propositional logic — where the dimension of
time is absent. We further note that the algorithm provided in [3] concentrated mainly on
TAF. Thus our experience of vacuities being 100% interesting, comply with their report
of vacuities “... always point to a real problem in either the design or its specification or
environment” [3].

The rest of the paper is organized as follows. The next section gives preliminaries.
Section 3 defines temporal antecedent failure and its reasons, and shows that formulas
that may suffer from TAF can be represented by regular expressions. Section 4 gives
an efficient algorithm to detect TAF and its reasons. Section 5 concludes the paper and
discusses related work. Due to lack of space, all proofs are omitted. They can be found
in the full version of the paper [9].

2 Preliminaries

2.1 Notations

We denote a letter from a given alphabet Σ by �, and an empty, finite, or infinite word
fromΣ by u, v, orw (possibly with subscripts). The concatenation of u and v is denoted
by uv. If u is infinite, then uv = u. The empty word is denoted by ε, so that wε = εw =
w. If w = uv we say that u is a prefix of w, denoted u w, that v is a suffix of w, and
that w is an extension of u, denoted w + u.

We denote the length of a word v by |v|. The empty word ε has length 0, a finite word
v = (�0�1�2 · · · �n) has length n + 1, and an infinite word has length ∞. Let i denote
a non-negative integer. For i < |v| we use vi to denote the (i + 1)th letter of v (since
counting of letters starts at zero), and v−i to denote the (i + 1)th letter of v counting
backwards. That is if v = (�n . . . �2�1�0) then v−i = �i. Let j and k denote integers
such that j ≤ k. We denote by vj.. the suffix of v starting at vj and by vj..k the subword
of v starting at vj and ending at vk.

We denote a set of finite/infinite words by U , V orW and refer to them as properties.
The concatenation of U and V , denoted UV , is the set {uv | u ∈ U, v ∈ V }. Define
V 0 = {ε} and V k = V V k−1 for k ≥ 1. The ∗-closure of V , denoted V

∗
, is the

set V
∗

=
⋃

k<ω V
k. The notation V + is used for the set

⋃
0<k<ω V

k. The infinite
concatenation of V to itself is denoted V ω.

In this work we follow the linear time framework. Thus, we assume the underlying
temporal logic is linear and we regard a model M as an ω-regular property (that is, we
regard M as a set of infinite words that is generated by an automaton).

2.2 Temporal Logic

Since the underlying temporal logic is linear, the models satisfying a temporal formula
are words (finite or infinite). A temporal logic formula may refer to the past, to the
future or to both. We use the term past formulas for formulas that do not refer to the
strict future. We use the term future formulas for formulas that do not refer to the strict

Temporal Antecedent Failure: Refining Vacuity 495

past. We use the term present formula for formulas that do not refer to the strict future
or to the strict past. The set of models satisfying a past formula is composed of finite
non-empty words. The set of models satisfying future formulas is composed of infinite
words. The set of models satisfying a present formula is composed of single letters. The
set of models satisfying an arbitrary formula is composed of pairs 〈w, i〉 where w is an
infinite word and i is a non-negative integer. The prefix w0..i represents the past and
present and the suffix wi.. represents the present and future.

Below we give the semantics of the commonly used operators: X (next),
←−
X (previ-

ous), G (globally),
←−
G (historically), F (eventually),

←−
F (once), U (until), and

←−
U (since).

Let P be a given set of atomic propositions. We identify the set of present formulas B
with the set 22P

of subsets of valuation to the atomic propositions P. We use true and
false to denote the elements 2P and ∅ of B, respectively. Let b be a present formula and
ϕ an arbitrary formula.

– 〈w, i〉 |= b⇐⇒ wi ∈ b.
– 〈w, i〉 |= Xϕ⇐⇒ 〈w, i+ 1〉 |= ϕ.

– 〈w, i〉 |= ←−
Xϕ⇐⇒ i > 0 and 〈w, i− 1〉 |= ϕ.

– 〈w, i〉 |= Gϕ⇐⇒ ∀j ≥ i, 〈w, j〉 |= ϕ.

– 〈w, i〉 |= ←−
Gϕ⇐⇒ ∀j ≤ i, 〈w, j〉 |= ϕ.

– 〈w, i〉 |= Fϕ⇐⇒ ∃j ≥ i, 〈w, j〉 |= ϕ.

– 〈w, i〉 |= ←−
Fϕ⇐⇒ ∃j ≤ i, 〈w, j〉 |= ϕ.

– 〈w, i〉 |= ϕUψ ⇐⇒ ∃k ≥ i, 〈w, k〉 |= ψ and ∀i ≤ j < k, 〈w, j〉 |= ϕ.

– 〈w, i〉 |= ϕ
←−
Uψ ⇐⇒ ∃k ≤ i, 〈w, k〉 |= ψ and ∀i ≥ j > k, 〈w, j〉 |= ϕ.

A formula ϕ is initially true on a word w iff w, 0 |= ϕ. Given a temporal logic
formula ϕ we use [[ϕ〉〉 to denote the set of words initially satisfying ϕ. That is, [[ϕ〉〉 =
{w : 〈w, 0〉 |= ϕ}. For a past formula ϕ, we use 〈〈ϕ]] to denote the set of finite words
satisfying ϕ at their last letter. That is, 〈〈ϕ]] = {w : w is finite and 〈w, |w| − 1〉 |= ϕ}.

2.3 Regular Expressions

Definition 1 (Regular Expressions (RE s))

– Let B be a finite non-empty set, and let b be an element in B. The set of regular ex-
pressions (REs) over B is recursively defined as follows: r ,= b | r·r | r ∪ r | r∗

– The language of a regular expression over B with respect to L(·) is recursively
defined as follows, where b ∈ B, and r1 and r2 are REs.

1. [[b]] = L(b) 3. [[r1∪r2]] = [[r1]] ∪ [[r2]]
2. [[r1·r2]] = [[r1]][[r2]] 4. [[r∗]] = [[r]]∗

In standard definition of regular expressions L(b) = {b} in the context of temporal logic
B is a set of present formulas over a given set of atomic propositions P and L(b) ⊆ 22P

is the set of assignments to the propositions P for which b holds.

496 S. Ben-David, D. Fisman, and S. Ruah

2.4 Positions in Regular Expressions and Related Partial Orders

An RE is called linear if no letter appears in it more than once [10]. Any RE can be
linearized by subscripting its letters with unique indexes.

Example 1. Let r1 be the RE {a·{{b∗·c}∪{d·e∗}}·c·e}. It can be subscriptized to the
linear RE r′1 = {a1·{{b∗2·c3}∪{d4·e∗5}}·c6·e7}.

We call the letters of the subscriptized RE positions and save the term letters for the
deindexed positions. That is, the positions of r′1 are a1, b2, c3, d4, e5, c6 and e7 and its
letters are a, b, c, d and e — the same as the letters of r1. The set of positions of an RE

r is denoted pos(r). We can define a partial order between positions of a given RE. The
definition of the partial order makes use of the following functions:

Definition 2 (Position Functions). Let r be a linear RE, and let [[r]] be defined as in
Definition 1 where for a position b, L(b) is {b}.

– F(r) - the set of positions that match the first letter of some word in [[r]].
Formally, F(r) = {x ∈ pos(r) | ∃v ∈ pos(r)∗ s.t. xv ∈ [[r]]}.

– L(r) - the set of positions that match the last letter of some word in [[r]].
Formally, L(r) = {x ∈ pos(r) | ∃v ∈ pos(r)∗ s.t. vx ∈ [[r]]}.

– N (r, x) - the set of positions that can follow position x in a path through r.
Formally,N (r, x) = {y ∈ pos(r) | ∃u, v ∈ pos(r)∗ s.t. uxyv ∈ [[r]]}.

– P(r, x) - the set of positions that can precede position x in a path through r.
Formally, P(r, x) = {y ∈ pos(r) | ∃u, v ∈ pos(r)∗ s.t. uyxv ∈ [[r]]}.

An inductive definition of these functions appears in [6] and is repeated in the full
version of the paper [9].

The transitive closure of N (·) induces a partial order ·≺ on the set of positions
so that, F(r) positions are the minimal positions, L(r) are the maximal positions, if
y ∈ N (r, x) then y ·, x, and if z ·, y and y ·, x then z ·, x.

Example 2. For r′1 defined in Example 1 we have F(r′1) = {a1}, L(r′1) = {e7}. The
parital order is the transitive closure of the relation given by: a1 ·≺ b2, b2 ·≺ c3, c3 ·≺ c6,
c6 ·≺ e7, a1 ·≺ d4, d4 ·≺ e5 and e5 ·≺ c6.

Given an RE r and a position x we denote by rx� the “prefix” of r that ends with x.
Similarly, we denote by rx the “prefix” of r that ends exactly before x. Formally,

1. bx� = b 1. bx = ε

2. r1·r2x� =
{
r1x� if x ∈ r1
r1·r2x� otherwise

2. r1·r2x =
{
r1x if x ∈ r1
r1·r2x otherwise

3. r1∪r2x� =
{
r1x� if x ∈ r1
r2x� otherwise

3. r1∪r2x =
{
r1x if x ∈ r1
r2x otherwise

4. r∗x� = rx� 4. r∗x = rx

Example 3. For r′1 defined in Example 1, we have r′1e5� = {a1 · d4 · e5}, r′1e5 =
{a1 · d4}, r′1 c6� = {a1·{b∗2·c3}∪{d4·e∗5}·c6} and r′1c6 = {a1·{b∗2·c3}∪{d4·e∗5}}.

Temporal Antecedent Failure: Refining Vacuity 497

3 Temporal Antecedent Failure (TAF) and Its Reasons

Antecedent failure in propositional logic [2] occurs when the formula is trivially valid
because the pre-condition (antecedent) of the formula is not satisfiable in the model.
We generalize this notion to Temporal Antecedent Failure (TAF), where some future
requirement depends on a temporal pre-condition. We start by giving a definition of
TAF in terms of past and future formulas. In section 3.2 we show that any formula that
may suffer from TAF can be expressed using regular expressions. When a temporal pre-
condition fails to hold, there could be different reasons for that. We define TAF reasons
in section 3.3.

3.1 Temporal Antecedent Failure

In propositional logic a formula suffers from antecedent failure if it is of the form
(A → B) and A is not satisfiable. Intuitively, the generalization to temporal logic is
that a formula suffers from temporal antecedent failure if it is of the form G (Φ → Ψ)
where Φ is a past formula representing a condition, Ψ is a future formula representing a
requirement, and the condition Φ never holds. To capture this intuition, we present the
following two definitions.

Definition 3 (Temporal Implication Form). A formula has a temporal implication
form iff it can be expressed in the form G (Φ → Ψ) where Φ is a past formula and
Ψ is a future formula.

We note that Ψ is not required to refer to the strict future, that is, it may also refer to
the present. We also note that this allows Ψ to be the present formula false or another
unsatisfiable formula. In such a case Ψ does not carry a requirement, but rather states
that Φ is disallowed. Therefore,Φ is not really an antecedent and the notion of antecdent
failure does not apply. We therefore assume Ψ is satisfiable.

Definition 4 (Temporal Antecedent Failure). Let M be a model, Φ a past formula
and Ψ a future formula. We say that the formula ϕ = G (Φ → Ψ) suffers from TAF

of Φ in model M iff M |= ϕ and forall words w in M , and forall i < |w| we have
〈w, i〉 |=/ Φ.

We say that a property has a temporal implication form if it can be expressed by a for-
mula that has a temporal implication form. We say that a property suffers from temporal
antecedent failure in M if it can be expressed by a formula that suffers from temporal
antecedent failure in M . In the sequel we use antecedent failure to mean temporal an-
tecedent failure. Also, when M is understood from the context we sometimes omit it.

3.2 Moving to Regular Expressions

We examine formulas in temporal implication form in view of the IEEE standard tem-
poral logic PSL [18,23]. A major feature of PSL is the suffix implication operator, which
makes use of regular expressions. A suffix implication formula is of the form r → ϕ
where r is a regular expression and ϕ is a PSL formula. Intuitively, this formula states
that whenever a prefix of a given path matches the regular expression r, the suffix of
that path should satisfy the requirement ϕ.

498 S. Ben-David, D. Fisman, and S. Ruah

Example 4. The following formula

ψ = {true∗ · req · ¬ack∗ · ack · ¬abort} → (¬retry U req)

states that if the first ack following req is not aborted one cycle after ack, then it must
not be retried (signal retry should not hold at least until the next req holds). The formal
definition of suffix implication taken from [23], is given below.

Definition 5 (Suffix Implication Formulas [23]). Let r be a regular expression and
ϕ a temporal logic formula, both over a given set of atomic propositions P. Let v be a
word over 2P. Then

v |= r → ϕ⇐⇒ ∀j < |v|, if v0..j ∈ [[r]] then 〈v, j〉 |=ϕ

The following claim connects formulas in temporal implication form to suffix implica-
tion formulas.

Claim 1. An omega regular property has a temporal implication form iff it can be ex-
pressed in the form r → Ψ where r is a regular expression and Ψ is a future formula.

We note that although PSL includes other language constructs, suffix implication is the
major one and in fact, other temporal formulas can be translated into suffix implica-
tion [8,11].2 Note further that a property may be expressed by two different formulas
in suffix implication form. For example, the formula {a·b} → (F c) is equivalent to the
formula {a} → X (¬b ∨ (b ∧ F c)). In order to get maximum information regarding
TAF it is beneficial to take a form in which the left-hand-side of suffix implication is
maximal in terms of the partial order between REs. Indeed, the procedure in [8] yields
a formula in which the RE at the left-hand-side is maximal.3 In the rest of the paper we
shall assume the formula is given as a suffix implication.

The following claim provides a characterization of TAF in terms of suffix implication
formulas.

Claim 2. A formula of the form r → Ψ where r is a regular expression and Ψ is a future
formula suffers from TAF of r in model M iff forall words w in M , and forall prefixes
u w we have u /∈ [[r]].

Example 5. Consider the formula ψ given in Example 4, for which r = {true∗ · req ·
¬ack∗ · ack · ¬abort}. The formula ψ would suffer from TAF in a model M where no
word ever satisfies r. (That is, there is never a sequence of req, followed by an ack after

2 As elaborated in [8], the majority of formulas written in practice can be effectively transformed
into suffix implication form. In particular, the common fragment of LTL and ACTL, all RCTL

formulas and all the safety formulas in the simple subset of PSL can be linearly translated into
suffix implication form. Clearly, since the left hand side of the suffix implication operator can
be any formula, we can manage in the same manner liveness formulas as well [11].

3 The procedure in [8] yields a formula of the form {r} → false. As explained earlier, for TAF

detection we assume the right-hand-side is not a contradiction. However, it is easy to transform
the result of [8] to one in which the right-hand-side is not a contradiction.

Temporal Antecedent Failure: Refining Vacuity 499

a finite number of cycles, and then ¬abort one cycle after ack.) Note that there could
be several reasons for this r never to hold on any word. It could be that no reqs are ever
given in M , or no acks are given. It could also be the case that in our model, all reqs
are always aborted. In the next section we define what it means to be a reason for TAF.

Note that Ψ plays no role in the decision of whether r → Ψ suffers from TAF in a given
model M . Thus, if r → Ψ suffers from TAF of r in M then for any other formula Ψ ′,
the formula r → Ψ ′ also suffers from TAF of r in M . Therefore, from now on we say
that r suffers from TAF in M without specifying the formula.

3.3 Defining TAF Reasons

Let r be an RE that suffers from TAF in a model M . We would like to find the reason
for this. For example if r = {true∗·a·b·c·c∗·d} and b never holds after an a, we would
like to say that b is the reason for TAF. Note that in addition, it might be the case that d
never holds after c, but we still view b as the reason. That is, our intuitive view of the
reason for TAF is the earliest letter that does not hold when expected. Having said that,
we note that sometimes the earliest letter that does not hold when expected, is actually
not the reason. To see why, consider the following example.

Example 6. Let r′1 = {a1·{b∗2·c3}∪{d4·e∗5}·c6·e7} be the RE defined in Example 1 and
assume its letters are mutually exclusive (that is, if one holds the others do not). Let M
be a model such that a1 holds at the first cycle, b2 holds at the second cycle, c3 at the
third cycle and c6 never holds. Thus, c6 is a reason for TAF, although there exists an
earlier position, d4, that also does not hold when expected.

The formal definition of TAF reasons follows. Intuitively, a TAF reason is a position
that does not hold when expected although one of its immediate predecessors does hold
when expected.

Definition 6 (Temporal Antecedent Failure Reason). Let M be a model and r a lin-
ear RE, such that r suffers from TAF in M . A position x is a reason for TAF of r in M iff
rx� suffers from TAF in M and there exists a position x′ ∈ P(r, x) such that rx′� does
not suffer from TAF in M .

The following proposition assures that if a model M suffers from TAF with respect to
some RE r then indeed (at least) one of the positions in r is a reason for TAF of r in M .

Proposition 1. LetM be a model and r an RE, such that r suffers from TAF inM . Then
there exists a position x in r such that x is a reason for TAF of r in M .

Consider again the RE r1 and the model M of Example 6. We note that according to
Definition 6 the position d4 is also a reason for TAF. However, c6 is a more fundamental
reason: the fact that c6 does not hold when expected implies that for any Ψ the formula
r → Ψ holds. The fact that d4 does not hold when expected does not imply that, as it
could be that b2, c3, c6, e7 do hold when expected and thus in the formula r → Ψ , the
requirement Ψ must be fulfilled. We thus differentiate between two types of reasons for
antecedent failure. If the failure of the position is “recovered” by another position, it is
a secondary reason. Otherwise it is a primary reason.

500 S. Ben-David, D. Fisman, and S. Ruah

Definition 7 (Primary and Secondary Reasons). Let M be a model and r a linear
RE. Given position x is a reason of antecedent failure of r in M , we say that x is a
primary reason if forall x′ ·, x we have that rx′� suffers from TAF in M and x′ is not a
reason for TAF of r in M . Otherwise we say that x is a secondary reason.

One can check that these definitions indeed give us that in Example 6 both d4 and
c6 are reasons, and c6 is a primary reason while d4 is a secondary reason. There are
no other reasons for TAF of r′1 in this example. As another example consider the RE

r2 = {true∗·a·b∗·c} and assume the model is such that a holds only on the 11th cycle
and neither b nor c hold on the 12th cycle. Then both b and c are reasons, and c is a
primary reason while b is a secondary reason. There are no other reasons for TAF of r2
in this example.

The following proposition strengthens Proposition 1 by asserting that if r suffers
from TAF in M then there exists a primary reason for this.

Proposition 2. LetM be a model and r an RE, such that r suffers from TAF inM . Then
there exists a position x in r such that x is a primary reason for TAF of r in M .

4 Implementation

4.1 Detecting Antecedent Failure and Its Reasons

Below we provide the implementation of detection of antecedent failure and its reasons,
for suffix implication formulas. A key feature of our algorithm is that it does not add
auxiliary automata, but rather adds invariant checks on the automata built for model
checking the formula. Thus, before providing our algorithm we recall several facts re-
garding the model checking of suffix implication formulas, using the automata theoretic
approach.

The first fact we build upon is that for any regular expression there exists a natural
NFA accepting the same language. An NFA N is said to be natural for a linear RE r if
every state of N (except possibly a trapping state) is associated with a unique position
in r. A construction for a linear NFA for a given RE r can be found in [6] and is repeated
in the full version of the paper [9]. This NFA also satisfies that all the outgoing edges
from a given state have the same label, and the label is the set of valuations satisfying
the letter associated with the state.

The following proposition [12, Proposition 3.5] states that this NFA can be used for
both recognizing a given RE and failing to recognize it.

Proposition 3 ([12]). Let r be an RE. There exists an NFA Nr with O(|r|) states such
that Nr has a trapping non-accepting state qbad and for every word w over Σ,

1. there exists an accepting run of Nr on w iff there exists a non-empty prefix u w
such that u ∈ [[r]].

2. every run of Nr on w reaches qbad iff for every non-empty prefix u w we have
u /∈ [[r]].

Temporal Antecedent Failure: Refining Vacuity 501

We refer to such an NFA as a trapping NFA. The proof of the following proposition
from [12, Proposition 3.15] asserts that efficient model checking a formula of the form
r → ϕ can be done by “concatenating” the trapping NFA for rwith the Büchi automaton
for ϕ.

Proposition 4 ([12]). Let r be an RE, and ϕ a formula. If there exists a weak (terminal)
Büchi automaton for ¬ϕ with state set S, then there exists a weak (terminal) Büchi
automaton for ¬(r → ϕ) with at most O(|r| + |S|) states.

We are now ready for the implementation. The following proposition states that an-
tecedent failure of r → ϕ with respect to r in M can be detected by checking the in-
variant property stating that the trapping NFA of r does not reach an accepting state on
a parallel composition of the model with the trapping NFA of r. We represent the model
M and the NFA for r symbolically using discrete transition systems (DTSs) over finite
and infinite words. The definition of a DTS, the transition from an NFA to a DTS and
their parallel composition, denoted ||| are defined in [7] and repeated in the full version
of the paper [9]. In the sequel we use DM for the DTS representation of M . We use Dr

to denote the DTS representation of the trapping NFA for r and Ar to denote the set of
accepting states of Dr. For a position x of r we use at x to denote a present formula
stating that Dr is in the state corresponding to position x. We use �(x) to denote the
letter on the outgoing edges from state satisfying at x. Thus �(x) is the letter obtained
from position x after removing the added subscript.

Proposition 5. Let M be a model and r an RE.

r suffers from TAF in M iff DM ||| Dr |= AG ¬Ar

Proposition 6 below states the invariants that provide a detection of a TAF reason. The
first invariant checks that the position is reachable, implying that an immediate pre-
decessor did hold when expected. The second invariant holds if the position does not
hold when expected. Proposition 7 below provides the invariant that distinguishes be-
tween primary and secondary reasons: it checks whether there exists a (not necessarily
immediate) successor that is reachable.

Proposition 6. Let M be a model, r an RE such that M suffers from antecedent failure
of r. Let x be a position in r. Then, x is a reason of antecedent failure in ϕ iff the
following two conditions hold:

– DM ||| Dr
|= AG ¬at x // x is reachable.
– DM ||| Dr |= AG (at x→¬�(x)) // x is not exercised.

Proposition 7. Let M be a model, r an RE and x a position in r that is a reason of
antecedent failure. Then, x is a primary reason of antecedent failure iff DM ||| Dr |=
AG

∧
y ·,x

¬at y. Otherwise x is a secondary reason.

It is important to note that all the detection “tests” are phrased as a set of invariants over
the parallel execution of the given model with the NFA for the given formula. Thus, they
can run on the fly over the same model (without adding any automata) and therefore the
cost of adding them to the verification is small.

502 S. Ben-David, D. Fisman, and S. Ruah

4.2 Witness Generation

The previous sections discussed detection of temporal antecedent failure. If a formula
is valid on a model M , then using Proposition 5 we can check whether it suffers from
TAF. If the formula suffers from TAF we seek for the reason for TAF , if it does not suffer
from TAF we would like to convince the user of this as well. In [5] Beer et al. suggested
the term witness for a trace convincing of the fact the formula does not hold vacuously.

In our case, intuitively, a witness should show that no position is a reason for TAF.
Indeed, by Proposition 1, this is an indication that the formula does not suffer from TAF.
Recall however that the existence of a secondary reason is not an indication for TAF.
However, users may want to get a witness to the fact that a position is not a secondary
reason as well.

We thus define two kinds of witnesses. A nonTAF-witness is a trace convincing of the
fact that the model does not suffer from TAF with respect to the given RE. A nonReason-
witness is a trace convincing of the fact that a given position is not a reason for TAF of
r in M . A full witness is a set of traces contradicting the fact that there exists a position
which is a reason for TAF of r in M . Formally,

Definition 8 (Witnesses). Let M be a model, r an RE and x a position in r.

– A run β of a DTS DM is a nonTAF-witness for r in M iff there exists a prefix α of
β such that L(α) ∈ [[r]]

– A run β of a DTS DM is a nonReason-witness for r in M with respect to x iff it is
a nonTAF-witness and there exists a prefix α of β such that L(α) ∈ [[rx�]].

A set S ⊆ L(DM) is a full witness for r in DM iff for each x ∈ pos(r), there exists
β ∈ S such that β is a nonReason-witness for r in DM with respect to x.

The generation of witnesses uses the model-checking ability to generate counter exam-
ples. In order to provide a nonTAF-witness we ask the model checker to find a counter
example to the fact that the accepting states of the NFA for the given RE are never vis-
ited. In order to provide a nonReason-witness for a given position x we ask the model
checker to find a counter example to the fact that in addition, whenever the state associ-
ated with x is visited, the corresponding letter does not hold. The following proposition
states this formally.

Proposition 8. Let M be a model, r an RE and x a position in r.

– A counter example for G (¬Ar) in DM ||| Dr is a nonTAF-witness for r in DM .
– A counter example for G (at (x)→¬�(x))∧G (¬Ar) in DM ||| Dr is a nonReason-

witness for r in DM with respect to x.

4.3 Procedure for Detecting TAF, Its Reasons and Generating Witnesses

Procedure FindTAFAndGenerateWitness described below, receives as input a DTS

representationDM of a modelM and an RE r. IfM suffers from TAF of r the procedure
returns the reasons for TAF (both primary and secondary). If M does not suffer from
TAF of r the procedure returns a nonTAF-witness. The procedure does not generate

Temporal Antecedent Failure: Refining Vacuity 503

nonReason-witness. It is easy to augment it to produce a nonReason-witness for a given
position x (or for all positions x), by adding additional invariant checks as described in
Proposition 8.

Procedure 1. Find TAF and Generate Witness()

Input: DTS DM ; RE r;1

Output: set PrimaryList; set SecondaryList; trace WitnessTrace;2

PrimaryList := ∅;3

SecondaryList := ∅;4

FindTAFReasons(DM ,r,x∞,true,PrimaryList,SecondaryList,∅);5

if PrimaryList = ∅ then6

WitnessTrace := ProduceCounterExample(AG¬atx∞);7

end8

The procedure FindTAFReasons is a recursive procedure that receives as input a
DTS representationDM of a modelM , an RE r, a position x, a flag primary indicating
whether a primary or secondary reason is searched for, and three sets PrimaryList,
SecondaryList and V isitedPos to save sets of positions as implied by the name of
the set. At the initial call to the procedure the primary flag is turned on. The position
sent at the initial call is x∞ which is a position added in the construction of the natural
NFA (see section A.2 of the full version). This position is added as the last position in
order to create a unique last position and simplify the procedure. That is, if r is a natural
RE the procedure works on r · x∞.

The procedure first checks that the given position x was not visited before. If it was
visited it returns (line 3) otherwise it updates the set of visited positions accordingly
(line 5). It then checks whether the position is reachable (line 6). If it is unreachable
then (according to Proposition 5) it is not a reason. It thus calls recursively to each
of x’s immediate predecessors (lines 20-21). If it is reachable it checks whether it is
“exercised” — i.e. whether the corresponding letter holds when expected (line 8). If
it is not exercised then (by Proposition 5) a reason is found. The position is inserted
to either PrimaryList or SecondaryList according to the value of the primary flag
(lines 10-13). The procedure proceeds with recursive calls to the immediate predecessor
with the flag primary turned off (line 16-17). Proposition 9 below states the correctness
of the procedure.

Proposition 9. LetDM be a DTS representation of a modelM and r an RE. Let Prima-
ryList, SecondaryList and WitnessTrace be the output of the procedure FindTAFAndGe-
nerateWitness on the input r and DM . Then

1. The formula does not suffer from TAF in M iff PrimaryList = ∅.
2. PrimaryList holds the set of positions which are a primary reason of TAF.
3. SecondaryList holds the set of positions which are a secondary reason of TAF.
4. If PrimaryList = ∅ then WitnessTrace holds a nonTAF-witness for r in M .

504 S. Ben-David, D. Fisman, and S. Ruah

Procedure 2. FindTAFReasons(FDS DM ,RE r, position x, Bool primary, set Pri-
maryList, set SecondaryList, set VisitedPos)

Bool unreachable, unexercised;1

if x ∈ VisitedPos then2

return;3

end4

VisitedPos := VisitedPos ∪{x}5

unreachable := DM |= AG¬(at x)6

if unreachable == false then7

unexercised := DM |= AG(at x→ ¬�(x))8

if unexercised then9

if primary then10

PrimaryList := PrimaryList ∪{x}11

else12

SecondaryList := SecondaryList∪{x}13

end14

end15

foreach y ∈ P(r, x) do16

FindTAFReasons(DM ,r,y,false,PrimaryList,SecondaryList,VisitedPos);17

end18

else19

foreach y ∈ P(r, x) do20

FindTAFReasons(DM ,r,y,primary,PrimaryList,SecondaryList,VisitedPos);21

end22

end23

5 Discussion

Several definitions of vacuity exist in the literature. The commonly used one is that of
Beer et al. [3] cited in the introduction, saying that ϕ is vacuous in a model M if there
exists a sub-formula ψ of ϕ that does not affect the truth value of ϕ in M . We note that
TAF refines vacuity in the sense that if ϕ suffers from TAF in M it is also vacuous in M
according to Beer et al. To see this, let ϕ = (r → Ψ), and assume that M |= r → Ψ
and r suffers from TAF inM . Thus, the full condition r never occurs inM , and therefore
for any formula Ψ ′, M |= r → Ψ ′. Thus Ψ does not affect the truth value of ϕ in M .

Our method detects TAF by asserting a single invariance (safety) formula, derived
from the automaton already built for model checking of the original formula. Thus, it
has two advantages over existing methods. First, only one formula needs to be checked,
as opposed to several formulas — one for each proposition — in other methods [24,1].
Second, it avoids building another automaton for the vacuity formula. The actual effort
needed to detect TAF depends on the model checking method used in practice. In the
worst case it amounts to another model checking run of an invariance formula. However,
when the reachable state space is computed, as done by BDD-based model checkers
such as SMV [25], TAF is detected by intersecting the BDD of the invariance formula

Temporal Antecedent Failure: Refining Vacuity 505

with that of the reachable states. This intersection is easily performed, and never takes
more than a few seconds, even for very large models. TAF is therefore detected with
almost no overhead on the model checking process.

TAF detection is implemented in the IBM model checking tool RuleBase [21] and
serves as the major vacuity detection algorithm of the tool (applied to all formulas that
can be translated into suffix implication form, which forms the vast majority of formulas
written in practice [8]). Unlike evidence regarding other types of vacuity, experience
shows that temporal antecedent failure always indicates a real problem in the model,
environment or formula under verification. Evidence in the other direction are less clear.
Although non-TAF vacuities are many times considered non-problem by the users, this
is not always the case. We thus propose a two button approach. Button 1 (the default),
would check for TAF that, on the one hand is guaranteed to be important and on the
other hand can be detected efficiently. If the user is interested in a more comprehensive
check, with the risk of it producing non-real problems and taking a longer time, she can
then choose button 2, that would perform the desired comprehensive check.

References

1. Armoni, R., Fix, L., Flaisher, A., Grumberg, O., Piterman, N., Tiemeyer, A., Vardi, M.: En-
hanced vacuity detection in linear temporal logic. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 368–380. Springer, Heidelberg (2003)

2. Beatty, D., Bryant, R.: Formally verifying a microprocessor using a simulation methodology.
In: Design Automation Conference, pp. 596–602 (1994)

3. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in ACTL formu-
las. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 279–290. Springer, Heidelberg
(1997)

4. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in temporal
model checking. Formal Methods in System Design 18(2), 141–163 (2001)

5. Beer, I., Ben-David, S., Landver, A.: On-the-fly model checking of RCTL formulas. In:
Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 184–194. Springer, Heidelberg (1998)

6. Ben-David, S., Fisman, D., Ruah, S.: Automata construction for regular expressions in model
checking (IBM research report H-0229) (2004)

7. Ben-David, S., Fisman, D., Ruah, S.: Embedding finite automata within regular expressions.
In: Margaria, T., Steffen, B. (eds.) 1st International Symposium on Leveraging Applications
of Formal Methods, Springer (2004)

8. Ben-David, S., Fisman, D., Ruah, S.: The safety simple subset. In: Ur, S., Bin, E., Wolfsthal,
Y. (eds.) Hardware and Software, Verification and Testing. LNCS, vol. 3875, pp. 14–29.
Springer, Heidelberg (2006)

9. Ben-David, S., Fisman, D., Ruah, S.: Temporal antecedent failure: Refining vacuity (IBM
research report H-0252) (2007)

10. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoretical Com-
puter Science 48(1), 117–126 (1986)

11. Boul’e, M., Zilic, Z.: Efficient automata-based assertion-checker synthesis of psl properties.
In: HLDVT06. Workshop on High LevelDesign, Validation, and Test (2006)

12. Bustan, D., Fisman, D., Havlicek, J.: Automata construction for PSL. Technical Report
MCS05-04, The Weizmann Institute of Science (2005)

13. Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular vacuity. In:
Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, Springer, Heidelberg (2005)

506 S. Ben-David, D. Fisman, and S. Ruah

14. Chechik, M., Gurfinkel, A., Gheorghiu, M.: Finding environmental guarantees. In: FASE
2007 (2007)

15. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using branching
time temporal logic. In: Kozen, D. (ed.) Logics of Programs. LNCS, vol. 131, pp. 52–71.
Springer, Heidelberg (1982)

16. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge (2000)
17. Dong, Y., saran Starosta, B., Ramakrishnan, C., Smolka, S.A.: Vacuity checking in the modal

mu-claculus. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp.
147–162. Springer, Heidelberg (2002)

18. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer (2006)
19. Gurfinkel, A., Chechik, M.: Extending extended vacuity. In: Hu, A.J., Martin, A.K. (eds.)

FMCAD 2004. LNCS, vol. 3312, pp. 306–321. Springer, Heidelberg (2004)
20. Gurfinkel, A., Chechik, M.: How vacuous is vacuous? In: Jensen, K., Podelski, A. (eds.)

TACAS 2004. LNCS, vol. 2988, pp. 451–466. Springer, Heidelberg (2004)
21. IBM’s Model Checker RuleBase. http://www.haifa.il.ibm.com/projects/

verification/rb homepage/index.html
22. Annex E of IEEE Standard for SystemVerilog — Unified Hardware Design, Specification,

and Verification Language. IEEE Std 1800TM-2005
23. IEEE Standard for Property Specification Language (PSL). IEEE Std 1850TM-2005
24. Kupferman, O., Vardi, M.: Vacuity detection in temporal model checking. STTT 4(2), 224–

233 (2003)
25. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)
26. Namjoshi, K.S.: An efficiently checkable, proof-based formulation of vacuity in model

checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 57–69. Springer,
Heidelberg (2004)

27. Purandare, M., Somenzi, F.: Vacuum cleaning CTL formulae, pp. 485–499 (July 2002)
28. Quielle, J., Sifakis, J.: Specification and verification of concurrent systems in cesar. In: 5th

International Symposium on Programming (1982)
29. Samer, M., Veith, H.: Parametrized vacuity. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.

LNCS, vol. 3312, pp. 322–336. Springer, Heidelberg (2004)
30. Tzoref, R., Grumberg, O.: Automatic refinement and vacuity detection for symbolic trajec-

tory evaluation. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 190–204.
Springer, Heidelberg (2006)

http://www.haifa.il.ibm.com/projects/verification/rb_homepage/index.html
http://www.haifa.il.ibm.com/projects/verification/rb_homepage/index.html

Author Index

Aceto, Luca 2
Akshay, S. 181
Aminof, Benjamin 460

Ben-David, Shoham 492
Bonchi, Filippo 364
Boudol, Gérard 272
Bozzelli, Laura 476
Brázdil, Tomáš 428
Brihaye, Thomas 445
Busi, Nadia 241

Chadha, R. 136
Chatterjee, Krishnendu 59
Chatzikokolakis, Konstantinos 42
Chen, Taolue 120
Crafa, Silvia 317

Danos, Vincent 17
de Alfaro, Luca 74

Ehrhard, Thomas 333

Feret, Jérôme 17
Fisman, Dana 492
Fontana, Walter 17
Forejt, Vojtěch 428

Gazagnaire, Thomas 166
Genest, Blaise 166
Gorrieri, Roberto 241
Grohmann, Davide 380

Harmer, Russell 17
Hélouët, Löıc 166
Henzinger, Thomas A. 59
Hym, Samuel 349

Ingolfsdottir, Anna 2

Katoen, Joost-Pieter 412
Krivine, Jean 17
Kumar, K. Narayan 181

Lammich, Peter 287
Laneve, Cosimo 212
Lange, Martin 90
Laroussinie, François 445

Larsen, Kim G. 105
Laurent, Olivier 333
Lüttgen, Gerald 197

Markey, Nicolas 445
Melliès, Paul-André 395
Mendler, Michael 197
Miculan, Marino 380
Mimram, Samuel 395
Montanari, Ugo 364
Mukund, Madhavan 181
Müller-Olm, Markus 287
Murano, Aniello 460

Nanz, Sebastian 226
Neuhäußer, Martin R. 412
Nielson, Flemming 226
Nielson, Hanne Riis 226
Nyman, Ulrik 105

Oreiby, Ghassan 445

Padovani, Luca 212
Palamidessi, Catuscia 42
Parkinson, Matthew 256
Piterman, Nir 59
Ploeger, Bas 120

Roy, Pritam 74
Ruah, Sitvanit 492

Santocanale, Luigi 151
Schneider, Fred B. 1

Thiagarajan, P.S. 166

Vafeiadis, Viktor 256
van de Pol, Jaco 120
Varacca, Daniele 317
Vardi, Moshe Y. 460
Versari, Cristian 241
Viswanathan, M. 136

Wang, Bow-Yaw 303
W ↪asowski, Andrzej 105
Willemse, Tim A.C. 120

Yang, Shaofa 166
Yoshida, Nobuko 317

	Title Page
	Preface
	Organization
	Table of Contents
	Mapping the Security Landscape: A Role for Language Techniques
	The Saga of the Axiomatization of Parallel Composition
	The Problem and Its History
	Background
	Classic Results on Equational Axiomatizations

	The Role of Hennessy’s Merge
	The Influence of Time
	References

	Rule-Based Modelling of Cellular Signalling
	Background
	A Futile Cycle
	Agents and Rules
	The Contact Map
	Stochastic Simulation
	Precedence and Stories
	Inhibition and Activation

	The EGFR Model
	EGFR Model Elements
	Ras Activation
	SoS Deactivation

	Conclusions
	References
	Appendix
	\ka, Briefly
	The Rule Set of the EGFR Model

	Making Random Choices Invisible to the Scheduler
	Introduction
	Related Work

	Preliminaries
	Simple Probabilistic Automata
	CCS with Internal Probabilistic Choice

	A Variant of CCS with Explicit Scheduler
	Syntax
	Semantics
	Deterministic Labelings

	Expressiveness of the Syntactic Scheduler
	Using Non-linear Labelings

	Testing Relations for \ccss{} Processes
	An Application to Security
	Encoding Secret Value Passing
	Dining Cryptographers with Probabilistic Master
	Dining Cryptographers with Nondeterministic Master

	Conclusion and Future Work
	References

	Strategy Logic
	Introduction
	GraphGames
	Strategy Logic
	Simple One-Alternation Fragment of Strategy Logic
	Expressive Power of Strategy Logic
	Model Checking Strategy Logic
	References

	Solving Games Via Three-Valued Abstraction Refinement
	Introduction
	Preliminary Definitions
	Game Objectives
	Strategies andWinning States
	Game Abstractions
	Controllable Predecessor Operators
	$\μ$-Calculus

	Reachability and Safety Games
	Reachability Games
	Safety Games
	Termination
	Approximate Abstraction Refinement Schemes
	Comparision with Counterexample-Guided Control

	Symbolic Implementation
	Symbolic Game Structures
	Symbolic Abstractions
	Symbolic Abstraction Refinement

	Abstraction Refinement for Parity Games
	Conclusion and Future Work
	References

	Linear Time Logics Around PSL: Complexity,Expressiveness, and a Little Bit of Succinctness
	Introduction
	Preliminaries
	Expressive Power and Succinctness
	The Complexity of \SERETL and Its Fragments
	Summary and Conclusion
	References

	On Modal Refinement and Consistency
	Background and Overview
	Modal Transition Systems
	Non-thoroughness of Modal Refinement
	A Thorough Refinement Is Co-NP Hard

	Syntactic Consistency and Syntactic Refinement
	Strong Modal Refinement and Strong Consistency
	Weak Refinement and Weak Consistency
	May-Weak Modal Refinement and Its Consistency
	Conclusion and Open Problems
	References

	Equivalence Checking for Infinite Systems Using Parameterized Boolean Equation Systems
	Introduction
	Preliminaries
	Bisimulation Equivalences

	Parameterized Boolean Equation Systems
	Translation for Branching Bisimulation
	Correctness of Transformation

	Example: Unbounded Queues
	Transformation for Other Equivalences
	Conclusion
	References

	Decidability Results for Well-Structured Transition Systems with Auxiliary Storage
	Introduction
	Related Work

	Preliminaries
	Well-Structured Transition Systems with Auxiliary Storage
	Pointed Data Structures
	{\wqo} Automata

	Decidability of the Coverability Problem
	Rank k-Approximations
	Effective {\wqo Automata} and Coverability

	Applications
	Multi-set Pushdown System
	Timed Multi-set Pushdown System

	Conclusions and Future Work
	References

	A Nice Labelling for Tree-Like Event Structures of Degree
	Introduction
	Event Structures and the Nice Labelling Problem
	Cycles and Antichains
	An Optimal Nice Labelling for Trees and Forests
	More Upper Bounds
	References

	Causal Message Sequence Charts
	Introduction
	MSCs, Causal MSCs and Causal HMSCs
	Regularity and Model-Checking for Causal HMSCs
	Semantics for Causal HMSCs
	Regular Sets of Linearizations
	Inclusion and Intersection Non-emptiness of Causal HMSCs

	Window-Bounded Causal HMSCs
	Relationship with Other Scenario Models
	Conclusion
	References

	Checking Coverage for Infinite Collections of Timed Scenarios
	Introduction
	Preliminaries on MSCs
	Message Sequence Charts
	Message Sequence Graphs

	Adding Time to Scenarios
	Time-Constrained MSCs
	Timed MSCs
	Time-Constrained MSGs

	Timed Message-Passing Automata
	The Coverage Problem
	Coverage for Locally Synchronized TC-MSGs
	Discussion
	References

	Is Observational Congruence Axiomatisable in Equational Horn Logic?
	Introduction
	The Process Language \bccspp
	A Pure Horn Axiomatisation
	Can Horn Eliminate Unguardedness?
	Discussion, Conclusions and Future Work
	References

	The \Must Preorder Revisited An Algebraic Theory for Web Services Contracts
	Introduction
	The Contract Language
	The Subcontract Relation
	Dual Contracts
	Choreographies
	Concluding Remarks
	References

	Topology-Dependent Abstractions of Broadcast Networks
	Introduction
	bKlaim
	Syntax
	Operational Semantics

	Abstract Transition Systems
	Exposed Actions
	Abstract Transition Systems
	Interpretation of ACTL Properties

	Constructing Abstract Transition Systems
	Transfer Functions
	Worklist Algorithm

	Conclusion
	References

	On the Expressive Power of Global and Local Priority in Process Calculi
	Introduction
	Contribution of This Paper
	Structure of the Paper

	Calculi
	The π-Calculus
	The$\ bpi$-Calculus
	The CPG Language
	The FAP Language

	Encodings
	The Leader Election Problem
	The Last Man Standing Problem

	Separation Results
	Leader-Election-Based Separation Results
	LMS-Based Separation Results

	Conclusion
	References

	A Marriage of Rely/Guarantee and Separation Logic
	Introduction
	Technical Background
	Local Reasoning – Separation Logic

	The Combined Logic
	Describing Interference
	Stability
	Local and Shared State Assertions
	Ownership Transfer
	Specifications and Proof Rules

	Example
	Semantics and Soundness
	Related Work
	Conclusion
	References

	Fair Cooperative Multithreading
	Introduction
	Syntax
	OperationalSemantics
	The Type and Effect System
	The Termination Property
	Conclusion
	References

	Precise Fixpoint-Based Analysis of Programs with Thread-Creation and Procedures
	Introduction
	Parallel Flow Graphs
	Dataflow Analysis
	ForwardAnalysis
	Backward Analysis
	Possible Interference
	Parallel Calls
	Conclusion
	References

	Automatic Derivation of Compositional Rules in Automated Compositional Reasoning
	Introduction
	Preliminaries
	Classical Interpretation
	Limitation of Classical Interpretation

	Interpretation \`a la Abadi and Plotkin
	Applications
	On Invertibility
	Conclusions
	References

	Compositional Event Structure Semantics for the Internal π-Calculus
	Introduction
	Internal π-Calculus
	Event Structures
	The Parallel Composition

	Event Structure Semantics
	Generalised Relabelling
	Definition of the Semantics
	Examples
	Properties of the Semantics

	Asynchronous πI-Calculus
	Denotational Semantics
	Properties of the Semantics

	Related and Future Work
	References
	A Substitution of Sequences

	Interpreting a Finitary Pi-calculus in Differential Interaction Nets
	Introduction
	Differential Interaction Nets
	Presentation of the Cells

	Reduction Rules
	Defining the Reduction
	Confluence
	A Transition System of Simple Nets

	A Toolbox for Process Calculi Interpretation
	Compound Cells
	Communication Tools
	Useful Reductions

	A Polyadic Finitary π-calculus and Its Encoding
	An Execution Model
	Translation of Processes

	Comparing the Transition Systems
	References

	Mobility Control Via Passports
	Introduction
	Typed DÏ€ with Passports
	Loyal Observational Equivalence
	Loyal Bisimilarity
	Conclusion and Perspectives
	References
	Reduction Semantics

	Coalgebraic Models for Reactive Systems
	Introduction
	The Theory of Reactive Systems
	Coalgebras and Structured Coalgebras
	Coalgebraic Models of \CTSs
	Coalgebraic Models of \ITSs
	Normalized Coalgebras
	Isomorphism Theorem
	From \ilts\ to \sim_{SAT} Through
Normalization

	Conclusions
	References

	Reactive Systems over Directed Bigraphs
	Introduction
	Directed Bigraphs
	Directed Bigraphical Reactive and Transition Systems
	Directed Bigraphical Reactive Systems
	Directed Bigraphical Transition Systems

	Reducing Directed Bigraphical Transition Systems
	Engaged Transition System
	Definite Engaged Transition System
	Extending to Non-hard Abstract Bigraphs

	An Application: The Fusion Calculus
	Conclusions
	References

	Asynchronous Games: Innocence Without Alternation
	Introduction
	The Cube Property
	Positionality in Asynchronous Games
	Ingenuous Strategies in Asynchronous Games
	Ingenuous Strategies in Concurrent Games
	Innocent Strategies
	References

	Bisimulation and Logical Preservation for Continuous-Time Markov Decision Processes
	Introduction
	Continuous-Time Markov Decision Processes
	The Probability Space
	The Probability Measure

	Strong Bisimulation
	Continuous Stochastic Logic
	Syntax and Semantics
	Strong Bisimilarity Preserves CSL

	Conclusion
	References

	Strategy Synthesis for Markov Decision Processes and Branching-Time Logics
	Introduction
	Basic Definitions
	Markov Chains
	The Logic qPECTL*
	Games and Strategies

	The Synthesis Problem for detPECTL*
	The Synthesis Problem for qPECTL* and Finite-Memory Strategies
	qPCTL and Finite-Memory Strategies
	References

	Timed Concurrent Game Structures
	Introduction
	Definitions
	Untimed Concurrent Game Structures
	Timed Concurrent Game Structures

	Region Equivalence and Strategies
	Region Equivalence
	Simplifying Strategies

	RegionCGS
	TimedATL
	Model-Checking

	Ruling Out Zeno Strategies
	Conclusion and Perspectives
	References

	Pushdown Module Checking with Imperfect Information
	Introduction
	Preliminaries
	Imperfect Information Pushdown Module Checking
	Module Checking with Visible Pushdown Store
	Discussion
	References

	Alternating Automata and a Temporal Fixpoint Calculus for Visibly Pushdown Languages
	Introduction
	Preliminaries
	Alternating Visibly Pushdown Automata
	Alternating Jump Finite-State Automata
	Relation Between Nondeterministic Visibly Pushdown Automata and \AJA
	Decision Problems for Alternating Jump Automata

	Conclusion
	References
	Visibly Pushdown Linear-Time μ-Calculus (\VPMU

	Temporal Antecedent Failure: Refining Vacuity
	Introduction
	Preliminaries
	Notations
	Temporal Logic
	Regular Expressions
	Positions in Regular Expressions and Related Partial Orders

	Temporal Antecedent Failure (TAF) and Its Reasons
	Temporal Antecedent Failure
	Moving to Regular Expressions
	Defining TAF Reasons

	Implementation
	Detecting Antecedent Failure and Its Reasons
	Witness Generation
	Procedure for Detecting TAF, Its Reasons and GeneratingWitnesses

	Discussion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

